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Abstract— Along with the advancement of robot skin technol-
ogy, there has been notable progress in the development of snake
robots featuring body-surface tactile perception. In this study,
we proposed a locomotion control framework for snake robots
that integrates tactile perception to augment their adaptability
to various terrains. Our approach embraces a hierarchical
reinforcement learning (HRL) architecture, wherein the high-
level orchestrates global navigation strategies while the low-level
uses curriculum learning for local navigation maneuvers. Due
to the significant computational demands of collision detection
in whole-body tactile sensing, the efficiency of the simulator is
severely compromised. Thus a distributed training pattern to
mitigate the efficiency reduction was adopted. We evaluated
the navigation performance of the snake robot in complex
large-scale cave exploration with challenging terrains to exhibit
improvements in motion efficiency, evidencing the efficacy of
tactile perception in terrain-adaptive locomotion.

I. INTRODUCTION

With the recent advancements in the field of bionic robots,
snake robots have drawn increasing attention. These robots
emulate the body structure of snakes, comprising sequen-
tially interconnected joints. This unique body configuration
affords them the capability to execute distinctive motions.
Furthermore, owing to their slender body shape, they excel
in accessing narrow environments that prove challenging
for other types of robots. Consequently, snake robots have
demonstrated commendable performance in a range of spe-
cialized scenarios, including underwater environments [1],
earthquake rescue [2], etc.

Snake robots primarily rely on undulating motions to gen-
erate anisotropic friction on the contact surface for propul-
sion. In contrast to legged or wheeled robots, this mode of
motion yields a plethora of ground contacts that pervade
the entire body, presenting challenges in dynamics analysis.
However, these intricate ground contacts serve as informative
conduits for capturing various terrain characteristics, includ-
ing surface roughness and slope. Early control strategies
[3], [4], [5], [6], [7], [8], [9], [10], [11] for shape-shifting
robots employed dynamic modeling and feedback control,
often leveraging serpenoid curves [12] or backbone curves
[13] to design gait patterns. These approaches allowed for
the generation of diverse movements, including sidewinding,
undulation, or lateral rolling. It is important to note that these
control methodologies were predominantly validated for path
tracking on flat terrain. Among these strategies, the Central
Pattern Generator (CPG) [14] emerged as a comprehensive
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Fig. 1: Snake robot with whole-body tactile sensors performing cave
navigation.

approach for gait generation and transition. By outputting
sinusoidal curves with distinct parameters, CPG could gen-
erate a variety of snake robot gaits. Subsequently, the concept
of segmented control was introduced [15]. The body of the
snake robot can be divided into multiple segments according
to its functionality. Employing different gaits in each segment
unveiled the potential for the discovery of more complex
gaits, such as the C-pedal wave and crawler gait [16].

Deploying snake robots in more complex scenarios, such
as those with obstacles or uneven terrain, makes dynamic
modeling less feasible. Consequently, model-free control
methods, such as reinforcement learning (RL), have garnered
more extensive discussion. Additionally, adapting to complex
environments relies on more comprehensive sensory patterns.
Thus, some snake robots integrated various types of sensors,
such as head cameras [17] and body tactile sensors [18],
[15], [19], [20]. Leveraging whole-body tactile sensors, snake
robots can perceive the precise location and force of each
contact, adjusting their body shape to avoid damage or to
generate additional propulsion. Several designs for apply-
ing whole-body tactile sensing on snake robots have been
proposed. However, discussions regarding the integration
of tactile information into control loops are less common.
Key solutions include lateral inhibition [21] or lateral hump
[22], relying solely on localized body curvature to adapt to
contact, with less consideration for the resultant whole-body
motion. When we view all surface tactile sensors as a unified
entity, different gaits can generate distinct contact patterns,
as shown in Fig. 2. These contact patterns encapsulate
substantial information about terrain and body movement,



Fig. 2: (a) helical rolling; (b) lateral rolling; (c) sidewinding; (d) tumbling gaits and their tactile patterns.

and can be used to enhance environmental perception and
motion control.

In this work, we propose a hierarchical reinforcement
learning (HRL) approach to control snake robots for large-
scale path tracking in complex terrains, while incorporating
whole-body tactile sensing into the control loop to achieve
terrain adaptability. Inspired by the tactile patterns in Fig. 2,
we use a computer-vision-style signal processing scheme for
tactile signal interpretation. Concurrently, we use curriculum
learning to facilitate the expansion from small-scale solu-
tions to large-scale scenarios, enhancing task generalization
capabilities. We rely on multi-agent reinforcement learning
(MARL) to provide local information exclusively to the
control loop, while generating coordinated behavior under
the guidance of a centralized critic. Lastly, to address the
efficiency issues associated with robot simulators featuring
numerous tactile sensors, we designed a distributed RL
framework harnessing cluster computing for acceleration.

II. BACKGROUND

A. Markov Decision Process (MDP)

An MDP is a 4-tuple M = ⟨S,A, P,R⟩ where S is the
set of states, A is the set of actions, P (st+1|st, at) is the
transition probability that action a in state s at time t that will
lead to state s at time t+ 1, R (at, st) is the distribution of
reward when taking action at in state st. A policy π (at|st)
is defined as the probability distribution of choosing action
at given state st. The learning goal is to find a policy π∗ that
maximizes the accumulated reward in given horizon T , π∗ =

argmax
π

E
at,st∼π

[∑T−1
t=0 γt ·R (at, st)

]
, where γ is discount

factor. RL algorithms are common choices to solve MDP
problems.

B. Central Pattern Generators (CPGs)

CPG is a neural circuit in the vertebrate spinal cord that
generates coordinated rhythmic output signals to control
robot locomotion. By tuning its parameters, CPG can output
sinusoidal waves on multiple channels. CPG-based control
methods have been successfully applied to many kinds of
robots, such as multi-legged robots [23], [24], [25] or snake

robots [26], [14], [27]. Usually, to improve the terrain adapt-
ability of CPG, optimization algorithms are often applied
to adjust CPG parameters in real-time. As multiple CPG
structures have been proposed, we adopted the structure in
[14]. The dynamics of CPG are shown in Equation 1-3.

φ̇ = ω + A · φ+ B · θ

r̈ = a ·
[a
4
(R− r)− ṙ

]
x = r · sin (φ) + δ

(1)

A =
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φ ∈ Rn and r ∈ Rn are internal states of CPG, n is
the number of output channels, typically the number of
robot joints. a and µi are hyperparameters that control the
convergence rate. R ∈ Rn, ω ∈ Rn, θ ∈ Rn−1, δ ∈ Rn are
inputs that control the desired amplitude, frequency, phase
shift and offset. x ∈ Rn is the output sinusoidal waves of n
channels.

C. Robot Description

The Crater Observing Bio-inspired Rolling Articulator
(COBRA), shown in Fig. 3, is designed for space exploration
[28]. It consists of 11 actuated joints. The head module of
the robot contains the onboard computing system, a radio
antenna for communicating with a lunar orbiter, and an
inertial measurement unit (IMU) for navigation. At the tail
end, there is an interchangeable payload module containing
a neutron spectrometer to detect water ice. The rest of the
system consists of identical 1-DoF joint modules inter-placed
perpendicularly containing a joint actuator and a battery. 207
virtual tactile sensors measuring normal pressure forces at 50
Hz are evenly placed throughout the robot body.



Fig. 3: COBRA robot body structure.

Fig. 4: Three-layer hierarchical control scheme.

III. HIERARCHICAL CONTROL SCHEME

The problem addressed in this paper is robot navigation in
complex terrains, namely, moving from any starting position
to any target location on a map. To achieve this goal, we
introduce a hierarchical control scheme (Fig. 4). At the
highest level of global navigation, we use tree search (A*)
algorithm to plan efficient paths, which are then segmented
into a series of contiguous waypoints (Fig. 5a). At the middle
level, local navigation, we use RL to train the robot to adjust
its gait to navigate from one waypoint to the next (Fig.
5b). We integrate tactile perception information into the RL
control loop to achieve real-time terrain adaptability. At the
lowest level, we use PID controllers to actuate the robot’s
joints to execute the desired gaits.

A. Tactile-adaptive Local Navigation

Given the relatively straightforward solution of global
navigation and gait controller, we omit their implementation
details. The novelty of this study lies in the development of a
new reinforcement-learning paradigm at the local-navigation
level to govern the locomotion of the snake robot. The key
problem rests in effectively exploiting the whole-body tactile
sensing information to regulate the robot’s gait for enhanced
terrain adaptability. Our control scheme design adheres to
four guiding principles: (1) Individual joint control; (2) using
a pre-trained gait library built from curriculum learning; (3)
joint gaits solely depend on local tactile signals; (4) the
application of Centralized Training and Decentralized Exe-
cution (CTDE) to mitigate partial observability and improve
learning efficiency.

B. Curriculum Learning

Snake robots adopt distinct gaits for efficient locomotion
on various terrains. For instance, sidewinding is often used
on slopes, while lateral rolling is preferable on smoother
surfaces. Inspired by this, we train agents across a spectrum

(a) (b)

Fig. 5: (a) Global navigation: plan a path from start position to goal
position and segment the path by waypoints; (b) Local navigation:
using RL to steer robot from a waypoint to the next.

Fig. 6: Randomly generated curriculum terrains.

of randomly generated distinctive curriculum terrains (Fig.
6). Each agent contains a Central Pattern Generator (CPG)
module, with the actor’s outputs tuning the parameters of the
corresponding CPG module. By CPG parameter adjustment,
the agents generate optimal gaits pertinent to their curriculum
terrains. The training terrains are generated by Perlin noise
of size 16m × 16m, where the robot learns to navigate to
reach a random goal pose from any start location in each
episode. The corresponding MDP is defined as:

State space: The state space includes the robot state part
and tactile readings part. The robot state part consists of
the joint positions Rn, IMU readings R3, spatial translation
between robot frame and goal pose frame R3 and relative
rotation parameterized by axis-angle system R4, i.e., 21
dimensions in total. We only use ego-centric observations
from the robot, so a motion capture system is not required
as in [29], [30], [31], which makes our system more practical
in outdoor environments.

Action space: The action space outputs the CPG param-
eters, including the desired amplitude R ∈ Rn, frequency
ω ∈ Rn, phase shift θ ∈ Rn−1 and offset δ ∈ Rn.

Reward: We encourage the robot to reach the goal as soon
as possible. The reward consists of the following terms:

r1 =
1

0.1 + dt
r2 = dt−1 − dt

(4)

where dt is the distance between the robot frame and the
waypoint frame. r1 encourages getting closer to the goal
and r2 encourages higher velocities. r1 and r2 work in a
complementary fashion, with r1 → 0 when the robot is far
away from the goal and r2 → 0 when the robot is near
the goal. We use Soft Actor Critic [32] as the backbone RL
algorithm.



Fig. 7: (a) Diagram of reinforcement learning; (b) top view: each CPG module generates a particular gait pattern, consisting of n channels
to guides joint motions. The joint command is a linear combination of different gaits; (c) side view: each joint has its own Adaptor and
the Adaptors control the gait mixing factors given the local tactile readings

C. Local Navigation Control Scheme

Through curriculum learning as discussed earlier, we ob-
tain a set of agents adapted to various types of terrains,
achieving specific gaits by modulating the parameters of the
CPG modules. The actors of all acquired agents constitute
a gait library, as illustrated in the left side of Fig. 7(a),
represented by the yellow and green boxes. Importantly,
the training process of these gait libraries do not involve
tactile information. Our experimental findings reveal that
incorporating tactile information simply by adding it to the
state space of a single agent does not yield effective terrain-
adaptive gaits. Hence, we devised an approach to incorporate
the tactile information as in Fig. 7(a), during a second phase
of training (after the first phase of curriculum learning).

For each joint, we introduce an Adaptor, which takes as
input the localized tactile information from adjacent links
on the body, recognizes terrain features, and subsequently
selects a gait output from the library in a one-hot manner.
We use SAC with discrete action space to train the Adaptors,
keeping the weights and biases of the Actors fixed during
this training phase. We train on multiple new terrains not
in the curriculum to improve the robot’s terrain adaptation
capabilities. In this second phase, the state space is the recent
tactile readings gathered from the past one second, and the
action space is the one-hot gait selection signal, and the
reward is unchanged. Since the basic gaits were already
learned during the curriculum learning phase, there was no
need to learn gaits from scratch in this phase.

Each CPG module outputs a target joint value qi ∈ Rn,
i ∈ {1, · · ·m}, where m is the number of CPGs and n is the
number of joints (channels). For each joint j ∈ {1, · · · , n},
its target joint value shall be chosen as the j-th channel from
one of the candidate joint values from m CPG outputs. This
choice is determined by the Adaptors and becomes the final
target joint value to execute (Fig. 7(b)).

Num.
sensors 0 50 100 150 200

Gazebo 2.28 0.27 0.09 0.05 0.02
Mujoco 110.3 31.79 24.37 19.92 12.37
Webots 42.3 2.31 1.08 0.69 0.33
PyBullet 59.4 49.8 34.8 NaN NaN

TABLE I: Real Time Factor (RTF) comparison among popular
simulators. NaN represents unstable computation.

This formulation of localized Adaptors relies on the as-
sumption that gait adjustments are locally dependent on
tactile signals, with limited reliance on distant tactile signals.
For instance, the motion of a robot’s head exhibits negligible
correlation with the tactile feedback at its tail. Such frame-
work draws inspiration from the Centralized Training and
Decentralized Execution (CTDE) learning paradigm [33],
[34] within the context of multi-agent reinforcement learning
(MARL). In this analogy, akin to our Adaptors, each agent
exclusively bases its decision-making process on a subset of
the global observation. This configuration eliminates the re-
dundant inter-dependencies among agents and reduces model
dimensions without degrading task performance.

An intriguing observation is that when Adaptors use a
softmax-based output instead of a one-hot one, the weighted
mixture of gaits from the library as the final gait did not yield
effective performance. The Adaptors will converge toward
the average of all gaits in the library, completely neglecting
the tactile information. Introducing entropy as an additional
loss term could circumvent this averaging tendency but
simultaneously introduces computational instability. Hence
we used SAC with discrete action space to output a hard-
max (one-hot) gait selection.

D. Distributed Learning

Due to the introduction of tactile sensors, simulation
becomes slow and does not scale well to the substantial
amount of experience required in RL. Table I illustrates the



Fig. 8: Distributed reinforcement learning framework.

Fig. 9: Neural network architectures.

operational efficiency of several commonly used robot sim-
ulators concerning various numbers of tactile sensors. It can
be observed that as the number of sensors increases, there is a
noticeable decline in the simulator’s efficiency, as manifested
by the maximum real-time acceleration achievable by the
simulator, denoted as the Real-Time Factor (RTF). As the
bottleneck lies in the simulation side for large amount of
collision detection, we developed a distributed RL framework
deployable across multiple workstations (Fig. 8) to mitigate
the situation. One of these workstations serves as a server,
with an agent comprising a critic and an actor (gait library
and Adaptors), along with a centralized replay buffer to store
experiences. The other workstations run multiple simulator
instances (workers), each instance containing only one agent
interacting with the environment. The experiences gained by
the workers are transmitted to the server via the TCP/IP pro-
tocol, and agent training (on GPU) is exclusively conducted
at the server end. The server periodically synchronizes the
actors to each worker. Notably, each Adaptor only receives
a local tactile pattern, recorded from two adjacent links
of a joint, while the critic receives global tactile patterns
from all sensors across the entire body. The neural networks
architectures we use are shown in Fig. 9.

IV. EXPERIMENTS

We tested the terrain adaptability of snake robot locomo-
tion in a randomly generated cave, as shown in Fig. 10. The
dimensions of the cave are 155m×102m. The uneven surface
of the cave presents challenges for the robot to move. The

Fig. 10: Randomly generated cave as the test domain. Global
navigation plans a path from current robot location to the goal
(red arrows), and local navigation controls robot gaits to traverse
between neighborhood blocks.

Fig. 11: Randomly generated cave layouts.

task involves autonomous navigation of the robot from any
initial position to any specified target point, using terrain-
adaptive locomotion. We divided the cave into 4m×4m
blocks, and the high level controller plans paths based on
this grid (Fig. 10). To show the generalization ability, we
generate multiple random cave layouts as shown in Fig. 11.

A. Curriculum Results

The training curves for the two phases of our designed
algorithms are shown in Fig. 12. The left shows the results of
6 curriculum learning on different terrains, during which the
robot learns basic gaits without the use of tactile perception.
Following the first phase, on the right are the results of our
terrain adaptation method (decSAC) trained on 6 terrains
beyond the curriculum learning. It can be observed that
at the beginning of the second phase, due to change in
terrains, the gaits learned in the first phase are not readily
adaptable to the new environment (sudden drop compared
with the end of the left). However, after training, our
algorithm demonstrated performance similar to curriculum
learning on various new terrains. Additionally, we observed
that there is little difference in the final performance between
centralized and decentralized Adaptors (SAC vs decSAC),
thus demonstrating the feasibility of training using MARL.
For the method that does not use tactile information but relies
solely on domain randomization (DR), it can be observed that
learning has performance bottlenecks. Furthermore, we can
see that directly incorporating tactile information as part of
the state space (Tac) yields ineffective results. All the results
are averaged from 10 independent trials.

Analysis of terrain adaptability can be referenced in
TABLE II, where M1-M6 represent the 6 models in the
curriculum training, and T1-T6 correspond to the matching
training terrains for M1-M6. As observed, the diagonal shape



Fig. 12: Training curves: (left) curriculum training phase; (right)
tactile-adaptation phase.

T1 T2 T3 T4 T5 T6 T7 T8
M1 227.8

± 6.1
75.3
± 7.3

59.5
± 5.6

90.6
± 9.0

94.2
± 5.8

76.4
± 4.6

103.2
± 4.6

88.1
± 4.6

M2 124.9
± 7.6

206.3
± 3.8

78.5
± 6.7

84.5
± 4.0

101.2
± 6.4

82.8
± 8.8

62.5
± 6.4

77.8
± 6.4

M3 139.4
± 4.1

64.3
± 5.5

163.0
± 5.4

103.2
± 7.2

96.3
± 6.7

70.4
± 4.4

90.3
± 4.4

82.8
± 4.4

M4 108.6
± 5.7

98.7
± 8.4

59.8
± 7.7

153.0
± 4.0

82.4
± 6.4

96.4
± 5.5

83.1
± 5.5

101.0
± 5.5

M5 72.8
± 6.3

76.5
± 4.5

40.1
± 7.2

78.4
± 4.9

159.1
± 7.0

85.1
± 8.5

43.8
± 8.5

56.6
± 8.5

M6 96.3
± 4.3

83.6
± 6.5

67.4
± 7.0

96.7
± 6.2

71.4
± 5.9

154.8
± 4.1

72.3
± 5.9

89.2
± 5.9

DR 116.3
± 7.2

102.9
± 10.3

73.4
± 6.4

120.2
± 8.2

107.5
± 4.6

140.3
± 5.3

98.9
± 7.0

158.2
± 7.1

Ours 210.5
± 13.3

230.8
± 8.7

101.6
± 8.5

172.6
± 6.7

169.8
± 9.9

152.2
± 4.6

127.4
± 6.7

235.0
± 8.8

TABLE II: Model-terrain generalization analysis (return with stan-
dard deviation).

in the table indicates that M1-M6 only perform well in
their respective training scenarios but are hard to adapt to
untrained environments. T7 and T8 are two entirely new test
environments beyond the two training phases. It can be seen
that neither M1-M6 nor DR can perform well in the new
environments, whereas our approach is capable of extracting
terrain characteristics from tactile information and adopting
adaptive gaits.

B. Cave Navigation Performance

We compared the results of several baselines in navigating
through the five caves (Fig. 11) using RL and the comparison
of their runtime is shown in Fig.13. The action space of
method ”RJ” is the robot’s target joint angles [17], while the
action space of method ”CPG” consists of parameters for the
CPG modules [27]. The ”DR” method introduces Domain
Randomization on top of CPG. The baselines in the figure
did not utilize tactile information. It can be observed that
our method achieved the most efficient navigation results.
We found that similar to the Tac results in Fig. 12, directly
incorporating tactile information into the state space, regard-
less of using RJ, CPG, or DR in the action space, failed to
complete the navigation task within a reasonable timeframe,
and therefore, the results are not depicted in the figure. We
speculate that the reason might be the inherent difficulty
of simultaneously learning both gait and terrain adaptability
from scratch. In contrast, our approach, through curriculum
learning, divides the training into two phases, each focusing
on learning gait and terrain adaptability, respectively. This
approach simplifies the problem by decoupling the two tasks.

The centroid motion trajectory of the robot in one of

Fig. 13: Baseline Comparisons in the 5 test caves

Fig. 14: Center of Mass (CoM) trajectory.

Fig. 15: Tactile-less CPG controller has difficulty traversing the
terrain with sidewinding gait, the robot falls from uphill climbing.

the caves is shown in Fig. 14, and it can be observed that
the centroid motion trajectory closely aligns with the path
planned by the high-level controller. By observing the robot’s
motion at a closer distance, we found that when tactile
information is not utilized, i.e., RL directly determines the
parameters of the CPG module based on the robot’s state,
the terrain adaptability is compromised. As shown in Fig.
15, when the robot uses the sidewinding gait on an uphill
without the slope information, it is prone to turning over.
We provide a detailed demonstration of this comparison in
the supplementary video, showcasing the motion of various
baselines within the caves.

V. CONCLUSION

In this paper, we proposed a novel hierarchical rein-
forcement learning control scheme to address the naviga-
tion problem of snake robots equipped with whole-body
tactile perception in complex terrains. By incorporating
tactile information, snake robots can perceive environment
characteristics and adjust their gaits accordingly to achieve
terrain adaptability. Validation experiments across various
terrains demonstrated superior performance of our approach
compared to traditional RL solutions. Future work will focus
on sim-to-real transfer and conducting validation on real
robot platforms.
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E. Kelasidi, “Path following control of planar snake robots using
virtual holonomic constraints: theory and experiments,” Robotics and
biomimetics, vol. 1, no. 1, pp. 1–15, 2014.

[13] B. A. Elsayed, T. Takemori, M. Tanaka, and F. Matsuno, “Mobile
manipulation using a snake robot in a helical gait,” IEEE/ASME
Transactions on Mechatronics, vol. 27, no. 5, pp. 2600–2611, 2021.

[14] Z. Bing, L. Cheng, K. Huang, M. Zhou, and A. Knoll, “Cpg-based
control of smooth transition for body shape and locomotion speed of a
snake-like robot,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017, pp. 4146–4153.

[15] F. Sanfilippo, Ø. Stavdahl, G. Marafioti, A. A. Transeth, and
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