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Fig. 1. Use of localization in robotics. Localization is a necessary first
step when a robot must help a human without perfect knowledge of their
location. This may apply to search and rescue (top) or household assistance
(bottom). In this paper, we study only the localization task. Photo credits:
Ian Howard (top), Matterport3D (bottom).

Abstract— We study the task of locating a user in a mapped
indoor environment using natural language queries and images
from the environment. Building on recent pretrained vision-
language models, we learn a similarity score between text
descriptions and images of locations in the environment. This
score allows us to identify locations that best match the language
query, estimating the user’s location. Our approach is capable
of localizing on environments, text, and images that were not
seen during training. One model, finetuned CLIP, outperformed
humans in our evaluation.

I. INTRODUCTION

Natural language is an important medium of communica-
tion between humans and robots [1]. Many robot tasks refer
to, and rely on understanding, the robot’s spatial environ-
ment. Connecting natural language with the robot’s spatial
knowledge is therefore critical. However, making this con-
nection is challenging because humans tend to represent and
express knowledge about the environment differently from
robots. Natural language descriptions tend to be high-level,
sparse, and semantic, whereas robot spatial representations
are low-level, dense, and geometric.

In this paper, we propose and study one important problem
in this intersection: locating a user in a known environment,
given a natural language description of a desired location.
This is an important capability in several robot applications,
such as finding someone who is lost by asking them to
describe their surroundings, or autonomous delivery, where
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Fig. 2. Vision-language localization. (a) The model encodes the user’s
description of their location, the goal. (b) The model encodes an exhaustive
sample of images representing all locations in the environment. (c) The
model produces a similarity score between each image and the description,
which, after softmax, outputs a distribution to predict the user’s location.

the robot needs to communicate with and find the recipient
via natural language. Location is also the first step in
providing spatial directions to a user – before you can tell
someone where to go, you need to know where they are.

We illustrate our task and high-level approach in Fig. 2.
We assume that the robot has already mapped the environ-
ment and knows all the locations that may be queried. We use
Matterport3D [2] as a source of mapped indoor environments
with rich visual information. The user, located at some point
in the environment, describes their surroundings in natural
language. With this sentence and images from a discrete
set of locations in the mapped environment, we compute a
learned similarity score between the description query and
each location’s images. We can use the resulting distribution
of scores to estimate the user’s location.

To relate descriptions to images, we use a large pretrained
vision-language model [3], CLIP [4], which learns complex



Fig. 3. Example Model Output. Our model creates a likelihood distribution across the 170 locations in this scan. The model’s confidence is shown
by both the size and color of the circles, which represent views. We highlight some guesses alongside the true target location, a bathroom. From top left,
clockwise: (a) The 10th guess is a laundry room with a sink, but no toilet. (b) The 4th guess has a photo and a toilet. It is a good guess, but the wrong
bathroom. (c) The 3rd guess was taken from the hallway, but has a clear view of the target location. (d) The model’s best guess is in the same annotated
region (room), adjacent to the target. (e) The 2nd guess is in another bathroom without a framed photo, only a mirror which may resemble one.

representations of images and text on different pretraining
tasks where data is widely available.

To improve the model’s performance, we repurposed fine-
tuning data from datasets that are related to our task. Specif-
ically, we used data for vision and language navigation [5],
[6], [7], [8] to construct two additional datasets for our
task (‘RxR’ and ‘RxR landmarks’), which gave significant
improvements.

To evaluate the model, we gathered a small test dataset
of human descriptions for locations in Matterport3D. Then
we performed two experiments. First, we compared different
finetuning subsets, as well as an alternate model using
convolutional neural nets (CNNs) and a long short-term
memory (LSTM) text encoder. Then we compared the best
finetuned model to a human baseline on the test set. In this
setting, the model outperformed the human baseline.

In summary, we define the task of vision-language lo-
calization, consider a simple approach using existing pre-
trained vision-language models, collect and construct several
datasets to finetune the pretrained model, and evaluate our
models on localizing in Matterport3D indoor environments.

II. RELATED WORK

Natural language is widely used in robotics; see Tellex
et al. [1] for a comprehensive survey. As the survey indicates,
the primary focus of previous work has been on instruction

following and answering/asking questions. ‘Vision and lan-
guage navigation’ [5] (VLN) extends the instruction follow-
ing concept directly to sighted agents moving within indoor
or outdoor environments [9], [10], [11], [12], [13]. A lot of
VLN work, including ours, is done with the Matterport3D
enviroment, which we describe below. [2]

Although many VLN papers ask embodied agents to
navigate a certain path between two points, others simply ask
agents to find an object or location within an environment,
which is very similar to our location task. Examples include
REVERIE [14] and SOON [15], whose benchmarks use deep
recurrent neural networks, reinforcement learning, imitation
learning, and graph embeddings to approach the problem.

Whereas these papers treat location as a navigation prob-
lem and ask agents to produce a series of actions, we simply
ask agents to rank target locations in a known environment.
This is more similar to Hahn et al. [16] and Chen et al. [17],
who encode language instructions alongside a given environ-
ment to produce, respectively, a distribution of locations or
a bounding box in that environment.

Our approach is different, in that we take environments as
a set of unrelated images, and treat location as an image
retrieval problem. This allows us to use readily available
pretrained image similarity models which we can finetune.

We describe our finetuning datasets below in sec. V. We
opted not to include several related datasets from the works



cited above: the From Anywhere to Object (FAO) [15] is
more concerned with specific objects than locations, and the
Where Are You? (WAY) [16] dataset uses dialogue rather
than our choice of a single utterance. The relatively small
size of these datasets (in the thousands of samples, on the
order of our test set) suggests they may not be large enough
to affect finetuning.

III. MATTERPORT3D ENVIRONMENT

Matterport3D is a collection of RGB-D images taken of
indoor spaces by a Matterport panoramic camera. The dataset
has 90 scans of buildings, mostly elaborate homes and a
few oddities like cruise ship cabins and spas. Each scan is
divided into a navigable graph of viewpoints or views, which
are spread throughout at the house at a spacing of ∼2.2m.
Finally, each view contains 36 RGB-D images, which can
be knit together into a panoramic. We use equirectangular
panoramics provided by Rey-Area et al. [18], although they
were only able to reliably create images for about 85% of
the views in the dataset. This limited our choice of data to
those views we had coverage for (see Fig. 5).

IV. TASK AND ARCHITECTURE

We define our task in the Matterport3D environment. A
user occupies one of M views, vm, in a scan, s. The user
gives a description, d, of their view to the agent. The agent
has an image im for each v ∈ s, and produces a distribution

P (vm | d, i1, . . . , iM ) ∀ v ∈ s (1 ≤ m ≤ M)

The agent may then guess which view the user occupies. A
sample of our model’s output is shown by Fig. 3.

Defined this way, the problem is an image-text simi-
larity task, suitable for large, pretrained transformer net-
works. OpenAI’s Contrastive Language-Image Pretraining
(CLIP) [4], popular and readily available for finetuning, is
a useful tool in vision and language tasks [19]. Recently,
simple CLIP models have done very well in benchmarks like
the RoboTHOR and Habitat ObjectNav challenges [20]. We
used the vit-base-patch32 model, the smaller vision
transformer variant [21].

CLIP encodes N texts and M images with separately
trained encoders. The dot product of the encodings are
returned as (N,M) logit similarity scores (see Fig. 4).

To train CLIP, we encode a batch of N (text, image)
pairs. A ‘perfect’ model produces a square (N,N) matrix
which, after applying softmax, becomes the identity matrix.
We use this matrix as a target for binary cross entropy loss
and optimize the CLIP network with gradient descent. We
used an Adam optimizer [22] with learning rate 5 × 10−7

and weight decay 10−3. Finetuning took less than a day on
an RTX 2080 Ti.

CLIP was pretrained on a large (108) dataset called
WebImageText (WIT) [4]. On our human test set, described
below, pretrained CLIP performs well above random as a
zero-shot classifier. We use pretrained CLIP as a baseline
measure in our experiments, and improve its performance
through finetuning, described below.

Fig. 4. Model. CLIP [4] uses transformer networks [23], [24] to encode
text and images into vectors of identical length, then compares these vectors
by taking their dot product. In our task, a description might be compared
with as many as 170 images (views) from the environment (scan).

Fig. 5. (a) The Matterport3D (m3d) 360° RGBD set (red) contains most,
but not all, of the images in Matterport3D (purple). We used the former for
its equirectangular format. (b) The human ‘gold’ test set (orange) is disjoint
from the finetuning sets RxR and RxR landmarks (beige). Both are subsets
of the m3d 360° RGBD set.

V. DATA

We used three datasets: a human test set which we col-
lected, and the ‘RxR’ and ‘RxR landmarks’ datasets, which
we repurposed from existing data and used to finetune our
model (see Table I and Fig. 5).

A. Human (‘gold’) set

To evaluate our model, we needed human descriptions of
locations in Matterport3D. We chose 9 representative scans
from the 90 total in Matterport3D, with 722 views between
them. This covers about 10% of the Matterport3D environ-
ment. We collected two descriptions per view, for 1,443
samples total. Different humans wrote each description.

We used Amazon Mechanical Turk (AMT) to collect our
data (see Fig. 7). For each sample, we show the worker
a skybox image of a view and ask them to describe their



TABLE I
DATA STATISTICS (‘M3D’ REFERS TO MATTERPORT3D)

set # scans # views # samples avg # words
gold 9 722 1,443 23
RxR 62 6,493 205,092 14
RxR landmarks 62 6,472 172,309 2
m3d 360° RGBD 90 9,684 n/a n/a
m3d 90 10,800 n/a n/a

Fig. 6. We drew from two existing datasets to create a finetuning set for
CLIP. RxR, an instruction dataset, generally provided longer examples with
more extensive grammar, but many fragments were unrelated to the image.
RxR landmarks, on the other hand, provided very relevant, but very short,
keyword samples.

location, so that another person who knew the space could
find them.

B. Room Across Room (‘RxR’)

RxR [6] is a navigation dataset in the Matterport3D envi-
ronment. It contains, among other things, human descriptions
of paths in scans. Each path is a sequence of views. Human
‘guides’ were asked to describe their journey along this path
so that another user could follow it.

RxR has been used to evaluate language grounding mod-
els [6], and most recently to generate instructions for human
evaluation [7], but not for our particular task of location.
However, it is a high quality source of captioned imagery
specific to our environment, so we used it to finetune our
model.

Samples in RxR contain a series of panoramic images (the
path) and guide annotations describing the path. Each word
in the annotation is time stamped, allowing us to map it to
a view along the path, giving us 205,092 (description, view)
pairs (see Fig. 6).

RxR includes image masks to indicate what parts of a view
were visible to the guide when they said the word, but we
omitted those masks here.

Fig. 7. We collected an evaluation dataset by asking users of Amazon Me-
chanical Turk (AMT) to describe their surroundings when shown panoramas
from the Matterport3D dataset. (a) Our ‘gold’ dataset has two samples for
each view in nine buildings, about 10% of the total Matterport3D set. (b) We
evaluated each sample by asking another AMT worker to pick the correct
image from a collection of 20. (c) Each ‘gold’ sample was evaluated once.

C. Room Across Room ‘landmarks’

Wang et al. [7] developed the ‘landmarks’ dataset from the
original RxR data to help generate instructions to guide users
in the Matterport3D environment. It contains 172,309 sam-
ples. For each guide annotation of a path in RxR, Wang et al.
first used a transformer to identity ‘entities’ in the text, for
example a couch, bathtub, or door. They associated these
entities with specific regions (bounding boxes) of panoramic



TABLE II
COMPARING MODELS ACROSS ENTIRE GOLD DATASET

model data success (%) ↑ hits at 1 (%) ↑ close (%) ↑ same room (%) ↑ error (m) ↓ mrr ↑
random 11 1 7 8 15.73 0.06
CNN-LSTM rxr + landmarks 11 1 7 9 16.68 0.06
CLIP no pretrain, rxr + landmarks 14 3 11 11 15.75 0.09
CLIP pretrain only 44 10 34 36 10.10 0.23
CLIP pretrain + landmarks 47 12 37 41 8.75 0.26
CLIP pretrain + rxr 55 14 43 46 7.74 0.28
CLIP pretrain + rxr + landmarks 55 14 44 47 7.30 0.28

images along the path.
The resulting (landmark, region) pairs were helpful in

generating instructions to guide human users. We use this
data directly as our RxR landmarks dataset (see Fig. 6).
We omit the bounding boxes, so that our data simply maps
entities to entire views.

VI. EVALUATION AND RESULTS

In this section, we describe our metrics for evaluating our
model, and give the results of two experiments: a comparison
of different finetuning datasets and models on the full task,
and then a comparison of our best model against a human
baseline on a smaller, easier version of our task.

A. Metrics

1) success (%): Percent success rate. The model is ‘success-
ful’ if its guess satisfies one of the following:
• hits at 1 (%): The guess is the target image.
• close (%): The guess is less than 3m from the tar-

get image, in graph distance. The average spacing in
Matterport3D is ∼2.2m, so 3m is a common success
threshold in related literature using this environment.
All hits at 1 pass this test.

• same room (%): Matterport3D scans are annotated by
hand into ‘regions’ like bathroom, living room, etc. We
say that the model is successful if it was able to guess
the correct region. All hits at 1 pass this test.

Fig. 3 shows some of these success conditions.
2) error (m): The average graph distance between the guess

and the target view.
3) mean reciprocal rank (MRR): 1

k

∑
k

1
rank , where rank

is the priority of the target in the model’s confidence
distribution. An MRR of 0.5 indicates that the model is
expected to rank the target image second.

B. Comparing Models and Finetuning

In our first experiment, we compared different models
on the original (all views) task (see Table II). The random
baseline chooses one of M views in the scan. The CNN-
LSTM model encodes the view image with a pretrained
ResNet152 [25] and the description with a bidirectional, 3-
layer LSTM encoder using the CLIP tokenizer.

The ‘no pretrain’ model is a CLIP that is trained only on
the combined finetuning data (no WIT), whereas ‘pretrain
only’ is CLIP only trained on its WIT dataset. Finally, we
show some ablations of the finetuning dataset, comparing

the relative contribution of RxR and RxR landmarks to the
combined dataset in the final row.

We show an example of our model’s output in Fig. 3.
As the caption describes, the model is frequently able to
identify key features from the description. But even when
it does identify the right type of room, it might fail to pick
the correct instance of that type – a particular bathroom or
bedroom, for example.

This experiment shows the importance of CLIP’s pretrain-
ing. The model without pretraining (Table II row 3) performs
little better than random (row 1). Our finetuning dataset, at
105 samples, is probably too small to train a large model like
CLIP. Similarly, the CNN-LSTM variant (row 2) performs
only at random, despite the pretrained ResNet.

Finetuning CLIP (rows 5–7) increased the pretrained
model’s performance (row 4) by up to 25% on the test set.
This is a substantial gain, given that the finetuning set is
three orders of magnitude smaller than the pretraining data.

We were surprised to see that the RxR landmarks set
seems to add little beyond the RxR set. The one or two
word descriptions of landmarks are much shorter than our
test set queries, which are several sentences long. Most of
its landmark information is probably present in the RxR set.

C. Human Baseline

To test our model against a human baseline, we scaled
down our task. In our task defined above, the model com-
pares the description to every view in the scan. A scan might
have well over a hundred views. Our model can process an
arbitrary number of views, but comparing that many similar
images is very challenging for a human evaluator to do.

Instead, we presented workers on AMT with only 20
views, randomly chosen from the same scan, one of which
is the true target view which the query text describes.1 We
collected one evaluation for each sample in the gold dataset
(1,443), and scored them according to the metrics above.
To control the quality of responses, we discarded data from
workers who failed to score a ‘success’ in at least 20% of
their responses, which is above random (12%).

We compared our best finetuned CLIP model (Table III
row 4) to the human baseline (row 3). Like the humans, the
model chose from only 20 images. In this experiment, the
model slightly outperformed the human baseline. However,

1The Northeastern University IRB has reviewed this research and ex-
empted it from further action.



TABLE III
COMPARISON TO HUMAN BASELINE (ONLY 20 CHOICES)

model data success (%) ↑ hits at 1 (%) ↑ close (%) ↑ same room (%) ↑ error (m) ↓
random 12 4 10 10 15.70
CLIP pretrain only 51 30 45 45 8.10
human 57 38 52 53 7.07
CLIP pretrain + rxr + landmarks 63 38 54 58 5.90

we address some limitations of the human evaluation, and
other aspects of our work, in the next section.

VII. LIMITATIONS, AND FUTURE DIRECTIONS

A. Human Evaluation

We used AMT to get a human baseline on our task.
However, performance between workers varied significantly:
Some individuals scored a success rate of 60–70%, others
between 20–30%. This disparity was expected, given that
humans vary in their ability to navigate and track spatial
relationships. [26]

An informal pilot study showed that graduate students
scored about a 70% success rate on the same task. These
students were very familiar with the dataset and the task, so
their performance might be a better estimate of good human
performance. However, we lacked the resources to evaluate
the entire test set this way.

Both the informal and formal figures (70% and 57%)
may seem low for a human evaluation. We suggest two
explanations. First, humans were asked to choose from 20 in-
dependent images; this is a somewhat unnatural task and not
how humans generally think of spatial environments. Second,
some descriptions of the environment are ambiguous and
could easily refer to more than one location. The example
in fig. 3 shows that houses tend to have several bathrooms
which all look quite similar. Given these challenges, we think
the human success rate is reasonable, and compares well to
human performance on a similar location task in the same
environment (70.4% for human locators in WAY [16]).

B. Continuous Environment

Human performance might increase with a better represen-
tation of our environment. Our Matterport3D environment
uses a navigable graph of views, but more recent imple-
mentations use a continuous environment compatible with
a simulator like Habitat [10], [27].

In a continuous environment, the user can move more
naturally throughout a building, exploring and stopping the
simulation when they think they have found the right loca-
tion. This formulation of the task is more natural. In addition
to being easier for humans to understand, a continuous
training environment would help a robot prepare better for a
real world demonstration.

C. Improving Data

A simpler improvement would be to use bounding box
and mask information for our finetuning datasets. As men-
tioned earlier, the RxR datasets (including RxR landmarks)

have image mask and bounding box data that might allow
us to draw a tighter relationship between text and image
regions. We omitted these bounding boxes, so that in the
RxR landmarks set for example, the word ‘refrigerator’ is
mapped to an entire panoramic image of a kitchen. The
model may perform better with a more specific mapping of
concepts to pixels.

In addition to the bounding box information from the
datasets we used, we expect that finetuned results would
improve with additional relevant data, including those we
described in section II.

VIII. CONCLUSION

We proposed the task of vision-language localization,
and considered a simple approach using existing pretrained
vision-language models. We also collected and constructed
several datasets for this task, to finetune the pretrained model.
We outperformed the baseline pretrained model, as well as a
human baseline on a simplified version of our task. In future
work, we plan to deploy this competitive approach on a robot
operating in a continuous environment, to locate users using
natural language.
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