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We are now at a new golden age of robotics and artificial intelligence. Autonomous driving, once
an academic dream, is quickly becoming a reality, and promises to be the first of many waves of
robots that will penetrate everyday lives. Robots can revolutionize home/office services, eldercare,
agriculture, flexible manufacturing, search and rescue, exploration, and more. Given the imminent
success of autonomous vehicles, we may expect these other domains to be solved soon as well.

However, there is a fundamental difference that separates autonomous driving from the rest.
Driving is a structured task in an engineered environment with clear objectives. Service robots need
to complete a wide range of tasks in complex human environments, often with little or abstract
guidance. In short, we need generalization: to new tasks, to new scenarios, to new forms of user
specification. The gap between the two is therefore a machine learning problem.

What are we trying to learn? Most generally, a robot is a function mapping sensor inputs to
actuator outputs – “pixels to torques”. The high-dimensional nature of such a function clearly
presents an intractable learning problem. To support effective robot learning, and therefore robot
generalization, we need to decompose the learning problem: make it modular, compositional, and
significantly more low-dimensional. My research agenda is to identify and learn inter-
mediate state representations that enable effective robot learning and planning, and
therefore enable robot generalization.

At Northeastern, I lead the Generalizable Robotics and Artificial Intelligence Laboratory (GRAIL),
where we make progress on this agenda from multiple angles. In particular, we LEARN:

� Language: Use natural language as an interpretable intermediate state representation

� Estimation: Develop structured representations and models using the notion of objects

� Abstraction: Understand fundamental methods for state abstraction in reinforcement learning

� Robotics: Motivate and apply our approaches to challenging real-life tasks and settings

� Navigation: Validate our ideas and generate insights using a particularly intuitive problem

Abstraction

At its core, the question of finding good state representations relates to finding a good abstraction:
What are the things that matter, and more importantly, what details are irrelevant? With sufficient
detail, every environment and task is unique. Generalization is only achievable when the similarities
between situations are exposed, and irrelevances hidden, at appropriate levels of abstraction.

To study this problem formally, we consider the problem of state abstraction in Markov decision
processes (MDPs) and reinforcement learning (RL), where the set of possible states (and actions)
is typically too large to enumerate and learn individually from; they must be aggregated in some
way. We are currently studying criteria for good state aggregations from an information-theoretic
perspective. Using notions from rate-distortion theory and information-bottleneck methods, we first
considered what it means to minimally represent MDPs and policies. Similar to lossy compression
in communication, which aims to maximally preserve information content while transmitting the
fewest number of bits, in an MDP the state space should be kept as small as possible while preserving
the ability to take actions with high-value outcomes. By adapting information-theoretic bounds and
algorithms to the MDP setting, we proposed new algorithms and bounds for state abstraction [1].
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We are currently addressing two key limitations in this promising direction. First, the work
described above was limited to small discrete state spaces. Recently, deep reinforcement learning
methods have demonstrated remarkable success on image-based domains, where states are repre-
sented by images. To scale up our state abstraction approach, we developed a new variational
information bottleneck method that learns a low-dimensional continuous encoding of image-based
states, similar to variational autoencoders. This encoding is further used to extract a small discrete
abstract MDP that is an approximate bisimulation of the original MDP [2]. This allows us to apply
dynamic programming algorithms on the abstract MDP to obtain policies for new tasks, which can
then be efficiently translated into the original MDP via the learned bisimulation.

Second, both works described above rely on having access to near-optimal policies in the original
MDP. Ideally, agents should learn good representations of the environment while they are also
learning about how to act in the environment itself. A primary challenge is that abstractions
learned in this manner are imperfect due to inevitable errors encountered during learning, and
these errors are amplified in the planning process, leading to suboptimal behavior. We are currently
investigating theories to characterize the effects of such errors, criteria to identify when abstraction
errors have occurred, and methods to fix these errors when detected.

We were recently awarded an NSF grant (Award #2107256) [3] to continue our investigation.

Navigation

Apart from developing the foundations of state abstraction, I am equally interested in starting from
applications, finding representations for specific domains, and gradually deriving more general ab-
straction principles. Specifically, I have been focusing on the class of abstract navigation problems,
where an agent is situated within an environment whose layout has never been seen before, and
the agent is expected to navigate to a goal without first training on or even exploring this domain.
This task may appear impossible without further guidance, but we provide the agent with addi-
tional information: a rough 2-D map illustrating the rough layout of the environment, as well as
indicators of its start and goal locations. This is akin to a tourist attempting to find a landmark
in a new city: without any further help, this would be very challenging; but when equipped with
a 2-D map with a “you are here” symbol and an indicator of the landmark, the tourist can easily
plan a path to reach the landmark without needing to explore or train excessively. The abstract
navigation problem is an instance of a more general question: If we provide a rough solution
of a problem to an agent, can the agent learn to follow the solution effectively?

Although the solution is technically accessible via the abstract 2-D map, many challenges need
to be overcome to use it effectively. The visual appearance, scale, and perspective in the map is
completely different from the agent’s. The map lacks much of detail in the real world and may
even be incorrect. The agent needs to localize itself and learn how its actions affect its abstract
position on the map. We have recently proposed two approaches to addressing this problem. The
first approach assumes the rough map is fairly accurate, allowing us to directly plan on it and
obtain sequences of subgoals. Each subgoal is then given to a low-level controller that is trained to
robustly reach nearby landmarks in the agent’s visually rich and egocentric perspective [4]. Zero-
shot navigation in novel environments is achieved in this hierarchical fashion. The second approach
relaxes this assumption by treating the abstract map as an unstructured image, adopting an end-
to-end approach that learns to plan using the supplied map [5]. The correspondence between the
abstract map and the agent is implicitly learned via a map-conditioned transition function.

We are currently improving the robustness and efficiency of our approaches, with the objective
of scaling up to visually realistic environments and applying on physical mobile robots. We were
recently awarded a Northeastern TIER 1 seed grant to continue our work.
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Language

Natural language is a particularly compelling form of abstraction. Consider following a recipe or
a sequence of instructions; language is expressive yet compact, and relies on intelligent users to
fill in the details to complete novel tasks. It is also an effective medium for agents communicating
and collaborating with humans, since it does not require additional training for the user, and helps
make agents’ decisions interpretable. I have been investigating using language for both directions of
communication, viewing the robot as a follower and as a speaker. In postdoctoral work, I developed
methods for grounding natural language instructions to robot navigation and manipulation behav-
iors [6, 7, 8]. We are currently extending these approaches to visually realistic environments and
complex tasks, and proposing ways to combine language grounding with reinforcement learning.

In parallel, effective collaboration requires two-way communication, and therefore I have been
pursuing ways of applying natural language generation to robotics. For example, natural language
can be used to describe a policy learned through demonstration, allowing the human teacher to check
whether the correct policy was learned. Natural language can also be used to provide instructions
to human users entering a new environment or encountering a new task. For this latter application,
we have proposed a “rendezvous” problem, where an agent needs to instruct a user about how to
navigate from their current location to an intended destination, in an environment that the agent
is familiar with but the user is not, similar to providing directions to a tourist. This problem
has generated a surprisingly rich set of research questions, including localizing the user via natural
language, planning a path that is convenient to describe to the user, describing the path in a succinct
yet accurate way, and tracking and correcting the user via further natural language interaction.

Estimation

In language, navigation, and other robotics applications, the notion of objects is inescapable. We
instinctively model the world in terms of these abstract entities and reason about their dynamics
and interactions. In doctoral work, I proposed approaches for modeling the world in terms of
objects, detecting them from robot perception, estimating their states across space and time, and
integrating them with non-object representations of the world [9, 10, 11, 12, 13, 14]. Recently,
there has been a resurgence of interest in object-based reinforcement learning, and we are currently
investigating methods for discovering objects via interaction, and using the abstraction of objects
to learn and act more efficiently. More generally, I plan to investigate how to represent, learn, and
use structured world models in the context of model-based reinforcement learning. A core question
in this direction is how to design flexible estimators for learned representations and abstractions.

Robotics

As the name of my group suggests, we are ultimately interested in representations that facilitate
robot generalization, hence we maintain many active projects in robotics to validate and further
inspire our approaches. My work on estimating object-based models and language grounding has
been applied to object search [15, 16, 17]. I have been involved in the abstract Markov decision
process framework, with applications to robot navigation [18, 19]. Recently, with support from a
Khoury seed grant, we have proposed new imitation learning methods for performing challenging
bimanual robot manipulation tasks [20]. We are also interested in transfer learning; we recently
proposed an approach for using knowledge in related tasks to form action priors for new tasks [21].
A MathWorks microgrant further supports my teaching and research efforts in robotics.

My long-term objective is to identify and learn state representations and abstrac-
tions that are relevant for these and more areas of robotics and artificial intelligence.
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