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Abstract—Generalizable robotic mobile manipulation in open-
world environments poses significant challenges due to long
horizons, complex goals, and partial observability. A promising
approach to address these challenges involves planning with a
library of parameterized skills, where a task planner sequences
these skills to achieve goals specified in structured languages, such
as logical expressions over symbolic facts. While vision-language
models (VLMs) can be used to ground these expressions, they
often assume full observability, leading to suboptimal behavior
when the agent lacks sufficient information to evaluate facts with
certainty. This paper introduces a novel framework that leverages
VLMs as a perception module to estimate uncertainty and facil-
itate symbolic grounding. Our approach constructs a symbolic
belief representation with ternary logic and uses a belief-space
planner to generate uncertainty-aware plans that incorporate
strategic information gathering. We demonstrate our system on
a range of challenging real-world tasks that require reasoning in
partially observable environments. Simulated evaluations show
that our approach outperforms both vanilla VLM-based end-
to-end planning and VLM-based state estimation baselines, by
planning for—and executing—strategic information gathering.
This work highlights the potential of VLMs to construct belief-
space symbolic scene representations, enabling downstream tasks
such as uncertainty-aware planning.

Index Terms—Partial Observability, Long-Horizon, Mobile
Manipulation, Task & Motion Planning, Vision-Language Models

I. INTRODUCTION

Task-level planning [1] is critical to achieving long-horizon
mobile manipulation tasks in complex environments [2].
However, many planning methods typically assume complete
knowledge of the environment, including object properties and
relations, rendering them inapplicable to partially observable
settings where robots must dynamically discover, perceive,
and interact with objects while resolving uncertainties. Some
domains require integrating strategic information gathering
with manipulation planning.

We address the challenge of operating in partially observ-
able environments characterized by (1) uncertain object prop-
erties, (2) unknown object instances (number, type, location),
and (3) goals specified via ungrounded natural language. In
such domains, information gathering becomes crucial (Fig 1).

Handling partial observability on real robots, especially
for long-horizon mobile manipulation tasks, is notoriously
difficult . These problems are often modeled as Partially
Observable Markov Decision Processes (POMDPs) [3]. Com-
pared to tabletop setups with fixed cameras offering near-

Fig. 1: Example tasks demonstrating various uncertainty levels.
(1) Cup Pick-Place: a fully observable tabletop manipulation task
with multiple cups. (2) Empty Cup Removal: requires inspecting
cups from above to determine if they are empty before removal. (3)
Drawer Cleaning: involves opening drawers to discover and remove
objects inside. (4) Sort Weight: requires weighing sealed boxes on a
scale to identify and dispose of empty ones. These tasks demonstrate
increasing complexity in information gathering, from fully observable
scenarios to those requiring several strategic information-gathering
steps.

complete views, mobile robots face inherently greater un-
certainty about the environment state and limitations from
onboard, viewpoint-dependent perception. One major strategy
for tackling POMDPs involves planning in belief space, ag-
gregating information into an explicit belief state representing
the agent’s knowledge and uncertainty. Our work follows this
strategy.

While excellent solutions for belief-space planning exist [4–
7], they often require sophisticated algorithms, complex be-
lief representations (e.g., full probability distributions), and
carefully hand-engineered perception pipelines. An alterna-
tive strategy involves learning history-conditioned policies
directly [8]. The recent foundation model approaches (VLMs,
LLMs) typically fall into this category but often struggle with
systematic planning under uncertainty and strategic informa-
tion gathering, especially with limited real-robot data [9, 10].

In this paper, we aim to illustrate that the core ideas of
belief-space planning can be applied relatively straightfor-
wardly to mobile manipulation tasks by leveraging modern,



Fig. 2: Example plan. A task to put any object in the drawer into a paper bin. Because the drawer is closed, the robot needs to maintain
uncertainty of the environment and plan under uncertainty to achieve the belief goal: KEmpty+(drawer) and Inside(block, box).
The sequence shows: (1) initial reach to the closed drawer (without knowing if the drawer is empty or not), (2) opening the drawer to reveal
a blue block inside and update belief, (3) grasping the block from the drawer, (4) moving the block over the paper bin, and (5) successfully
placing the block into the bin. This demonstrates how the robot handles uncertainty through interleaved information gathering (opening
drawer to check contents) and manipulation actions (grasping and placing the block).

off-the-shelf components: classical planners (adapted via de-
terminization, §III-D) and Vision-Language Models (VLMs)
for evaluating perceptual predicates (§IV-A).

To develop a tractable approach for belief-space planning,
we make simplifying assumptions: we treat predicate values
as either known true, known false, or unknown; observations,
while local, are assumed perfect; world-changing actions have
deterministic effects; and there is no information loss over
time or due to exogenous events (see §III-A for details). These
assumptions allow for a lightweight belief representation and
planning strategy.

Following Bonet and Geffner [11], we represent the agent’s
belief using three-valued logic (True/False/Unknown) for
predicates, explicitly tracking known vs. unknown states via
two binary predicates (K-fluents [11]). We formulate planning
as finding a sequence of actions to reach a goal belief
state (e.g., knowing an object property). Information-gathering
actions are modeled systematically. To handle the resulting
belief non-determinism tractably, we employ an all-outcomes
determinization and online replanning strategy [11]. Our in-
tegrated pipeline leverages VLMs within this framework as
flexible perception modules to evaluate predicate truth values
(updating K-fluents) and to ground natural language goals.

We demonstrate our approach through experiments on
mobile-manipulation tasks in simulated synthetic environ-
ments (constructed by real images) and on a physical Spot
robot. These tasks require discovering object properties during
execution. Our results show the system effectively manages
partial observability, dynamically adapts plans, and leverages
strategic information gathering more efficiently than end-to-
end VLM baselines, particularly in simulation.

II. RELATED WORK

A. Foundation Models for Planning

Recent advances using LLMs and VLMs enable approxi-
mate robot planning in diverse environments [9, 12–14], but
evaluations highlight limitations in long-horizon or combina-
torial problems when lacking an explicit planning model [15,
16]. These foundation models can be used in a “zero shot”
way to directly generate plans from natural language goals and
visual inputs, but they perform poorly with systematic plan-
ning, maintaining long-term context, handling uncertainty, and
strategic information gathering [9, 17]. These shortcomings are
particularly visible in partially observable scenarios requiring
multi-step planning and deliberate information gathering.

B. Belief-Space Planning

Belief-space planning effectively handles uncertainty from
partial observability [18–24]. It models the robot’s knowledge
as a belief state and plans to achieve belief goals (e.g., "know
the lights are off") using both world-changing and information-
gathering actions. This is crucial for mobile manipulation in
partially known environments with unknown objects or states.

Belief-based systems typically involve a state estimator SE
for belief updates and a policy π mapping beliefs to actions.
Computing a complete policy offline is often intractable since
only a tiny subset of possible beliefs will ever be reached. We
instead follow an alternative approach that constructs partial
plans online and replans if unanticipated observations are
obtained [18]. Beliefs can be modeled as probability distri-
butions or, alternatively, as sets of possible worlds represented
compactly using three-valued logic (true, false, unknown) [25–
29], which efficiently extends deterministic models to belief
space [11].

Manual specification of planning domains is laborious;
predicate and operator invention methods automate learning



symbolic representations from data [30, 31]. Our framework
reduces belief-space planning to replanning in a determinized
belief state constructed from standard planning operators (Sec-
tion III). This suggests that techniques for learning standard
planning operators might be adaptable to learn the belief-space
operators to reduce manual effort.

C. Object Uncertainty, Search, and Grounding

A key challenge in applying planning methods to partially-
observed scenarios is handling uncertainty related to objects,
including their existence, properties, and relevance to the task.
Typical planning systems often assume a pre-specified domain
of objects and properties, limiting their applicability when the
set of objects is unknown or properties need active discovery
[19].

One aspect of handling object existence uncertainty is object
search, where the goal is to locate objects, potentially requiring
exploration or manipulation [32, 33]. Much existing work
focuses specifically on finding objects of a particular cate-
gory, often using special-purpose strategies. However, many
tasks require gathering information about object properties
beyond just their location or category (e.g., determining if a
container is empty). Classical systems have explored planning
to perceive specific properties [34–36], but integrating gen-
eral property verification with manipulation planning remains
challenging. Our work aims for a more general mechanism
for gathering critical property information, integrated within
belief-space planning.

Furthermore, interpreting goals and understanding scenes
becomes complex when objects are initially unknown. While
foundation models like LLMs and VLMs have been used for
goal parsing and scene understanding in structured and fully
observable environments [16], partially observable settings
demand active perception to dynamically discover objects and
evaluate their properties [9]. While Sun et al. [37] explored
LLMs for POMDP planning, their approach relied on lever-
aging VLM-based perception to implicitly interpret belief-
updates and their effects on planning, instead of having an
explicit belief space within a belief-space task planning frame-
work. With an explicit representation, one common approach
to handling the object uncertainty not addressed in Sun et al.
[37] is using lifted representations (e.g., first-order logic goals
like "all empty cups"), which allows generalization of objects
of similar type. Each object has a grounded representation
(referring to specific object instances like ‘cup1‘), which
require mechanisms for grounding goals and actions as new
objects are discovered during execution. Since integrating
active perception with belief-space planning is crucial for en-
abling robots to iteratively gather information and refine their
understanding, we chose an explicit representation over relying
on VLM to do both belief-state estimation and planning.

III. FORMULATION: MODELING WITH UNCERTAINTY

The problem of sequential decision-making under uncer-
tainty in partially observable environments, such as mobile

manipulation tasks, is typically modeled as a partially observ-
able Markov decision process (POMDP) [3].

A. Modeling the Environment with Uncertainty

We approach this POMDP by converting it to a planning
problem in an associated belief-space MDP. Our approach
involves: (1) explicitly representing the agent’s belief state b
about the true world state, and (2) performing online approx-
imate planning within this belief space, utilizing replanning
to handle unexpected observations or outcomes resulting from
the discrepancy between the planning model and the execution
environment.

We model the partially observable planning problem in
terms of: (1) a object-centric belief state b, discussed in
§III-B; (2) a set of object-parameterized actions A that can be
executed by the agent, modifying the belief state, discussed
in §III-D; and (3) a goal G, specified as a first-order logical
expression over relations that must be True in the terminal
belief, discussed in §III-C.

To make this belief representation and the online planning
approach tractable, we adopt the following core simplifying
assumptions in our formulation:
• Perfect Observations: While observations are partial (local),

the information obtained about the observed part of the state
is assumed to be accurate and noise-free.

• Deterministic World Dynamics: Actions that intentionally
change the physical state of the world (world-changing
actions, Aw) are assumed to have deterministic effects on
the underlying world state, as defined by their models.

• Static Environment (No Exogenous Changes): The state of
the world only changes due to the robot’s actions; there are
no external events modifying the environment. Furthermore,
we assume no loss of information over time (e.g., forgetting
known facts).

• Separable Action Effects: We model actions such that their
effects can be separated into either changing the physical
world state or purely gathering information (updating be-
lief), not both simultaneously.

These assumptions, particularly perfect observations and de-
terministic dynamics, significantly simplify the belief update
and planning process. Unexpected observations and exogenous
changes to object locations and properties, which violate these
assumptions, are handled at runtime via replanning (with
updated belief state; see §IV). Relaxing these assumptions
typically requires more complex probabilistic belief represen-
tations and planning algorithms [19, 22].

B. Belief State Representation

Conceptually, the agent’s belief state b represents a set
of possible world states consistent with its observations and
action history. We explicitly structure this belief state using
the following components:
• A set of conjectured objects O currently believed to exist.
• A set of symbolic predicates P (e.g., Empty(cup)). They

are object-parameterized functions using O, and their values
produce the symbolic state variables.
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Fig. 3: Pipeline overview. Our system integrates perception, belief-state update, and planning. The example shows a task of moving empty
cups to a bin, where the system must evaluate cup properties and plan appropriate manipulation actions. Before runtime, a text goal is first
translated into symbolic specifications, which along with actions are determinized for the task planner. During a step of belief state update
at runtime, given an observation (images and sensor inputs from a robot), the system performs two parallel processes for: (1) object pointing
and segmenting to maintain a spatial memory of objects, and (2) predicate evaluation to ground belief predicates (e.g., Empty, On). The
planner generates a symbolic plan based on the symbolic belief state, and the first action is executed to generate a new observation. The
belief state is updated based on the new observation, and the process repeats until the goal is satisfied.

• Physical information, such as object memory (e.g., object
positions) and robot configuration.

To handle uncertainty, the truth value for any predicate P ∈ P
applied to objects o ⊆ O can be True (T), False (F), or
Unknown (U). Following Bonet and Geffner [11], we repre-
sent the agent’s knowledge about these three-valued predicates
using two binary K-fluents. For each belief predicate P (o),
we define KP (o) (known true) and K¬P (o) (known false).
The values regarding P (o) is encoded as: (1) T if KP (o)
is true, (2) F if K¬P (o) is true, and (3) U if both KP (o)
and K¬P (o) are false. This allows explicit but determinsitic
reasoning about knowns and unknowns. A consequence of
our core assumptions (perfect observations, static world, no
information loss) is monotonic knowledge acquisition: known
facts (T or F) remain known unless explicitly changed by a
world-changing action.

C. Goal Representation
A task goal G is specified as an achievable First-Order

Logic (FOL) formula over belief-state predicates, typically
requiring certain K-fluents to be true (e.g., KEmpty(cup1)).
Goals can be (1) grounded, referring to specific known objects
in O, or (2) lifted, quantifying over objects possibly including
those yet undiscovered, which is crucial for open-world tasks.

The scope of achievable goals is limited by the predicate set
P: (1) Goals must be expressible using the defined predicates
(or their K-fluents). (2) Goals involving specific unknown
objects or properties (e.g., finding a green_cup before
achieving Inside(green_cup)) may implicitly require
prerequisite information gathering actions.

D. Action Modeling and Planning via Determinization
Actions A available to the agent are parameterized operators

defined by preconditions and effects on the belief state b.

Following our core assumptions (§III-A), we separate actions
into two types based on their primary effect:

World-Changing Actions (Aw): These actions modify the
physical world state deterministically. Their effects on the
belief state b update K-fluents to reflect the known outcome.
For example, picking up an object ?o:

(:action Pick
:parameters (?o - object)
:precondition (and (HandEmpty) (CanGrasp ?o))
:effects (and (¬HandEmpty) (Holding ?o)))

Information-Gathering Actions (Ai): These actions aim
to reduce uncertainty about a predicate P (o) whose value is
Unknown (¬KP (o)∧¬K¬P (o)). They only update the belief
state by revealing information (making the predicate known
True or known False), without directly changing the physical
world state. For example, ObserveEmptiness(?cup) re-
veals whether a cup is empty.

Planning Model via Determinization: Information-
gathering actions (Ai) introduce non-determinism into the be-
lief state transition, as the observation outcome (True or False)
is unknown beforehand. This complicates planning, potentially
requiring complex conditional plans. To enable the use of
efficient classical planners, we employ an all-outcomes de-
terminization approach [11]. This involves (1) compiling each
information-gathering action Ai (like ObserveEmptiness)
into two deterministic PDDL actions, A+

i and A−
i , one for

each possible observation outcome (e.g., observing True or
observing False), and (2) optimistic planning, choosing the
outcome action (A+

i or A−
i ) that appears most beneficial

for reaching the goal according to the deterministic model.
For instance, ObserveEmptiness(?o) is split into two
actions:



Algorithm 1 Belief-Space Planning and Execution (§IV)

Require: Initial belief state b0 with initial objects O0, text
goal gtext, predicates P , actions A

1: g ← Translate(gtext,P,O0) ▷ Translation (§IV)
2: b← b0
3: while ¬Satisfied(g, b) do
4: p← Plan(b, g,A) ▷ Generate plan (§IV-D)
5: if p = None then return False ▷ Goal is infeasible.
6: for a in p do
7: o← Execute(a) ▷ Get observation (§IV-A)
8: b← BeliefUpdate(b, a, o) ▷ Update (§IV-B)
9: if ¬ExpectedEffects(a, b) then

10: break ▷ Replan with updated belief (§IV-D)
11: end if
12: end for
13: end while
14: return True ▷ Goal achieved

(:action ObserveEmptiness+ ; Outcome is True
:parameters (?o - object)
:precondition (and (CanObserve ?o)

(not (KEmpty+ ?o)) (not (
KEmpty- ?o)))

:effect (KEmpty+ ?o)) ; Effect: Known True

(:action ObserveEmptiness- ; Outcome is False
:parameters (?o - object)
:precondition (and (CanObserve ?o)

(not (KEmpty+ ?o)) (not (
KEmpty- ?o)))

:effect (KEmpty- ?o)) ; Effect: Known False

Here, KEmpty+ and KEmpty- represent KEmpty (known
true) and K¬Empty (known false), respectively. The precon-
dition (not (KEmpty+ ?o)) (not (KEmpty- ?o))
ensures the action is only applicable when the emptiness
status of ?o is Unknown. This determinization allows plan
generation using a classical planner, but the optimism means
that discrepancies between the planned outcome and the actual
observation during execution necessitate runtime replanning to
correct the course of action (§IV).

Executing Symbolic Plans: We assume that each symbolic
action in a generated plan corresponds to an executable skill
or program. These skills are responsible for achieving the
action’s specified effects in the physical world. Internally, they
might employ methods like motion planning or utilize learned
policies to realize the desired outcome, while their failures
will be handled via replanning, similar to [38].

IV. IMPLEMENTATION: PLANNING UNDER UNCERTAINTY

In this section, we detail the runtime pipeline for planning
under uncertainty on a mobile-manipulation robot, building
upon the formulation described in §III. We term our system
BKLVA: Belief-space planning with K-fluents, Language-
based goal-grounding, VLM-based perception and estimation,
and information-gathering Actions. The execution pipeline
takes as input (see Algorithm 1): (1) a PDDL domain definition

corresponding to the belief-space actions A, (2) a natural
language goal gtext, (3) pretrained foundation models for
perception (detailed in §IV-A), and (4) an initial belief state
b0.

The execution then proceeds in an observe-update-plan-
execute cycle, as outlined in Algorithm 1:

(1) Perception and (2) Belief Update (Observe,
BeliefUpdate) The system processes sensor observations
using VLMs to identify objects and evaluate relevant
predicates (detailed in §IV-A). This information is then
integrated into the current belief state b through data
association and predicate updates, potentially discovering new
objects (detailed in §IV-B).

(3) Planning (Plan) Given the current belief state b and
goal G, the symbolic planner (Fast Downward [39]) generates
a plan p using the determinized PDDL action descriptions
derived from our formulation (§III). This high-level plan
assumes downward refinability into executable skills.

(4) Execution (Execute) The first action a = p[0] of
the plan is executed using the corresponding low-level skill.
After execution and subsequent observation/belief update, the
system checks if the outcome matches the planner’s optimistic
assumption. If not, replanning is triggered (detailed in §IV-D).

This cycle continues until either the belief state satisfies
the goal (b |= G) or the goal is determined to be infeasible.
Replanning occurs from the current, updated belief state
whenever expectations are violated.

A. Perception via Vision-Language Models

Our perception system utilizes Vision-Language Models
(VLMs) to process visual observations and extract both ob-
ject detections and predicate evaluations, corresponding to
the Observe step in Algorithm 1. The perception pipeline
consists of two main components:

1) Object Detection and Localization: For object detection,
we utilize MOLMO [40], a pre-trained model with a pointing
feature that enables object localization. Given an observation
(e.g., an image ō) and a set of textual prompts describing
potential objects (slightly tuned for the objects in tasks),
MOLMO identifies objects of interest O′, providing their pixel
locations in the image. These detections are then processed
using the Segment Anything Model (SAM) [41] to generate
segmentation masks. Combined with depth information, these
masks yield the center of mass for each object in a map
coordinate frame (maintained by an underlying SLAM-based
odometry system).

2) Predicate Evaluation: For each detected object in O′,
we query a VLM (e.g., GPT-4o [42]) to evaluate the truth
values of relevant predicates P . For example, given an image
containing a drawer, we might ask “Is the drawer empty?” to
evaluate EmptyContainer(drawer1). The VLM acts as
a belief-space grounding classifier, determining whether each
predicate is known-true (KP ), known-false (K¬P ), or remains
unknown (¬KP ∧¬K¬P ). This evaluation is done in a batched
manner for all relevant predicates across all camera views at
the current time step for efficiency, potentially using a single



query to evaluate multiple predicates simultaneously. Details
on VLM prompting strategies, batching implementation, and
cost/timing considerations are provided in Appendix. While
VLM inference can be computationally intensive, calls are
typically limited within the execution loop (e.g., once per
observation cycle or per skill execution for pre/post-condition
checks), making the approach practical.

B. Belief State Update

The belief-state update process (BeliefUpdate in Algo-
rithm 1) integrates the structured observation o (containing O′,
L, S, and predicate evaluations from §IV-A) with the existing
belief state b, maintaining consistency in object tracking and
predicate evaluations:

1) Object List Update: When new observations yield object
detections O′, we merge them with the existing object set O in
the belief b. This involves data association, primarily based on
object unique identifiers (represented in language) across all
observations, to match observed objects O′ with known objects
O. Unmatched and verified novel detections are added to O.
For example, if we detect “cup4” near a previously known
“drawer1”, and it doesn’t match any existing object based on
location, we add it to our object set O. This process ensures
consistent object tracking while allowing for the discovery of
new objects.

2) Predicate Value Update: For all objects visible in the
current observation, we update the truth values (K-fluents) of
associated predicates in the belief b based on the VLM’s eval-
uations from §IV-A2. The belief update mechanism follows
a monotonic knowledge acquisition principle, consistent with
our formulation (§III): unknown predicates (¬KP ∧ ¬K¬P )
can transition to known states (KP or K¬P ) based on con-
fident VLM outputs, but known predicates never revert to
unknown states. This reflects the assumption that observations
are perfect (§III).

C. Planning in Belief Space

In the planning process, corresponding to the Plan step in
Algorithm 1, we follow a procedure similar to [38] where we
are given a task and the robot will plan to generate actions that
are likely to achieve the goal from the current state. Planning is
decomposed into two levels: skill sequencing and continuous
parameter selection. Skill sequencing consists of generating a
skeleton, e.g., (MoveTo(box, θ1), Pick(box, floor, θ2),
MoveTo(table, θ3), Place(box, table, θ4)). Given
a skeleton, we select continuous parameters using θ ∼
parameter policies defined for each skill.

We sample and execute each skills greedily. If the skill
terminates and does not meet its success condition (as defined
by the operator effects), we replan. During the evaluation,
the robot continues to plan and execute until a maximum
number of actions is reached. We refer the reader to other
references [39, 43] for a more formal description of the
planning techniques we use in this work.

D. Skill Plan Execution

This section details the Execute step and the replanning
logic within our observe-update-plan-execute cycle (§IV, Al-
gorithm 1).

1) Execution: The Execute step takes the first symbolic
action a = p[0] from the current plan (e.g., PlaceOn(cup1,
bin0)) and executes the corresponding parameterized skill.
Skills encapsulate the low-level control logic required to
perform the action. Some skills may involve internal com-
putations or closed-loop control for robustness, similar to
approaches like Kumar et al. [38]. The low-level aspects,
including grounding symbolic object parameters (like ‘cup1‘)
to continuous geometric values (e.g., poses, trajectories) and
handling physical constraints via motion planning, are man-
aged by the skill execution module. We assume a skill is a
function that can execute and may fail, and their failure will
be handled via replanning (§III-A). Further details on the skill
execution framework, parameter grounding methods, and low-
level implementation specifics are provided in Appendix.

2) Replanning: Replanning is triggered in the following
scenarios: (1) when an observation action yields an unexpected
outcome (e.g., finding a drawer non-empty when assumed
empty by the planner’s optimistic determinization), or (2)
when new objects are incidentally discovered during percep-
tion (§IV-B1). When replanning is triggered, we update the
belief state with the new information and generate a new plan
from the current state by re-invoking the Plan step.

V. EXPERIMENTS

Through our experiments, we aim to answer several key
questions: (i) Does our structured approach (using VLMs for
belief state estimation for symbolic planning) effectively han-
dle uncertainty? (ii) How efficient is our belief-space planning
strategy compared to alternatives? (iii) Can this pipeline extend
to a real-world robot scenario with real perception and control?

Environments. We evaluate the approaches on (1) a syn-
thetic environment with real images for mobile manipulation,
and (2) a Spot real-robot mobile-manipulation environment.
A synthetic task is defined within a fully-observable transition
graph that accepts symbolic actions and returns both images
and other non-visual predicates (e.g,. whether the agent is
holding an object or reachable to an object), though the images
may not reveal the entire system state (for example, a drawer’s
contents remain hidden from view until it is opened). Conse-
quently, similar to a real-robot scenario, the agent maintains
a partially observable belief model to plan effectively. We
build synthetic domains using real-world images (taken by
phones or robots), where each node in the environment’s
transition graph represents a distinct viewpoint (represented
as images and other non-visual predicates). When the agent
selects an action, the environment presents images of the
resulting state, allowing the agent to update its belief, which
initially may contain uncertain or incomplete knowledge of
object properties. This symbolic environment with real images
(1) systematically evaluates symbolic belief-space planning
that integrates perception and task reasoning, (2) reduces the



Fig. 4: Sort Weight. An example task in our synthetic environment with real images. The agent needs to open the drawer and retrieve sealed
boxes to weigh them. The boxes cannot be opened by the agent but can only be measured indirectly by a scale. The goal is to find empty
boxes and remove it to a bin, and a few notable states are shown in the figure. The optimal path takes 14 steps.

Methods
Tasks Cup Pick-Place Drawer Cleaning Sort Weight

Success SPL Success SPL Success SPL

Random 0% 0.00± 0.00 0% 0.00± 0.00 0% 0.00± 0.00
VLM End-to-End 30% 0.15± 0.24 0% 0.00± 0.00 0% 0.00± 0.00

VLM (Captioning) + LLM 100% 0.49± 0.07 10% 0.04± 0.11 0% 0.00± 0.00
VLM (Labeling) + LLM 90% 0.69± 0.28 0% 0.00± 0.00 0% 0.00± 0.00

BKLVA (Ours) 100% 1.00 ± 0.00 80% 0.32 ± 0.16 70% 0.46 ± 0.32

TABLE I: Performance comparison across synthetic tasks. Success indicates success rate (%) and SPL indicates average success rate
weighted by (normalized inverse) path length (between 0 to 1, with 1 being optimal).

complexity of physical control, and (3) manages randomness
when comparing against multiple baselines. These features
enable us to explore long-horizon belief-space planning tasks.

We evaluate on the following tasks:

• Cup Pick-Place (Synthetic). This is a fully-observable task
that tests the agent’s ability to rearrange some cups on a
table into a box. A set of information-gathering actions is
provided to verify if an agent understands whether uncer-
tainty is present and needed to be reduced.

• Drawer Cleaning (Synthetic). In this task, one or more
drawers of cabinets may contain various objects. Initially,
the robot does not know which drawers hold items. It
must open each drawer to observe its contents, dynamically
update its belief regarding newly found objects, and then
remove those objects to a box. An illustration with one
drawer and one block is shown in Figure 2. The synthetic
task features 2 objects and 1 drawer.

• Sort Weight (Synthetic). The agent needs to remove closed
boxes by using a scale to measure the weight of the boxes.
The boxes are hidden inside cabinets, so the agent needs to
find the cabinets and measure their weight. After finding the
empty boxes, the agent needs to remove them to a bin.

• Empty Cup Removal (Robot). A Spot robot is used to execute
this task, where three cups are placed on two tables, while
the robot does not know if cups contain contents or are
empty. From a normal front-facing view, the robot cannot
distinguish whether a cup is empty or not. It must navigate
closer, take a camera perspective from above, and inspect the
contents. Once the robot identifies an empty cup, it removes
it to a bin. We include this setup as a real-robot demo
of the system, integrated with real-world object detection,
segmentation, and belief-state update. See Figure 3 and the

supplementary video.

Approaches. We evaluate the performance of our approach
in comparison to several baselines across simulation and real-
robot environments. The environments vary in terms of observ-
ability and task complexity, including both fully observable
and partially observable settings, as well as short-horizon
and long-horizon tasks. The approaches are summarized here,
where more details are provided in the appendix:

• Random planner that selects object-parameterized skills and
valid object parameters uniformly at random.

• VLM End-to-end Planning uses VLMs for end-to-end plan-
ning without explicit handling of uncertainty. It has been
explored in tabletop manipulation tasks and web agent
literature.

• VLM State Captioning + LLM Planning uses VLM to
generate a text caption of the history of observations (with
images and other non-visual predicates). An LLM then
outputs a sequence of actions using the caption.

• VLM Predicate Labeling + LLM Planning uses VLM to
perceive predicate values and LLM for planning, but does
not handle uncertainty explicitly either.

• BKLVA (Ours): An approach that uses belief-space operators
integrated with VLM-based belief-state estimation to plan to
gather information in order to achieve the goal.

For VLM-based planner or VLM-based state captioning, we
provide the history of visual observations to them for han-
dling partial observability. Replanning is used and needed
when the expected outcome is not achieved, particularly in
partially observable environments where belief-space operators
are determinized to an optimistic outcome. See the appendix
for more details.



Experimental Setup. For each synthetic task, we run 10
random seeds and report the average results, controlling for
variance in the perception system, foundation model calls,
planning, low-level control, and other factors. For all LLM-
and VLM-based approaches, we use GPT-4o with zero-shot
prompting, with available objects, operators parameterized
by objects, operators’ preconditions and effects, current state
(LLM-based), and observation (VLM-based) or history (par-
tially observable variants) provided in the context window.
We use the following metrics to evaluate the approaches
for performance and efficiency in handling uncertainty in
completing tasks: (1) task success rate, (2) average number
of symbolic actions task plan length required for successful
runs of a task weighted by the success rate, also referred
as “SPL” (Success rate weighted by Path Length) in visual
navigation. The agent succeeds when it reaches the goal state
and fails when it reaches the max number of steps, transitions
to an illegal state (e.g., pick up full cup), or gets stuck in
a state. For real-robot experiments, we use the Spot robot
and only demonstrate with our approach. We use the same
set of symbolic actions (operators) as the synthetic tasks,
including the information-gathering and manipulation actions.
Each action is additionally associated with a skill that executes
on the robot. More details are provided in the appendix.

Results and Discussion. We first evaluate whether our
structured approach, which integrates VLM-based predicate
estimation with symbolic planning, effectively handles uncer-
tainty (Q1). As shown in Table I, our method consistently out-
performs baselines on partially observable tasks like Drawer
Cleaning and Sort Weight. Unlike end-to-end VLM methods
or caption-based state representations, our system selectively
gathers information only when needed (e.g., opening drawers
or weighing boxes if relevant), thereby avoiding redundant
actions.

We also compare the efficiency of our belief-space plan-
ner against alternatives on gathering information (Q2). We
notice a few patterns that baselines do not handle well and
result in lower success rates and longer SPL: (1) it relies
on commonsense knowledge to plan, which may take extra
steps based on its commonsense; (2) it does not capture some
subtle diffences in state, causing failure or inefficiency on
the task; (3) it does not necessarily understand the history
and may retry the same actions at same or similar states
that occurred before; (4) it does not output correct format
of the state. As an example, the Cup Pick-Place task pro-
vides information-gathering actions while all information is
provided, all baselines tend to take extra steps and result in
lower SPL, because it does not understand the actions can
be directly executed without additional information needed.
A hypothetical approach that separates information gathering
and manipulation stages by exhaustively removing uncertainty
(e.g., opening all drawers first) would be prohibitively time-
consuming in large or intricate environments. By focusing on
only those uncertainty necessary to fulfill the task goals, our
method achieves higher success rates with fewer actions.

Finally, we test whether the proposed pipeline extends to

real-robot scenarios on the Empty Cup Removal task (Q3),
with a video provided in the supplementary material. A
Spot robot inspects three cups placed on different tables to
determine which are empty before disposing of them. The
same VLM-based predicate evaluation prompts are used as in
synthetic tasks on images. Our demonstration shows that the
pipeline of VLM-based belief state estimation and symbolic
planning in BKLVA transfers well to real-world perception and
control despite additional noise and uncertainty, as seen in the
accompanying video. Thus, the real-robot trials confirm that
our framework remains effective in physical settings, suggest-
ing strong potential for more complex mobile-manipulation
tasks beyond laboratory conditions.

Overall, these results validate each of our three research
questions: (1) explicit predicate-based reasoning and belief
maintenance of BKLVA enables robust handling of uncer-
tainty, (2) belief-space planning improves efficiency compared
to naive or exhaustive approaches, and (3) the BKLVA pipeline
scales to a real robot with minimal modification (besides
additional real-world perception and control), demonstrating
its viability for real-world partial observability.

VI. LIMITATIONS AND DISCUSSION

To make belief-space planning tractable and demonstrate its
core benefits, our framework incorporates several simplifying
assumptions, which also highlight avenues for future enhance-
ment.

First, we simplify perception by assuming perfect obser-
vations from the VLM and represent belief using ternary
logic (True/False/Unknown). This facilitates integration but
ignores perceptual noise and graded belief. Future work could
increase robustness by adopting probability-valued fluents and
Bayesian belief updates to handle imperfect VLM outputs
more naturally. Second, for planning efficiency, we employ
optimistic determinization of information-gathering actions.
This allows the use of classical planners but is a simplification
compared to fully probabilistic planning frameworks that
explicitly reason about stochastic outcomes, which could yield
more robust plans at higher computational cost. Third, we
assume a static world between actions and monotonic knowl-
edge acquisition (no information loss). This simplification is
reasonable for many short-horizon tasks but limits applicability
in dynamic environments or over longer periods. Modeling
exogenous effects and information decay, at least in the belief
update, would extend the framework’s realism.

Further simplifications enabling our current focus include:
(1) relying on manually defined action operators, whereas
learning or extracting these could increase adaptability; (2)
addressing perception scope primarily through VLM predicate
grounding, leaving complex object search and long-term data
association for future work; and (3) abstracting away low-level
skill execution details, where tighter integration with planning
methods is needed for robust physical deployment.

While these simplifications enabled us to demonstrate the
value of VLM-integrated belief-space planning, relaxing them,



particularly towards more probabilistic representations and
reasoning, constitutes important next steps.

VII. CONCLUSION

In this paper, we presented a novel approach to belief-
space robot planning that effectively addresses the challenges
of partial observability and uncertainty in partially observable
environments on mobile-manipulation robots. By integrating
belief-space planning with information-gathering actions and
leveraging vision-language models (VLMs) as belief-state
estimators, our method demonstrated superior performance in
handling long-horizon tasks in diverse, partially observable
settings. The ability to reason about information gathering
using ternary belief-space predicates enabled the robot to
systematically reduce uncertainty, leading to higher task-
success rates and improved efficiency compared to baseline
approaches.

Our results highlight the importance of combining high-
level belief-space reasoning with robust perception systems in
robotic planning frameworks. Unlike baselines that lacked ex-
plicit uncertainty handling or efficient planning for information
gathering, our approach demonstrated the advantage of inte-
grating symbolic planning with modern perception systems,
particularly VLMs. By automating the process of belief-state
estimation with VLMs, we made belief-space planning more
feasible in real-world scenarios, addressing the complexity
of manually designing predicates for dynamic, unstructured
environments.

This work serves as a foundation for future research in
belief-space planning. While we focused on leveraging VLMs
for belief-state estimation, future extensions could explore
learning belief-space operators, improving sampling strategies,
and integrating end-to-end learning to bridge the gap between
planning and execution. These advancements could further
enhance the practicality of belief-space planning and enable
more adaptive and capable robotic systems in partially ob-
served settings.
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VIII. EXTENDED SETUP INFORMATION

A. Environment-Agent Interface for Spot

We employ the Boston Dynamics Spot robot, which is
equipped with six RGBD cameras. One camera is mounted
on the manipulator arm, providing a close-up view for fine
manipulation tasks. The remaining five are body cameras (two
front-facing, one left-facing, one right-facing, and one rear-
facing), enabling a 360° view for object detection, tracking,
and situational awareness.

The Python SDK for Spot is used to send velocity and
motion commands to the robot, receive feedback on joint states
and robot pose, and retrieve RGB and depth images from all
six cameras. By leveraging this SDK, we can synchronize
robot actions with sensor data retrieval, ensuring that each
execution step is accompanied by timely, high-quality visual
feedback.

B. Parameterized Skill Execution

Our approach separates planning decisions from low-level
control. A classical symbolic planner outlines sequences
of actions (like ‘pick‘ or ‘place‘), but the details of each
action—such as determining grasp points or collision-free
paths—come from parameterized robot skills.

For instance, when the robot needs to pick an object, we
first verify that its gripper is free. Then, we figure out where to
grab the object, how much force to apply, and what collision
checks are needed. These skill parameters are fed into low-
level controllers that oversee individual movements and sensor
checks.

We find that splitting tasks in this manner keeps the plan-
ner’s high-level reasoning clean and avoids entangling it with
control-specific intricacies [38? ]. In future work, we plan to
detail the underlying motion planners and control loops used
for these skill executions, as well as refine thresholds like
approach velocity or force limits.

C. Simulated Environment Setup

We develop a real-image interactive symbolic environment
(RISE) to replicate tasks without running on the real robot.
This environment is partially observable and uses pre-captured
images—one image per state—to provide synthetic RGBD
inputs for our planner and visual pipeline. Each state is
annotated with which objects are currently visible, whether the
robot’s gripper is free or holding an object, and other relevant
properties. By linking these states with “transitions” that corre-
spond to high-level actions (e.g., PickObjectFromTop or
MoveToHandViewObject), we can define which actions
can succeed or fail from a given state.

The primary data structure keeps track of:
1) Unique State IDs
2) Associated camera images (for simulating “views” of the

environment)
3) A record of which objects appear in that view and which,

if any, the robot is currently holding

4) A set of transitions connecting one state to another, each
labeled with the operator name and whether the action
succeeds or fails

For instance, if the planner issues a
PickObjectFromTop action in the “initial” state, the
mock environment checks whether there is a corresponding
transition from “initial” under PickObjectFromTop. If
so, it moves us to the new state (e.g., “holding_block”) and
returns updated mock sensor data. Because transitions are
explicitly defined, we can also encode negative outcomes—
like failing to pick an object—by directing the environment
to a “pick_failed” state.

To better test tasks involving uncertainty, we add “belief op-
erators.” These can require or modify belief-related predicates
(e.g., Unknown_ContainerEmpty) instead of purely phys-
ical ones. For example, an ObserveContainerContent
operator can transition the system from an unknown content
state to a known one, based on an imagined “camera check.”

Because this environment structure stays close to the real
system’s domain model, it uncovers logical flaws before
deployment. We also minimize discrepancies by matching
coordinate frames and rough sensor noise levels wherever
possible. In doing so, we ensure that end-to-end tests in this
mock environment—involving both symbolic planning and
VLM-based perception—translate smoothly onto the physical
Spot robot.

IX. METHODS AND BASELINES DETAILS

A. Comparison of Approaches

To assess the performance of our system, we compare it with
several baselines. End-to-end policy learning attempts to map
raw pixels directly to actions without explicit symbolic infer-
ence; while flexible, it often struggles with task generalization
and replanning. Classical planners without visual reasoning
rely entirely on predetermined symbols and have difficulty
adjusting when environmental assumptions become invalid.
Reactive execution systems use local triggers without a global
notion of a task-level plan, leading to limited adaptability.

In Table II, we summarize several approaches in terms
of how they address “current-state uncertainty” (object ex-
istence, object property classification, etc.) and “future-state
uncertainty” (belief-space planning, long-horizon tasks). For
instance, BHPN [19] models partial observability and can
handle unknown object states through belief-space planning,
but it relies primarily on hand-coded perception and does not
natively ground goals from language. EES [38] leverages a
symbolic planner for complicated tasks but does not explicitly
deal with object existence or property uncertainty and requires
an enumerated domain.

VLM End-to-End approaches (e.g., [9]) can parse lan-
guage goals but generally do not perform systematic be-
lief updating or fully handle uncertainty about concealed
or unknown objects. Similarly, VLM(Text)+LLM Plan can
handle language-based goals and partially reason about ob-
jects but typically lacks explicit belief updates and relies



Components Current-State Uncertainty: Perception Future-State U.: Planning
Goal Grounding O. Existance O. Property Belief Classifier Belief-Space Long-Horizon

BHPN [19] ? ✓ ✓ ? ✓ ✓
EES [38] × × × × × ✓

VLM End-to-End ✓ ? × × ? ×
VLM (Text) + LLM Plan ✓ ? ? ? ? ×

VLM (Predicate) + LLM Plan ✓ ? ✓ ✓ ? ×

Ours ✓ ? ✓ ✓ ✓ ✓

TABLE II: Comparison of different approaches based on uncertainty handling and planning capabilities. O. stands for object.

on ad-hoc textual prompts to track state. A stronger variant,
VLM(Predicate)+LLM Plan, uses predicate-level queries on
images but lacks robust planning under unknown states or
objects.

Our method (bottom in the table) combines all these
features: it (1) accepts language-derived goals and newly
discovered objects, (2) systematically updates beliefs about ob-
ject existence or properties using VLM-based classifiers, and
(3) runs a full belief-space planner for strategic information
gathering and long-horizon tasks. This unified approach gives
it comprehensive coverage of both current-state uncertainties
(like unknown container contents) and future-state uncertain-
ties (planning how and when to gather information).

X. ADDITIONAL IMPLEMENTATION DETAILS

A. Visual Predicates Evaluated by VLM

As part of our system, we define a set of predicates that
are evaluated using the Visual Language Model (VLM). Each
predicate has a name, a list of argument types (written as
?movable, ?container, etc.), and a specific prompt text. The
prompt guides the VLM in determining whether the predicate
is true based on a given image or scene description. Below is
a bullet list of the main VLM-based predicates we use:

• On(?movable, ?base)
Prompt: “This predicate describes when a movable ob-
ject is on a flat surface. It conflicts with the object being
Inside a container. Please check the image and confirm
the object is on the surface. If it’s truly on top (e.g., on a
table or floor) and not inside something else, answer yes.
Otherwise, answer no.”

• Inside(?movable, ?container)
Prompt: “Use this predicate when an object is inside a
container and not just resting on a surface. If you see the
object’s shape overlapping the container’s interior, answer
yes. If it’s merely on top or partially overlapping, answer
no.”

• Blocking(?base, ?base)
Prompt: “Check if one object is blocking the robot from
accessing or viewing another. If so, answer yes; if not,
answer no.”

• NotBlocked(?base)
Prompt: “Confirm that no object is blocking the given
object. If you see no obstruction, answer yes. Otherwise,
answer no.”

• NotInsideAnyContainer(?movable)
Prompt: “This predicate is true if the object is not inside
any container. If it is inside something, answer no.”

• InHandViewFromTop(?robot, ?movable)
Prompt: “Answer yes if the robot’s camera is positioned
above the movable object to see into it (e.g., looking
inside a cup). If unsure or the view is angled, answer
no.”

• Unknown_ContainerEmpty(?container),
Known_ContainerEmpty(?container),
BelieveTrue_ContainerEmpty(?container),
BelieveFalse_ContainerEmpty(?container)
Prompts: “[Answer: yes/no only] (1) Un-
known_ContainerEmpty: You do not have enough
information to decide if the container is empty. (2)
Known_ContainerEmpty: You are confident whether it
is empty or not. (3) BelieveTrue_ContainerEmpty: You
believe the container is empty (e.g., you see only a
single color inside). (4) BelieveFalse_ContainerEmpty:
You believe the container has contents (multiple colors
or visible items).”

• Unknown_Inside(?movable, ?container),
Known_Inside(?movable, ?container),
BelieveTrue_Inside(?movable, ?container),
BelieveFalse_Inside(?movable, ?container)
Prompts: “[Answer: yes/no only] (1) Unknown_Inside:
You are uncertain whether the object is inside the
container. (2) Known_Inside: You can confidently tell
if it is inside or not. (3) BelieveTrue_Inside: You
believe the object is fully inside the container. (4)
BelieveFalse_Inside: You believe the object is not inside
(e.g., it is on top or separate).”

We also group certain predicates into belief categories
or container-related predicates, but the fundamental structure
remains the same: each predicate is evaluated by the VLM in
response to a carefully written prompt that captures how to
determine truth from the image.

B. World-State and Belief-Space Operators

Below, we present a representative set of operators in a
PDDL-style pseudocode. Each operator includes parameters,
preconditions, and effects, with line breaks and indentation for
readability.

Note that these operators are shared for the synthetic RISE
tasks and for the real-robot tasks.



(:action MoveToReachObject
:parameters (?robot - Robot ?object -

BaseObject)
:precondition (and
(NotBlocked ?object)
(NotHolding ?robot ?object)

)
:effect (and
(Reachable ?robot ?object)

))

(:action MoveToHandViewObject
:parameters (?robot - Robot ?object - Movable

)
:precondition (and
(NotBlocked ?object)
(HandEmpty ?robot)

)
:effect (and
(InHandView ?robot ?object)

))

(:action MoveToBodyViewObject
:parameters (?robot - Robot ?object - Movable

)
:precondition (and
(NotBlocked ?object)
(NotHolding ?robot ?object)

)
:effect (and
(InView ?robot ?object)

))

(:action PickObjectFromTop
:parameters
(?robot - Robot ?object - Movable ?surface -

Immovable)
:precondition (and
(On ?object ?surface)
(HandEmpty ?robot)
(InHandView ?robot ?object)
(NotInsideAnyContainer ?object)
(IsPlaceable ?object)
(HasFlatTopSurface ?surface)

)
:effect (and
(Holding ?robot ?object)
(not (On ?object ?surface))
(not (HandEmpty ?robot))
(not (InHandView ?robot ?object))
(not (NotHolding ?robot ?object))

))

(:action PlaceObjectOnTop
:parameters
(?robot - Robot ?held - Movable ?surface -

Immovable)
:precondition (and
(Holding ?robot ?held)
(Reachable ?robot ?surface)
(NEq ?held ?surface)
(IsPlaceable ?held)
(HasFlatTopSurface ?surface)
(FitsInXY ?held ?surface)

)
:effect (and
(On ?held ?surface)

(HandEmpty ?robot)
(NotHolding ?robot ?held)
(not (Holding ?robot ?held))

))

(:action MoveToHandViewObjectFromTop
:parameters (?robot - Robot ?object - Movable

)
:precondition (and
(NotBlocked ?object)
(HandEmpty ?robot)

)
:effect (and
(InHandViewFromTop ?robot ?object)
(InHandView ?robot ?object) ; derived from

the top view
))

(:action ObserveCupContentFindNotEmpty
:parameters (?robot - Robot ?cup - Container

?surface - Immovable)
:precondition (and
(On ?cup ?surface)
(InHandViewFromTop ?robot ?cup)
(HandEmpty ?robot)
(NotHolding ?robot ?cup)
(Unknown_ContainerEmpty ?cup)

)
:effect (and
(Known_ContainerEmpty ?cup)
(BelieveFalse_ContainerEmpty ?cup)
(not (Unknown_ContainerEmpty ?cup))

))

(:action ObserveCupContentFindEmpty
:parameters (?robot - Robot ?cup - Container

?surface - Immovable)
:precondition (and
(On ?cup ?surface)
(InHandViewFromTop ?robot ?cup)
(HandEmpty ?robot)
(NotHolding ?robot ?cup)
(Unknown_ContainerEmpty ?cup)

)
:effect (and
(Known_ContainerEmpty ?cup)
(BelieveTrue_ContainerEmpty ?cup)
(not (Unknown_ContainerEmpty ?cup))

))

(:action ObserveDrawerEmpty
:parameters (?robot - Robot ?container -

Container)
:precondition (and
(Unknown_ContainerEmpty ?container)
(DrawerOpen ?container)
(Reachable ?robot ?container)

)
:effect (and
(Known_ContainerEmpty ?container)
(BelieveTrue_ContainerEmpty ?container)
(not (Unknown_ContainerEmpty ?container))

))

(:action ObserveDrawerNotEmpty
:parameters (?robot - Robot ?container -

Container)



:precondition (and
(Unknown_ContainerEmpty ?container)
(DrawerOpen ?container)
(Reachable ?robot ?container)

)
:effect (and
(Known_ContainerEmpty ?container)
(BelieveFalse_ContainerEmpty ?container)
(not (Unknown_ContainerEmpty ?container))

))

C. Prompts to Pretrained Models

Below are example prompts used to query our vision-
language and language models:
VLM Predicate Evaluation Prompt

Your goal is to answer questions related to
object relationships in the

given image(s) from the cameras of a Spot
robot. Each question is independent

while all questions rely on the same set of
Spot images at a certain moment.

We will use the following predicate-style
descriptions to ask questions:
Inside(object1, container)
Blocking(object1, object2)
On(object, surface)

Some predicates may include ’KnownAsTrue’ or ’
KnownAsFalse’.

You should respond ’Yes’ or ’No’ but never ’
Unknown’.

If you don’t know the answer for ’KnownAsTrue’
or ’KnownAsFalse’ predicates,

say ’No’.

Here are VLM predicates we have, note that
they are defined

over typed variables. Example: (<
predicate-name> <obj1-variable>:<obj1-type
> ...)

VLM Predicates (separated by line or newline
character):

{vlm_predicates}

Examples (separated by line or newline
character):

Do these predicates hold in the following
images?

1. Inside(apple:object, bowl:container)
2. On(apple:object, table:surface)
3. Blocking(apple:object, orange:object)
4. Blocking(apple:object, apple:object)
5. On(apple:object, apple:object)
6. On(apple:object, bowl:container)
7. EmptyKnownTrue(bowl:container)
8. EmptyKnownFalse(bowl:container)
9. Inside(bowl:container, bowl:container)

Answer with explanation and Yes/No for each
question. Keep each explanation

and answer in a single line, with no empty
lines between responses:

1. I can see the apple is clearly contained
within the bowl’s interior. [Yes]

2. The apple appears to be floating above the
table, not making contact. [No]

3. The apple is positioned directly in front
of the orange, preventing access. [Yes]

4. ... [No]
5. ... [No]
6. ... [Yes]
7. ... [Yes]
8. ... [No]
9. ... [No]

Actual questions (separated by line or newline
character):

Do these predicates hold in the following
images?

{question}

Answer with explanation and Yes/No for each
question. Keep each explanation and

answer in a single line, with no empty lines
between responses:

LLM Planner Prompt

You are highly skilled in robotic task
planning, breaking down intricate and
long-term tasks into distinct primitive
actions.

Consider the following skills a robotic agent
can perform. Note that each of these
skills takes the form of a ‘
ParameterizedOption‘ and may have both
discrete arguments (indicated by the ‘
types‘ field, referring to objects of
particular types),

as well as continuous arguments (indicated by
‘params_space‘ field, which is formatted
as ‘Box([<param1_lower_bound>, <
param2_lower_bound>, ...], [<
param1_upper_bound>, <param2_upper_bound>,
...], (<number_of_params>,), <

datatype_of_all_params>)‘).

{options}

Preconditions indicate the properties of the
scene that must be true for you to execute
an action. The effects are what will

happen to the scene when you execute the
actions.

You are only allowed to use the provided
skills. It’s essential to stick to the
format of these basic skills. When
creating a plan, replace

the arguments of each skill with specific
items or continuous parameters. You can
first describe the provided scene and what
it indicates about the provided

task objects to help you come up with a plan.

Here is a list of objects present in this
scene for this task, along with their type
(formatted as <object_name>:<type_name>):

{typed_objects}



And here are the available types (formatted in
PDDL style as ‘<type_name1> <type_name2

>... - <parent_type_name>‘). You can infer
a hierarchy of types via this:

{type_hierarchy}

Here is the current state of the scene:
{state_str}

Finally, here is an expression corresponding
to the current task goal that must be
achieved:

{goal_str}

Here is the history of actions executed so far
(if any):

{action_history}

Please return a plan that achieves the
provided goal from the current state.

Please provide your output in the following
format:

1. First write "Explanation of scene + your
reasoning" followed by your explanation

2. Then write "Plan:" on a new line
3. Then write each action on a new line in

EXACTLY this format (no numbers, no code
blocks, no extra formatting):

skill_name(object1:type1, object2:type2)[
param1, param2]

For example:
Explanation of scene + your reasoning
This is a simple pick and place task where we

need to...

Plan:
MoveToObject(robot:robot, cup:movable_object)

[]
PickObject(robot:robot, cup:movable_object)[]
MoveToLocation(robot:robot, table:surface)[]
PlaceObject(robot:robot, cup:movable_object,

table:surface)[]
OpenDrawer(robot:robot, drawer:container)[]

Do not include any numbers, bullet points,
code blocks, or other formatting. Just
write the plan exactly as shown above.

...

VLM Planner Prompt
You are highly skilled in robotic task

planning, breaking down intricate and
long-term tasks into distinct primitive
actions.

Consider the following skills a robotic agent
can perform. Note that each of these
skills takes the form of a ‘
ParameterizedOption‘ and may have both
discrete arguments (indicated by the ‘
types‘ field, referring to objects of
particular types),

as well as continuous arguments (indicated by
‘params_space‘ field, which is formatted
as ‘Box([<param1_lower_bound>, <
param2_lower_bound>, ...], [<
param1_upper_bound>, <param2_upper_bound>,

...], (<number_of_params>,), <
datatype_of_all_params>)‘).

{options}

You are only allowed to use the provided
skills. It’s essential to stick to the
format of these basic skills. When
creating a plan, replace

the arguments of each skill with specific
items or continuous parameters. You can
first describe the provided scene and what
it indicates about the provided

task objects to help you come up with a plan.

Here is a list of objects present in this
scene for this task, along with their type
(formatted as <object_name>: <type_name>)

:
{typed_objects}

And here are the available types (formatted in
PDDL style as ‘<type_name1> <type_name2

>... - <parent_type_name>‘). You can infer
a hierarchy of types via this:

{type_hierarchy}

Finally, here is an expression corresponding
to the current task goal that must be
achieved:

{goal_str}

Here is the history of actions executed so far
(if any):

{action_history}

Please return a plan that achieves the
provided goal from an initial state
depicted by the image(s) below.

IMPORTANT: You must follow this EXACT format (
including exact spacing and newlines):

Explanation of scene + your reasoning
<your explanation here>

Plan:
<action1>
<action2>
...

Each action must be in this exact format with
no extra spaces or formatting:

skill_name(object1:type1, object2:type2)[
param1, param2]

Example output:
Explanation of scene + your reasoning
The robot needs to pick up a cup from the

table and place it on the shelf.

Plan:
MoveToObject(robot:robot, cup:movable_object)

[]
PickObject(robot:robot, cup:movable_object)[]
MoveToLocation(robot:robot, shelf:surface)[]
PlaceObject(robot:robot, cup:movable_object,

shelf:surface)[]



CRITICAL:
- Do not add any numbers, bullet points,

asterisks, or code blocks
- Do not add any extra newlines between

actions
- Write "Plan:" exactly like that, with the

colon and one newline after
- Each action must be on its own line with no

extra formatting
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