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Abstract— Using tactile signal is a natural way to perceive
potential dangers and safeguard robots. One possible method
is to use full-body tactile sensors on the robot and perform
safety maneuvers when dangerous stimuli are detected. In
this work, we proposed a method based on full-body tactile
sensors that operates at three different levels of granularity
to ensure that robot interacts with the environment safely. The
results showed that our system dramatically reduced the overall
collision chance compared with several baselines, and intelli-
gently handled current collisions. Our proposed framework is
generalizable to a wide variety of robots, enabling them to
predict and avoid dangerous collisions and reactively handle
accidental tactile stimuli.

I. INTRODUCTION

In recent times, many types of tactile sensing equipment
have been designed using different technologies [1], [2], [3],
[4], [5], which have been applied to robot tasks such as shape
exploration [6], texture recognition [3], [7], physical prop-
erties identification [8], [9] or human-robot interaction [10],
[11], [5]. Other than perception, the function of safeguarding
the robot from dangerous contacts also plays an important
role. Oftentimes can a robot be damaged by self-collision or
environmental uncertainty, so the goal of tactile safety is to
avoid or handle dangerous tactile stimuli.

Based on whether a tactile event is predictable, it can
be categorized into either static or dynamic [12]. It has
been biologically evidenced that animals respond to different
types of tactile stimuli with hierarchical engagement of
the nervous system [13], [14], [15]. For predictable static
stimuli, a model should be learned to predict the outcome of
actions-environment interaction to avoid repetitive damage
and re-plan motion from the learned model to improve
operational safety. For dynamic stimuli, animals generally
process them through lower-level nervous system, allowing
faster responses. Tactile defensiveness is a common animal
behavior to retract limbs or body from unexpected tactile
stimuli, such as forces, temperature or tactile recognition
(consider you touch and recognize a spider in blind box).
Such behavior has been widely observed in insects [16], crus-
taceans [17], [18], amphibians [19], fish [20], and mammals
[21], [22]. In humans, flexor reflex circuits [23] are mainly
responsible for executing such mechanism and it is funda-
mental to animals’ navigation, foraging, reproduction, social,
and defensive behavior and is crucial for their survival.

Analogous to robots, we assume that adopting a hierarchi-
cal processing approach for different types of tactile stimuli
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Fig. 1: Three hierarchical layers guarding the robot safety.
Strategy layer: model learning and danger-free path planning;
Modulation layer: reducing velocity when model indicates danger;
Tactile Defensiveness layer: retraction motion under tactile stimulus.

is a feasible strategy. We proposed a general robot tactile
safety framework operating at three levels of hierarchies. At
the highest level, the “strategy layer”, the robot collects long-
term action-contact data and learns a model to predict motion
risk. Such model affects future global motion planning that
unsafe actions are less likely to be chosen. At the middle
level or the “modulation layer”, the learned model will
locally safeguard the robot by modulating unsafe velocities.
Finally the lowest level or the “tactile defensiveness layer”
mimics animals’ tactile defensiveness behavior by retracting
the robot from dangerous contact. We designed independent
experiments on the above three layers of safety mecha-
nisms to verify their feasibility on different granularities
and different types of robots. On a robot equipped with a
modular artificial skin, we demonstrated how our proposed
tactile safety system can protect workers in a human-robot
collaboration task.

II. RELATED WORKS

In the past few decades, a variety of robot skins based on
different electronic principles have been designed [24] with
applications in locomotion [25], human-robot interaction
[26], [27], [11], tactile perception [3], [7], etc., however
rarely have we seen works discussing robot safety based on
on-body tactile sensor array. Many robot systems rely on
distant sensors (camera, Lidar) or Force/torque (F/T) sensors
to ensure operational safety but they both have limitations.
Distant sensors have severe occlusion problem in cluttered
scenarios like foliage or terrible sensing condition such as in
mud or fog [28]. Joint F/T sensors have ambiguity problem
in locating contact position [29] and force distribution [28],
which can easily cause unexpected damage [30]. And the
control methods based on this type of sensors for safety
purpose can be categorized as: passive [31], pre-defined
trajectory [32], force control [33], [30], [34], off-line plan-
ning [11] and online planning [35], [36]. Previous solutions



Fig. 2: Block diagram of our tactile safety mechanism.

only considered mechanical interaction, but little is known
for other types of tactile sensing, such like temperature or
tactile perception. For example, when you touch a spider and
recognize it, how such perception result can be integrated in
the controller that retracts your hand is unknown.

Here we briefly summarize some of the previous works
on tactile array in the safety context. [28] proposed a model-
free approach with high-level model predictive controller and
low level impedance controller. The robot is equipped with
a capacitive forearm tactile sensor array of 384 taxels. Their
experiment showed the robot was able to reach the goal
position without causing excessive contact force. Similar
system has been designed in [33] with 3,495 taxels and force
feedback control. [32] designed an embedded camera-based
tactile sensor array mounted on the forearm of a robot. They
demonstrated that the robot with such skin retracted from
single external poke. [35] designed a serpentine structure
deformable robot skin that can be conformally attached to
complex surfaces of cobots. When the cobot senses contact,
it re-plans its trajectory to avoid it. [25] designed a plantar
robot skin on the foothold of a biped robot to achieve walking
balance. The robot skin senses the force distribution on the
footholds and adjust the robot’s walking pattern when it
shows unstable. They showed that the F/T sensors failed
to detect the unsafe situation and caused the robot to fall.
[27] designed a forearm robot skin for nursing robot with
arrays of proximity and pressure sensors to perform patient
lifting tasks. When an approaching object is detected, the
robot reduces its speed and adjusts the patient’s position in
the arm according to the force distribution. [30] compared
different force control methods for an iCub robot with a full-
body tactile array. They concluded that accurate contact point
estimation is critical for force control tasks. Most of these
works are designed for specific application scenarios and
robot structures, and hard to be transplanted to different types
of robots. Additionally, the obstacle avoidance mechanisms
are all model-free, meaning the same dangerous collisions
could be revisited.

III. HIERARCHICAL TACTILE SAFETY
The block diagram of our proposed mechanism is shown in

Fig. 2. The three layers can work cooperatively in hierarchy
or solely to safeguard robot. Strategy layer relies on tactile
danger model (TDM) and Bayes’ rule to filter out high-level
unsafe actions (a → a′). TDM is trained to predict static
contact from state-action pairs. Modulation layer utilizes the
learned TDM to perform local velocity modulation (ṡ → ṡ′),

Fig. 3: Tactile danger model pipeline.

which can either be translated from the planner or from
tactile defensiveness layer. The tactile defensiveness layer
reactively perceives and handles dynamic stimulus and plans
a retraction trajectory.

A. Strategy Layer

The strategy layer manifests itself through long-term
danger-free planning and tactile memory learning. The
method employs a neural network to learn tactile memory
and uses Bayes’ rule to filter out the unsafe actions.

Assuming the tactile sensors are labelled as i, we define
a binary single tactile danger event as sensor i detects
danger, di = 1( fi > fth), where the stimulus fi on sensor i
exceeds a threshold fth. The total tactile danger event is the
union of all single tactile danger events D =

⋃
i di ∈ {0,1}.

For each sensor, a tactile danger model is represented by
a probability p(di|s,a) that a single tactile danger event
happens conditioned on robot state s ∈Rd and action a ∈Rm

to be taken. Then, the total tactile danger model summarizing
all sensors can be expressed as:

p(D|s,a) = 1− p(D̄|s,a) = 1−∏
i
[1− p(di|s,a)] (1)

Similarly, we have the total tactile safety model p(D̄|s,a) =
∏i [1− p(di|s,a)], which is the complement of total tactile
danger model. Another important definition we should make
here is the marginal total tactile danger model p(D|s), which
characterizes the probability that the total tactile danger event
happens agnostic to action a. The model can be learned by
importance sampling in a data-driven fashion.

p(D|s) =
∫

p(D|s,a)U (a|s)da

= Ea∼p(a|s)

[
p(D|s,a)U (a|s)

p(a|s)

] (2)

where p(a|s) is the robot policy. U (a|s) is the homogeneous
exploration policy that takes all possible actions with a uni-
form distribution. Similarly, we can derive marginal total tac-
tile safety model as p(D̄|s) = 1−Ea∼p(a|s)

[
p(D|s,a) U(a|s)

p(a|s)

]
.

The danger-aware policy incorporating tactile safety model
can be derived by Bayes’ rule as:

p(a|D̄,s) =
p(D̄|a,s) p(a|s)

p(D̄|s)

=
∏i [1− p(di|s,a)] p(a|s)

1−Ea∼p(a|s)

[
p(D|s,a) U(a|s)

p(a|s)

] (3)

Equation 3 can be regarded as a safeguard to the robot
policy. The original policy p(a|s) proposed by robot will be
filtered by Equation 3 by incorporating tactile danger model
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Fig. 4: (a) Gradient field of the tactile danger potential; (b) example tactile
danger potential and the original velocity; (c) modulated velocity avoiding
high potential area.

(TDM) proposed in Equation 1 and the marginal model in
Equation 2. The new robot policy p(a|D̄,s) will be executed
by assigning less chance in the direction of tactile danger.
A numerical example of the pipeline of the action filtering
is shown in Fig. 3. When TDM detects an action a1 is
dangerous, it shall reduce the chance that a1 being sampled
in the original policy.

B. Modulation Layer

The modulation layer aims to use the TDM learned in
strategy layer to locally regulate the robot velocity. First, we
will extend the concept of TDM to a potential field.

1) Tactile Danger Potential: In modulation layer, we pa-
rameterize TDM in Equation 1 with differentiable parameters
ϕ , and define the tactile danger potential as a mapping from
state s and action a to the expectation of danger event D:

p(D|s,a)→ E [D] = fϕ (s,a) (4)

Its normal vector n(s,a) at s and a can be extracted by
differentiation (Fig. 4)

n(s,a) =
∂ fϕ (s,a)

∂ s
∈ Rd (5)

2) Velocity Modulation: We extend the modulation strat-
egy in [37] to the context of our tactile danger potential.
Assuming the original robot dynamics is modelled as ṡ =
g(s,a), the modulated dynamics is

ṡ = M ·g(s,a) (6)

with M = E ·D ·E−1 and

E = [n/ |n| ,e2, · · · ,ed ]

D = diag(λn,λ2, · · ·λd)

λn = 1− fϕ (s,a)

λi = 1+ fϕ (s,a) , 2 ≤ i ≤ d

(7)

Note that the matrices M, D, E depend on s, but not shown
explicitly. n is the normal vector defined in Equation 5
and e2, · · · ,ed are the bases in the tangential space of n.
A demonstration of such modulation is shown in Fig. 4. The
tactile danger potential penalizes the velocity towards high
potential area by reducing the eigenvalue of normal direction
λn and encourage the tangential velocity by amplifying the
eigenvalues in the tangential directions λi.

Theorem 1. Modulated dynamics in Equation 6 prevents the
robot from initiating tactile danger events with an accurate
tactile danger model.

Fig. 5: (left) TDM learns a sharp edge where the velocity is not penalized
until at the boundary; (right) the smoothed model penalizes the velocity
before reaching the collision boundary.

(a) (b) (c)

Fig. 6: (a) original tactile danger potential fϕ , action has been marginalized
for visualization; (b,c) n-step tactile danger potentials wφ (s,a) with T=4,8.

Due to the space limit, the proof is not shown here but
the idea of proof can be referred to [38] Theorem 2.

3) N-step Tactile Danger Potential: A critical issue is
that a well-trained TDM may show a sharp edge at the
boundary between free space and object surface due to the
binary training labels. Thus, velocity will only be modulated
in a narrow boundary region, because the step-function-like
potential field only has a non-trivial gradient in such region
(Fig. 5 left). Instead, to endow robots with the ability to
foresee imminent danger (Fig. 5 right), we propose a multi-
step tactile potential wφ (s,a) to model the expectation of
the discounted sum of all future tactile dangers starting from
s. Such new potential can be estimated by running off-line
Monte Carlo in the original tactile danger potential fϕ (·).

wφ (s0,a0) = Es1:T ,a1:T ∼π ′(st )

[
T

∑
t=0

γ
t ·Dt

]

= E

[
D0 ·

T

∑
t=1

γ
t ·Dt · p(Dt |st ,at) ·π ′ (at |st) · p(st |st−1,at−1)

] (8)

γ ∈ (0,1) is a discount factor. π ′ (st) can be arbitrary
policy (e.g. uniform policy). In practice, we can directly
use wφ (s,a) to replace the original tactile danger potential
fϕ (s,a) in velocity modulation. The n-step tactile danger
potentials with different T are shown in Fig. 6a-6c. We see
that the n-step tactile danger potential is just a smoothed
version of the original potential. We collectively refer the
tactile danger model in the strategy layer and the tactile
danger potential in the modulation layer as tactile danger
model (TDM), because they are almost equivalent when
using neural networks. The difference in names comes from
their different application scenarios.

C. Tactile Defensiveness Layer

Animals have an innate ability to flee from dangerous
contact events. Such events can be triggered by various tactile
signals, such as mechanical contact, temperature, tactile
perception, etc. We mimic this instinct through a model-free
reactive behavior. This mechanism has higher priority than
any planned motion, in order to prevent damage.

1) Single Triggered Sensor: For each sensor i, there
is a local frame whose z axis points outwards the body
surface. The pose of sensor i’s frame is described by ri (t)
in the world frame, and the corresponding Jacobian matrix
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Fig. 7: Merging multi-contact retraction trajectories. (a) retraction trajectories by different sensors, the red is the dominant trajectory; (b-c) the second
trajectory is mapped to the dominant frame and projected to the null space of the dominant trajectory; (d-e) similar for the third trajectory, projected to
the common null space of the dominant and the second trajectory; (f) the final trajectory is the sum of all projected trajectories.

(a) (b)

Fig. 8: (a) Robot performing tactile defensiveness under contact; (b)
displacement along -z axis of retraction trajectory.

is Ji (q). q is the robot configuration, which can be a part
of the robot state s. Ji (q) ∈ R6×n if ri (t) is represented
by xyz&Euler angles, and its size varies depending on the
choice of its representation. n is the number of joints. The
relation between Cartesian velocity and joint space velocity
is represented as:

ṙi (t) = Ji (q) · q̇(t) (9)

The tactile defensiveness behavior is triggered when sensor
i detects a tactile danger event defined in section III-A. We
expect the retraction motion of sensor i from its current pose
to a safer pose along the opposite direction of the sensor
normal (Fig. 8a). Assuming at time step τ , sensor i detected
a danger event, its z axis at τ is zi (τ), and the Cartesian
position is pi (τ) ∈R3. The desired trajectory should follow:

• ∥pi (τ +T )− pi (τ)∥ ∝ α · fi
• ṗi (τ) = ṗi (τ +T ) = 0

α and T are hyperparameters. α is a sensitivity factor that
controls how strongly the robot reacts to a danger event.
T is an agility factor that controls how long the retraction
lasts. The first property shows that the retraction distance
is proportional to the sensitivity factor and the severity of
the danger event. This is consistent with animal behavior:
retraction behavior is more responsive when the sensing
system is more sensitive or when the contact force is high.
The second property assumes the contact stops the robot
immediately and the retraction motion will stop the robot at
a safer position. An example trajectory function that fulfills
the two properties is:

pi (t) =−α · fi

(
(t − τ)4

4T 4 − 2(t − τ)3

3T 3 +
(t − τ)2

2T 2

)
zi (τ)+ pi (τ)

τ ≤ t ≤ τ +T

(10)

Such trajectory is first- and second-order differentiable (Fig.
8b). Thus, the desired spatial trajectory can be derived by

setting its rotational velocity as zero, ṙi (t) = [ṗi (t) ,0]
T ∈R6.

Then the joint space trajectory can be derived by:

q̇i (t) = J−1
i (q) ṙi (t) (11)

Such trajectory can be tracked by a velocity controller.
2) Multiple Triggered Sensors: When multiple tactile

sensors are triggered simultaneously, coordinating the com-
posite behavior becomes especially important. Due to the
limited number of robot degrees of freedom (DoFs), it is
less possible to perform all the desired trajectories of the
triggered sensors by Equation 11. Alternatively, the robot
should retract from more severe tactile danger events first,
and then from less severe ones. Thus, a priority based
retraction coordinator should be devised.

In multi-contact setting, the time steps of danger events
on different sensors are marked as τi. Retraction is only
performed in its active period τi ≤ t ≤ τi+T . We can build a
pool containing all active sensors to control them centrally.
First, all active sensors in the pool should be sorted by their
emergent priorities. The priority wi (t) is defined as:

wi (t) =
α · fi

12
− [pi (t)− pi (τi)]

T · zi (τi) (12)

The priority reduces from α· fi
12 (maximum displacement of

Equation 10) to 0 in the period of retraction. Then the
triggered sensors are re-indexed by their priorities from high
to low. The sensor with the highest priority is reindexed
as j = 0 and its desired trajectory dominates. The idea is
that lower-priority trajectories will affect higher-priority ones
as little as possible. Also, as priority attenuates with time,
a higher-priority trajectory may become lower-priority one
later, and the index of a particular sensor may change.

Sensors have their own local frames. However, merging
the trajectories of all active sensors can only be done in
the same frame. We choose dominant sensor’s frame as the
reference frame and map the trajectories of other sensors
from their local frames to the dominant frame. Assuming
the number of the robot’s DoFs is much smaller than the
total number of tactile sensors, executing the trajectory of a
particular sensor will inevitably affect the motion of other
sensors. Here, null-space projection is adopted to ensure
that executing lower-priority trajectories will cause minimum
interference with higher-priority ones. The resultant joint
velocity merging all active sensors is shown in Equation 13,

q̇ = J−1
0

[
ṙ0 + ∑

j=0

j

∏
k=0

(
I− ε · ṙk−0 · ṙ

T
k−0

)
· ṙ( j+1)−0

]
ṙi−0 = J0 ·J−1

i · ṙi ∀i

(13)
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Fig. 9: Strategy layer results. (a) maze layout; (b) total contact events; (c)
return curves and (d) cost curves of SAC and AC with different extensions;
(e) return curves and (f) cost curves compared with safe RL baselines.

where ṙk−0 = ṙk−0/∥ṙk−0∥. ε ∈ [0,1] is the tuning factor.
When ε → 1, the motion of sensor j causes minimum
interference with motion of sensors with higher priorities
as full null-space projection. When ε → 0, the total motion
is simply the sum of trajectories of all sensors. The merging
procedure is visualized in Fig. 7a.

IV. EXPERIMENTS

In this section, we first conduct separate tasks to show
the performance of the proposed three layers. We then
show multiple layers are integrated to ensure safety in a
teleoperated human-robot collaborative assembly task.

A. Strategy Layer Performance

We tested the performance of the strategy layer with a
reinforcement learning (RL) navigation task that requires
repeated interaction with the environment to gather expe-
rience. We adopted a robot maze navigation scenario in Fig.
9a to show the strategy layer improves RL performance in
terms of convergence speed as well as exploration safety.
The robot navigates from the starting position to the goal
position, minimizing the total contact with the maze walls.
The state is the position of the robot in the maze. The
action space contains 4 macro-actions: go forwards and
backwards, turn left and right. Rewards are sparse: only
+100 when the robot reaches the goal. Any collision will
return a -1 cost. To show our approach is algorithm-agnostic,
we implemented the strategy layer module to an off-policy

Fig. 10: Robot skin design.

algorithm, Soft Actor-Critic (SAC) [39] and an on-policy
algorithm, Actor-Critic (AC) [40]. The return and cost curves
are shown in Figs. 9c and 9d respectively. Baselines include
(1) reward-penalty, the reward will be reduced by the cost
(-RP suffix) [41], and (2) algorithms extended by our Tactile
Danger Model (-TDM). We also compared several safe RL
baselines, including recovery reinforcement learning (RRL)
[42], constrained policy optimization (CPO) [43] and safe
Q-functions for reinforcement learning (SQRL) [44]. The
results are shown in Figs. 9e and 9f. From the cost curves in
Figs. 9d and 9f, our “-TDM” mechanism shows the lowest
total collision chance, which is also supported by the contact
event statistics shown in Fig. 9b.

B. Modulation Layer Performance

To demonstrate the effectiveness of the modulation layer,
we ran an UR5 robot arm trajectory tracking experiment
(Fig. 11a). Self/environment collision detection is turned on
to precisely capture on-body collision locations to simulate
full-body tactile sensors. Several solid balls are placed along
the trajectory to generate collision. We compared the vanilla
velocity controller trajectory tracking, velocity modulation
by TDM, and velocity modulation with a 2-step TDM.
The resultant trajectories of the three methods are shown
in Fig. 11b-11d. From the figure we see that the vanilla
velocity controller follows the trajectory correctly but causes
large amount of collisions. Modulation by TDM can deviate
from the trajectory and cause unintentional collisions. We
assume that is because TDM learns sharp edges at the
object boundary, and the robot’s velocity can be modulated
unpredictably. The n-step model learns a softer boundary,
so the velocity is gradually penalized, resulting in smoother
trajectories with fewer contacts. Since learning a good model
requires repeated interaction with the environment, we re-
ran this trajectory tracking task many times (episodes) and
expect the performance to improve with more interaction
experiences and better model quality. The quantitative result
is shown in Fig. 11e. The non-modulated approach gets the
highest collision chance. TDM modulation reduces contacts
chance, but doesn’t improve with more training. The 2-step
TDM method almost reaches collision-free performance after
6 episodes. The sudden rising in episode 2 may attribute
to that modulation repels the robot to unexplored areas,
resulting new accidental collisions. These new experiences
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Fig. 11: Modulation layer results. (a) Desired end-effector trajectory; (b) trajectory (blue) of no modulation, green dots are contact points; (c) trajectory of
TDM modulation; (d) trajectory of 2-step TDM modulation; (e) trend of the total number of contacts by episodes.

Fig. 12: (top) Retraction by light touch; (bottom) retraction by heavy touch.
Red line shows the retraction distance.

will update the model and improve the performance in
subsequent episodes.

C. Robot Skin Design

We designed a modular robot skin as shown in Fig. 10.
Each skin module consists of a flex-printed circuits (FPC)
with Force Sensing Resistors array on it surface. The shape
of FPC can customized to fit the local robot surface. A self-
powered interface board digitalizes the recorded values on
each sensor and transmits wirelessly to the robot controller.
Such modular and flex-rigid separation non-invasive design
simplifies the requirement of wiring and maintenance.

D. Integrated Teleoperating System

Teleoperation, especially on the robot side, is highly
vulnerable to accidental damage [45] due to poor sensory
sharing or transmission delays [46] between the human and
the robot. We designed an integrated teleoperating system by
an UR5 robot arm with Robotiq 2f-85 Gripper synchronizing
the motion of the human arm captured by our intelligent
glove with VR tracker (Fig. 13). When an unexpected contact
happens, the system enters the safeguarding mode governed
by our tactile safety mechanisms. The retraction behavior
under different force magnitudes are shown in Fig. 12. We
see the robot is more responsive under heavier touch. Fig.
14 demonstrated the coordinated performance from different
layers. When the robot is touched on the top, the tactile de-
fensiveness layer generates retraction movement downwards.
Under the regulation of the modulation layer, the robot stops
before colliding with the desk.

We validated our proposed mechanism through a human-
robot collaboration task. A human worker assembles an
aluminum frame. Another UR5 robot assists the worker by
delivering tools and frame parts. A demonstration is shown

Fig. 13: Teleoperating system.

(a) (b)

Fig. 14: (a) External contact on the top of the robot; (b) the robot retracts
towards the desk and stops before colliding with the desk under the
regulation of modulation layer.

in Fig. 15. When the robot accidentally hits the human, it
retracts to ensure the safety of the worker.

V. CONCLUSION

In this paper, we comprehensively analyzed the robot
tactile safety problem using full-body tactile sensors. We
proposed a three-layer safeguard mechanism to address the
problem hierarchically. A low-cost scalable modular robot
skin was designed and implemented in our teleoperating
system. We showed with a human-robot collaboration task
that the proposed system performs safely when accidental
collision happens.

(a) (b) (c)

Fig. 15: (a) The robot delivers parts when the human worker is doing the
assembling task; (b) unexpected collision when the human worker fetches
the part; (c) the robot retracts from the contact area.
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