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Abstract— Tactile signals provide rich information about
objects via touch and are essential for a robot to perform dex-
terous manipulation. Exploring actively via tactile perception
collects important information about the workspace. However,
designing an effective tactile exploration policy is challenging in
unstructured environments. Typically, the geometric informa-
tion is incomplete, and need to be completed by actively and
repeatedly interacting with the environment. In this paper, we
address the tactile exploration problem by proposing a shape-
information-dependent exploration strategy, which consists of
two components: (1) a Shape-Belief Encoder that encodes the
explored area by learning effective 3-D reconstruction and
predicts the complete object shape; (2) a shape-dependent
exploration policy which incorporates the encoding in (1) to
plan an exploration trajectory. The policy actively acquires
new information about object surface by executing exploration
actions. The Shape-Belief Encoder leverages the newly collected
contact points to update the surface model and guides future
exploration. We validate the proposed algorithm on simulated
and real robots.

I. INTRODUCTION

In this paper, we addressed the tactile exploration prob-
lem from a learning perspective: given a high-level goal
(e.g., maximizing exploration efficiency) and some training
scenarios, the robot discovers the exploration behavior by
repeatedly interacting with the environments and learns how
to transfer such ability to new scenarios.

To effectively plan an exploration trajectory covering the
surface of an unknown object in an online fashion, the
robot should make decisions based on the shape of the area
already explored and the untouched area to be explored
next. The shape inference ability enables the robot to predict
the shape of the unknown area given the information of
the explored shape (Figure 1). The exploration efficiency
can be increased accordingly when the robot infers that in
some area, there will be no object surface (such as beyond
the object boundary), so the robot only needs to focus on
planning touches in the potentially informative area. Based
on such requirements, we aim to address three problems in
this work: (1) how to process information from the explored
area? (2) how to infer the shape of the unknown area? (3)
how to plan trajectory incorporating information from (1)
and (2)?

The task to be solved in this paper is that for any robot
arm and dexterous hand with tactile sensors, it learns to
perceive the shape information of an unknown object by
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Fig. 1: (Left) Point cloud of incomplete object already
explored. (Middle) Predicted complete object shape from
partial observation. (Right) robot hand with tactile sensors
explores the unknown surface area by incorporating infor-
mation from explored and predicted shapes.

actively planning and executing a trajectory of touches. To
generate effective exploration behavior, the three questions in
the last paragraph should be answered. For problem (1), we
designed a Shape-Belief Encoder to transform the point cloud
representing the explored area to a fixed-length latent code.
To ensure the latent code captures object shape information,
Shape-Belief Encoder reconstructs the original point cloud
from such latent code by minimizing the difference between
the reconstructed and the original point clouds. For problem
(2), the latent code is then processed by a Hopfield network
to predict complete shape from the partially explored area.
The Hopfield network generates a new latent code encoding
the predicted complete object shape. For problem (3), the two
latent codes from (1) and (2) are provided to the exploration
policy as the scene information to assist decision making.
The exploration policy is trained by reinforcement learning
to maximize the information gain by contacts.

Our main contributions can be summarized as (1) we
propose a Shape-Belief Encoder, which can encode a point
cloud to a fixed-length vector, infer the object surface distri-
bution, predict complete object shape from an incomplete
part, and distinguish different objects; (2) we applied a
Hopfield network for the 3-D shape completion task; (3)
we propose a shape-dependent tactile exploration policy that
generates effective exploration trajectories and generalizes to
new objects.

II. BACKGROUND

A. Tactile Exploration

Planning an exploration trajectory on a touching surface to
gather tactile readings efficiently is a long-standing problem,
and it becomes harder when working in unstructured envi-
ronments. Exploration following a predefined trajectory [1],
[2] can only work in limited scenarios and is less adaptive
to environmental uncertainty; small discrepancies between
object position or surface shape and the model may cause



Fig. 2: (Left) Original object point cloud.
(Middle) Gaussian mixture model (GMM) representation.
(Right) Point cloud re-sampled from GMM.

the trajectory to fail. Other attempts based on local shape
uncertainty model (e.g., based on Gaussian process regres-
sion) [3], [4], [5], [6], [7] could have the following problems:
(1) gradient-based method do not fit gradient-discontinuous
shapes well (like the edge of box); (2) calculating uncertainty
can be costly in certain cases; (3) trajectory planned without
a high-level strategy can be trapped in local optima; (4)
hard to apply on multi-contact robots (like robot hand). The
mentioned works are all planning methods which require the
model to be precise and the solution is not transferable.

B. 3D Representation and Surface Distribution

An accurate and computation-efficient shape representa-
tion is essential for our shape-aware policy learning. Many
surface or bulk representations of objects have been pro-
posed, including point cloud [8], [9], [10], voxels [11],
[12], meshes [13], and implicit surfaces [14]. Within these,
mathematical models trying to capture the representations
have also been proposed. Gaussian mixture model (GMM)
representations, as shown in Figure 2, have been shown
effective on capturing object surfaces represented by point
clouds or meshes [15], [9].

C. Markov Decision Process

A Markov Decision Process (MDP) is a 4-tuple M =
⟨S,A,P,R⟩ where S is the set of states, A is the set of actions,
P(st+1|st ,at) is the transition probability that action a in state
s at time t will lead to state s at time t +1, R(at ,st) is the
distribution of reward when taking action at in state st . A
policy π is defined as the probability distribution of choosing
action at given state st . The learning goal is to find a policy
π∗ that maximizes the accumulated reward in given horizon
T , π∗ = argmax

π

E
at ,st∼π

[
∑

T−1
t=0 γ tR(at ,st)

]
, where γ is discount

factor. Our tactile exploration task will be formulated as an
MDP and solved by reinforcement learning algorithms.

D. Hopfield Neural Network

Hopfield network [16] is a special type of recurrent
neural network which can store and retrieve memory. It is
widely applied in image completion and image denoising
tasks. Patterns Z can be stored by directly constructing the
weights of the neural network instead of propagating gradient
iteratively. A stored pattern (a row in Z) can be retrieved by
setting a query vector z as the initial state and iteratively
updating the state by Equation 1.

z′ = softmax
(
β · z ·ZT ) ·Z (1)

β is a hyperparameter. The final output z′ will resemble one
particular or several items in Z. The term softmax

(
β · z ·ZT

)
is usually considered as a distribution measuring the likeli-
hood between query vector z and each item in Z. We will
use this neural network to predict complete 3D shape from
partial tactile information.

III. RELATED WORKS

A. Tactile Exploration

Tactile exploration by dexterous robots has been studied
in the past decades, and many of them reached satisfactory
performance in grasping, reconstruction, or manipulation
tasks. [7] proposed a visuo-tactile exploration strategy. A pre-
trained neural network first provides an initial prediction of
the voxel-based object shape given the RGBD camera input.
Then the high-resolution tactile signals are used to refine the
3D model. The grid-based uncertainty drives robot to explore
the most uncertain area. The method shares a similar idea
with ours that it is important to execute exploration based
on shape posterior, which is the predicted complete shape
from partial observation. Similarly, [14] learns a 3D posterior
from depth image by representing the surface as a Signed
Distance Function. [17] proposed a visuo-tactile framework
doing peg insertion tasks with deep reinforcement learning.
The mentioned works give shape posterior by depth image
input while ours are based on raw tactile signal. In visually
occluded environments (such as dirty water), such systems
easily fail.

[18] proposed a query path exploration which can be more
efficient than probing. The object surface is represented as
a Gaussian process implicit surface [19], and the sliding
direction is towards the highest local variance. The proposed
methods could potentially have the following problems: (1)
local uncertainty based trajectory planning can lead to a
sub-optimal path (such as a dead-end); (2) Gaussian process
implicit surface update can be computationally intensive as
updating inverse kernel matrix requires O

(
n3
)

complexity;
(3) the surface must be continuous and gradient-continuous,
which can be alleviated by introducing local information
[20]. Such work has been extended in [3]. However, it is
limited on bi-manual robot without considering the physical
constraints with multi contacts. Sometime multiple goals can
be achieved by two arms but not reachable by multiple
fingers. Similar exploration strategies based on Gaussian
process surface have also been proposed in [5], [21], [1],
[4]. [4] leverages local gradient of Gaussian process implicit
surface to balance exploration and exploitation.

[6] proposed an exploration strategy for robot hand with
full-hand tactile mapping sensor by null-space control. How-
ever, this method does not tackle with high-level strategy and
the desired contact points are pre-defined, which makes the
work less general.

[2] employed a high-resolution tactile sensor to reconstruct
the 3D model combining robot kinematics. However, their
exploration only follows several predefined grasping direc-
tions.



Fig. 3: Visualization of point-cloud local projection.
(Left) Point cloud segmented into 23 = 8 cells.
(Right) Orthogonal projections from one such cell.

B. Point Cloud Encoder

To process point cloud data by a neural network, it is
required the point cloud data with arbitrary length can be
encoded into a fixed-length input vector. As point cloud data
is permutation invariant, previous encoders [22], [23], [24]
process such data using permutation equivariant functions.
However, we have only limited choices of permutation
invariant operations in practice such as max, min, sum, or
mean. Such operation aggregates the local features from each
point to form a global feature that may lose local details.

IV. METHOD

In this section, we show how our shape-dependent explo-
ration system works. The first part introduces the structure of
Shape-Belief Encoder which can translate a point cloud to a
fixed-length latent vector while learning a GMM to represent
the shape of such point cloud. A Hopfield network is then
used for shape completion. The second part explains how
the MDP of tactile exploration task is defined and how the
Shape-Dependent Policy is learned. At the end, we show
the overall structure of our system combining Shape-Belief
Encoder and Shape-Dependent Policy implemented on robot.

A. Shape-Belief Encoder

In order to use neural networks to process a point cloud
containing an arbitrary number of points, we need to encode
the point cloud into a fixed-length vector. The vector should
contain important geometric information about the point
cloud. Based on such requirements, we propose Shape-Belief
Encoder, designed to (1) encode a point cloud; (2) infer
surface distribution; (3) predict the complete shape. Any
point cloud with arbitrary number of points can be the
input. Features of the point cloud are first extracted by local
projection. Then, an internal encoder translates the features
to a latent vector. The latent vector has two paths: a decoder
that translates the latent vector to a GMM, representing the
surface distribution; and a Hopfield network that generates a
new latent vector, representing the predicted complete object
shape.

Local Projection: The explored area is represented as
a point cloud of contact points. The point cloud is first
segmented evenly into local cells (Figure 3 left). Each cell
contains a subset of the original point cloud. In each cell, a
series of 2-D projections from different angles are generated.

The projection is a 2-D array, where the value of each entry is
0 if no point is projected inside, or 1 if any point is projected
inside. Here, we only use orthogonal projection because it
requires no linear transformation, but projections from other
directions can also be considered. A demonstration of such
projection is shown in Figure 3. The projections from all
cells are used as the feature map of the point cloud for further
processing.

Encoder: The encoder structure is shown in Figure 4 left.
For each local feature map, there will be an independent local
receptor which is composed by multiple convolutional layers
to encode it. The outputs of receptors will be concatenated
and translated to latent code z by multi-layer perceptrons
(MLP). We use the reparameterization trick [25] to learn the
distribution of latent codes, where the encoder predicts µz
and σz as the parameters of independent Gaussian distribu-
tions. A latent code z is then sampled from such distribution.

Decoder: The decoder structure is shown in Figure 4
right. A mixture density network (MDN) [26] translates the
latent code predicted by the encoder to GMM parameters
with K clusters. In each cluster, weight πk, mean µk and
covariance matrix Σk are outputs of the neural network. To
ensure the covariance matrix predicted by the decoder is
positive definite, the neural network first predicts eigenvalues
to form a diagonal matrix diag(λ1,λ2,λ3), then predict the
roll-pitch-yaw angles γ,β ,α in [−π,π]. A rotation matrix R
can be calculated from α,β ,γ by Equation 2 and the final
covariance matrix of one cluster is calculated by Equation 3.
Rx, Ry and Rz are rotation matrices around roll, pitch, and
yaw axes.

R = Rz (α)Ry (β )Rx (γ) (2)

Σ = R ·diag(λ1,λ2,λ3) ·RT (3)

Training: We adopt variational inference [25] to train the
model. The Evidence Lower Bound (ELBO) to be maximized
is shown in Equation 4. X is the point cloud data, θ and
φ are parameters of decoder and encoder respectively. By
maximizing this bound, the encoder matches the GMM
parameters to the shape of the original point cloud.

ELBO(θ ,φ ,X) = Eqφ (z|X) [logpθ (X|z)]−DKL
(
qφ (z|X) ||p(z)

)
(4)

B. Shape Completion using a Hopfield Network

To plan the exploration trajectory, it is important to predict
the shape of unexplored area given the shape of explored
area, which can be seen as a 3-D completion task. As
Hopfield networks have been successfully applied on image
completion tasks [16], we apply a similar idea to our 3-D
completion task by adding a Hopfield network at the end of
the encoder, as shown in Figure 4 left (dashed component).
The point clouds of several reference objects are selected as
reference patterns and processed by the encoder to generate
a batch of reference latent codes Z. These latent codes are
stored as the internal memory of the Hopfield network. For
a test object with latent code z, a new latent code z′ is
generated by propagating z through the Hopfield network (by
iterating Equation 1); the final z′ encodes the shape of the



Fig. 4: Shape-Belief Encoder. (Left) Encoder: Local projections are processed by local receptors and concatenated, then
translated to latent code by multi-layer perceptrons (MLP). Hopfield network (dashed component) is only used for object
completion, not for object reconstruction (i.e., not during training of the encoder-decoder itself).
(Right) Decoder: The latent code is incorporated by a mixture density network (MDN) to predict cluster parameters of a
GMM, representing the surface distribution. A new point cloud can then be re-sampled from the GMM.

predicted complete object. We show in our experiments that
using the Hopfield network to perform 3-D shape completion
significantly improves the recognition ability, even when the
provided point cloud is only a fraction of the original object.

C. Shape-Dependent Policy

The robot executes tactile exploration following a Shape-
Dependent Policy a = π (s), which incorporates state s and
generates action a. The state s includes the robot configura-
tion and shape information from the Shape-Belief Encoder.
The MDP of tactile exploration task is defined as:
• State: The state includes (1) all robot joint angles and

velocities; (2) all Cartesian coordinates of robot links; (3)
shape latent code z before entering Hopfield Network;
(4) z′ after propagating through the Hopfield Network by
iterating Equation 1. We assume z encodes the shape of
the explored area while z′ encodes the belief of what the
complete object should be.

• Action: The action is defined as the incremental angles
∆θ for all joints. The goal joint angle in next time step
is θt+1 = θt +∆θt , which will be controlled by low-level
controllers. We did not use Cartesian-space actions because
it is a multi-contact trajectory planning system. Planning
goals for multiple fingers in Cartesian space may not be
correctly executed due to mechanical constraints.

• Reward: To encourage the robot arm to actively explore
the workspace, we propose an entropy-based reward at
each time step, which aims to guide the policy to minimize
future spatial uncertainty of the workspace. First, we
voxelize the working space as shown in Figure 7 left. For
each cell in the voxels, there is an uncertainty value p
stored, ranging from 0 (free space) to 1 (object). All cells’
initial uncertainty values are set as 0.5 (unsure). At each
time step, the tactile sensors will update the uncertainty
value in the corresponding cell by increasing two counters.
The object counter No counts the number of times when
the tactile sensors make contact in the cell. The free space
counter N f counts the number of times sensors indicates
free space (when the sensor is in that cell but with no
reading). The uncertainty value pc in cell c is updated by

Equation 5. We expect such soft update strategy instead of
hard assignment to be more robust to noise.

pc =
No

No +N f
(5)

The uncertainty values in each cell c can be used to
calculate the entropy by Equation 6.

H (c) =−pc · log(pc)− (1− pc) · log(1− pc) (6)

We use Information Gain as the reward in MDP, calculated
as the reduction of entropies between two consecutive time
steps (Equation 7).

It = ∑
c

Ht−1 (c)−Ht (c) (7)

The policy π∗ aims to maximize future Information Gain
by Equation 8, which can be trained by reinforcement
learning algorithms; we use Soft Actor-Critic [27] in our
case (see Section V-D) as it has been demonstrated to be an
efficient learning algorithm in robotics [28].

π
∗ = argmax

π

E

[
T−1

∑
t=0

γ
t · It

]
(8)

The voxelization of workspace indicates the progression of
space exploration as the entropy (uncertainty) of the space is
decreasing while exploring. Also, only the cells that overlap
with the robot finger tip are updated at each time step, which
is computationally efficient.

D. Overall System Structure

Combining Shape-Belief Encoder and Shape-Dependent
Policy, the overall system structure is shown in Figure 5.
Starting from the top left corner, the explored area of the
object surface, represented as a point cloud, is encoded by the
Shape-Belief Encoder. A reconstruction head during training
ensures that the latent code captures full shape information.
The latent code z is then passed into the Hopfield network
(blue box) to generate a second latent code z′ encoding
the predicted complete object shape. Both latent codes are
concatenated with the robot configuration, forming the state



Fig. 5: Overall system. The explored area of the object surface, represented as a point cloud (top left corner), is processed by
the encoder; the encoder is learned by reconstructing the point cloud via a GMM surface representation. The latent code z
encoding the explored area is further processed by the Hopfield network (blue box) by generating the predicted shape-belief
code z′. The two codes, encoding the incomplete and predicted complete shapes respectively, are used as state information
for the Shape-Dependent Policy (red box) to control the robot. The newly generated contact points (left) are used to calculate
information gain (reward) and update the explored area (top left corner).

vector, which is used by the Shape-Dependent Policy (red
box) to generate actions for each robot joint. After moving
the joints, new contact points are used to update the explored
point cloud (top left corner) and to calculate information gain
(reward) for training the policy.

V. EXPERIMENTS

In this section, we show our proposed system accom-
plishes tactile exploration tasks. We first demonstrate the
validity of each of our system’s components: (1) 3-D re-
construction performance of Shape-Belief Encoder; (2) 3-D
completion performance on incomplete point clouds. Then
we combine the Encoder with Shape-Dependent Policy to
(3) generate exploration trajectories on different objects and
generalize to unseen objects. Finally, we demonstrate the
performance of our system on a real robot.

A. 3-D Reconstruction

Shape-Belief Encoder compresses objects’ geometric in-
formation into latent codes by conducting accurate 3-D re-
construction from such latent codes. For the 3-D reconstruc-
tion task, we train our Shape-Belief Encoder on the ShapeNet
dataset [29]. The input of the Encoder is a point cloud,
from which the Encoder learns the surface distribution. We
compare the reconstruction results with TopNet [30], PCN
[31], and FoldingNet [32]. We evaluate on 8 randomly
sampled shapes from ShapeNet using the Chamfer Distance
metric, shown in Table I. Our model achieves the smallest
Chamfer Distance in most cases, which indicates that our
model captures the shape and density of the point cloud
with high precision. We also compared F-score proposed in
[33] in Table II. Qualitative reconstruction results are shown
in Figure 6. We also emphasize that our model trains very
quickly (several seconds vs. hours for baselines), because of
two reasons: (1) We turn a 3D recognition problem to a 2D

×0.001 plane cabin car chair lamp sofa table craft

PCN 5.4 9.9 12.2 11.0 10.5 9.5 13.4 9.3
TopNet 5.0 12.3 11.9 13.3 15.3 10.6 13.1 10.9
FoldingNet 7.0 16.1 18.2 24.8 23.1 16.3 22.3 16.4
Ours 5.0 12.8 11.5 8.9 8.4 10.3 11.1 8.5

TABLE I: 3-D Reconstruction Results on ShapeNet:
Chamfer Distance comparison (lower is better)

plane cabin car chair lamp sofa table craft

PCN 87.8 99.5 93.7 80.9 94.4 93.5 89.9 87.8
TopNet 89.4 99.9 85.3 80.7 92.1 89.3 71.7 74.1
FoldingNet 72.0 97.8 66.8 63.2 77.0 69.7 40.0 40.4
Ours 92.4 99.5 94.9 95.2 94.3 97.7 97.6 97.2

TABLE II: 3-D Reconstruction Results on ShapeNet:
F-score comparison (higher is better)

recognition problem by local projections; (2) the GMM loss
only needs to calculate cluster likelihood functions, instead
of comparing points in a pairwise fashion.

B. Object Shape Completion

To infer complete object shape from a fraction of the
original point cloud is important in tactile exploration. We
show that adding the Hopfield network layer in the testing
phase is essential to recognize the object correctly. Figure
7 (a-c) shows the reconstruction results by full object point
cloud, 1/2 point cloud, and 1/8 point cloud without Hopfield
network layer. We see with fewer points, the reconstructions
become more blurred and indistinguishable, which means the
encoder has difficulty recovering complete object shape from
partial information. The result after adding Hopfield network
is shown in Figure 7 (d). We see that the Hopfield Network
improves recognition ability significantly.



Fig. 6: Qualitative reconstruction results on some objects in the ShapeNet dataset [29].
From top to bottom: (1) Ground Truth; (2) TopNet [30]; (3) PCN [31]; (4) FoldingNet [32]; (5) Ours.

Fig. 7: (Left) Voxelization of working space. (Right a-c) Reconstruction from the full, 1/2, and 1/8 object point cloud without
shape completion. The left of each pair is the input of the model and the right of each pair is the reconstruction result.
(d) Reconstruction from 1/8 object point cloud with shape completion using the Hopfield Network.

Fig. 8: Reconstruction performance. (a) Original objects.
(b) Our method. (c) DeepSets. (d) PointNet++.

C. Encoder Comparison

We compare our proposed encoder (local projection) with
DeepSets [22] encoder and PointNet++ encoder [24]. We
found that when the encoders and objects are trained in
pair (one encoder is only used to train one object), the
reconstruction performances of DeepSets and PointNet++
are comparable to our method (Figure 8 b). However, when
one encoder is used to train multiple objects (by randomly
sampling from the training set), DeepSets and PointNet++
cause the model to learn the average shape instead of
correctly distinguishing them (Figure 8 c,d).

Fig. 9: (Left) Objects used for Shape-Dependent Policy.
(Right) Robot in simulation.

D. Tactile Exploration Policy

We tested our Shape-Dependent Policy by executing tactile
exploration tasks on different objects, shown in Figure 9
left. To show the generalization ability of our work, we use
five objects with basic shapes including box, ball, cylinder,
bell, and cone as the training set. Three testing objects
including screw, tetrahedron, and diamond are used as novel
objects to show generalization. A UR5e robot with pneumatic
gripper attached executes exploration tasks in a Gazebo
simulation (Figure 9 right). The tactile sensors are mounted
on fingertips. We use the Soft Actor-Critic [27] algorithm
to train the exploration policy. The task is episodic and each
episode lasts for 120 seconds with 1-second duration for each
step. At the beginning of each episode, one of the five objects
is re-spawned at the center of the workspace. The robot has
no prior information about what object to be explored in each
episode but only perceives by tactile exploration.



box ball cyl. bell cone DR rand SDP

box 342.6 256.3 202.3 211.6 117.4 153.5 7.5 312.3

ball 185.3 374.3 138.3 219.3 115.4 169.7 7.5 372.2

cylinder 252.3 262.2 383.7 231.2 140.2 251.2 9.4 365.2

bell 361.2 295.4 135.6 604.0 185.2 194.1 2.3 432.3

cone 213.5 182.1 92.0 205.6 288.4 142.6 13.1 243.1

screw 252.3 210.1 183.6 323.2 61.2 202.1 4.5 314.2

tetra- 211.1 172.8 113.2 35.7 113.5 162.8 7.3 318.6

diamond 269.2 265.7 143.2 235.3 99.6 242.8 17.9 333.2

TABLE III: Explored area on various training and test-
ing objects, using the shape-independent policies, domain-
randomization policy (DR), random policy, and our Shape-
Dependent Policy (SDP). Values are accumulated informa-
tion gain from each policy (10 trials; higher is better).

For comparison, we train five shape-independent policies,
whose state only consists of robot configuration but without
shape information (latent codes). Each shape-independent
policy is only trained on one particular object (e.g. “box”
policy is only trained on the box object, but can be tested on
a box or ball). We expect such shape-independent policies
to work well on their paired training object, but to have
bad exploration performance when the object is mismatched.
The accumulated exploration area in one testing episode for
all policies are shown in Table III; the values are averaged
across 10 independent trials. The area is expressed by the
total number of non-overlapping contact points. The columns
indicate the policies, while the rows indicating the test
objects. For example, “box” row and “bell” column means
the policy was trained on exploring “bell” but tested on “box”
(without shape information). The “DR” column is the policy
trained on all five objects, based on domain randomization in
reinforcement learning [34], still without shape information.
The “random” column is the random policy in joint space.
The “SDP” column is our Shape-Dependent Policy, which is
also trained on all five objects, but the shape information is
explicitly provided by the inferred shape encoding.

From Table III, we can conclude that our policy (SDP)
generalizes well on all five training objects and three testing
objects. The shape-independent policies (first 5 columns)
only perform well in their own scenarios, which can be
verified by the diagonal pattern in the upper part of the table.
Even if shape information of all five objects are implicitly
provided to the DR policy during training, it still generalizes
poorly without directly incorporating shape encoding as part
of its state. The exploration result is shown in Figure 10.

E. Object Recognition

To show the Hopfield network works well as an object
shape recognizer, we recorded the output beliefs for the five
test objects in the SDP experiment section. One result is
shown in Figure 11. The belief is given by Equation 9

belief = softmax
(
β · z ·ZT ) (9)

where z is the latent code of object being touched, and Z is
the latent code matrix of the five training objects. The belief

Fig. 10: Explored area by SDP

Fig. 11: Object belief in SDP, ground truth object is box.

in Equation 9 gives a distribution measuring the likelihood
between latent code of the current object and latent codes
of all training objects. The object to be explored is a box
but unknown to the robot, so the robot has to recognize the
object’s shape by active tactile exploration. The graph shows
the beliefs for the five objects. At the beginning, there is
no contact point, beliefs for all objects are equal (20%). At
about 5 seconds, the hand reaches the object, some contact
points are collected and used to update beliefs. With just
a small set of points explored by this time step, one can
see the probabilities of cylinder and box increase. The robot
concludes the explored area could not belong to a ball, bell,
or cone. With more area explored, the robot gradually assigns
higher probability to the true object, the box. At the very end,
the robot is about 90% sure that the object touched is a box.

F. Application on a Physical Robot

We tested the Shape-Dependent Policy on a real robot, a
UR5e robot arm with a pneumatic gripper [35]. One tac-
tile sensor (Adafruit Round Force-Sensitive Resistor (FSR)
[ADA166]) is mounted on each finger of the gripper. A
contact is detected when the contact force on the sensor is
above a certain threshold. Three objects with soft materials
are used for testing: a yoga ball, a block box, and a cookie
box (Figure 12). The explored area through time and the
collected contact points are shown in Figure 13. The blue
and red dots correspond to points collected from the two
fingers respectively. The result is less dense compared to

Fig. 12: Robot exploring (a) ball; (b) box; (c) cylinder



Fig. 13: (Top) Explored area with box, ball and cylinder.
(Bottom) Explored point cloud.

simulation due to a sim-to-real gap; some points touched in
simulation are not reached precisely on the real robot.

VI. CONCLUSION

In this work, we proposed a shape-dependent reinforce-
ment learning framework for tactile-only exploration of
objects in the robot workspace. We used a Shape-Belief
Encoder to encode the point cloud of the explored area of an
object, and used a Hopfield network to predict the complete
object shape. The encoded and predicted shape information
is then given to a Shape-Dependent Policy for context-based
tactile exploration. Results in simulation and on a physical
robot showed that the proposed framework can (1) effectively
learn a GMM for object-surface representation; (2) predict
complete object shape from a fraction of the explored area;
(3) guide robots to comprehensively touch and explore object
surfaces using tactile sensors.
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Vladlen Koltun, Thomas Brox. ”What do single-view 3D reconstruc-
tion networks learn?” CVPR, 2019.

[34] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Ma-
teusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias
Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan,
Wojciech Zaremba, Lei Zhang. ”Solving Rubik’s cube with a robot
hand.” arXiv:1910.07113, 2019.

[35] Schwarm, Eric, Kevin M. Gravesmill, John P. Whitney. ”A floating-
piston hydrostatic linear actuator and remote-direct-drive 2-DOF grip-
per.” ICRA, 2019.


