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Abstract— Metric occupancy maps are widely used in au-
tonomous robot navigation systems. However, when a robot is
deployed in an unseen environment, building an accurate metric
map is time-consuming. Can an autonomous robot directly
navigate in previously unseen environments using coarse maps?
In this work, we propose the Coarse Map Navigator (CMN),
a navigation framework that can perform robot navigation in
unseen environments using different coarse maps. To do so,
CMN addresses two challenges: (1) novel and realistic visual
observations; (2) error and misalignment on coarse maps. To
tackle novel visual observations in unseen environments, CMN
learns a deep perception model that maps the visual input
from various pixel spaces to the local occupancy grid space.
To tackle the error and misalignment on coarse maps, CMN
extends the Bayesian filter and maintains a belief directly on
coarse maps using the predicted local occupancy grids as
observations. Using the latest belief, CMN extracts a global
heuristic vector that guides the planner to find a local navigation
action. Empirical results demonstrate that CMN achieves high
navigation success rates in unseen environments, significantly
outperforming baselines, and is robust to different coarse maps.

I. INTRODUCTION

Autonomous mobile robots have made substantial con-
tributions to modern society in the industrial, service, and
medical fields [1]. On these platforms, the navigation system
plays a particularly important role because it grants mobile
robots the ability to move toward specified goals [2].

In robotics, a typical navigation system requires a global
metric map (e.g., occupancy map [3]) and follows a classic
pipeline that consists of perception, position estimation, and
path planning [4]. Although such a navigation system is
robust and effective, it requires an accurate map beforehand.
For example, a robot vacuum in Figure 1 needs to build
an accurate occupancy map before it can clean the room.
However, building an accurate map is time-consuming and
possibly difficult (e.g., in toxic factories or underground
tunnels [5], [6]). Mapping algorithms may also result in local
minima and errors in the maps, which require expertise to
analyze and correct [5]. Furthermore, accurate maps need to
be frequently updated in dynamic environments.

In this work, we propose the Coarse Map Navigator
(CMN), which navigates without an a priori metric map.
Instead, CMN only requires a coarse representation of the en-
vironment to be provided. The coarse-grid and hand-drawn
maps shown in Figure 1 are two examples of coarse maps.
Such coarse maps are much easier for non-experts to provide.
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Fig. 1. A robot vacuum needs to build a global occupancy map before it
performs the cleaning service. However, it is unable to use coarse represen-
tations (e.g., coarse-grid maps or hand-drawn maps) of the environments.
In this work, we develop CMN, which can use different coarse maps for
robot navigation. Note that the size of a coarse-grid map is much smaller
than that of a metric map (i.e., 20 X 25 vs. 900 x 1000).

However, since the coarse maps are rough representations,
they may contain local errors and global misalignment with
the real world.

Using coarse maps, CMN follows the classic navigation
pipeline with extra modifications. As shown in Figure 2,
given a coarse map of an unseen environment, CMN takes in
visual inputs and outputs a reactive action. To tackle novel
visual observations in unseen environments, CMN learns a
local occupancy predictor using deep neural networks [7],
mapping visual observations to predicted local occupancy
grids. Such a perception model makes CMN generalize well
to novel observations in unseen environments. Using the
predicted local occupancy grids as observations, CMN makes
a simple yet effective modification to the discrete Bayesian
filter [8] and maintains a belief of the robot’s location directly
on the coarse map. The modification makes the filter robust
to errors and misalignment caused by coarse maps. Given
the latest belief from the Bayesian filter, CMN computes a
global heuristic vector using a grid search algorithm (e.g., A*
search). Finally, CMN develops a tree-structured planner to
find a local action that moves the robot in a similar direction
indicated by the global heuristic.

We evaluate the performance of CMN in Habitat [9],
a photo-realistic domain for robot navigation. We design
systematic experiments using two types of maps (coarse-
grid and hand-drawn maps) in three tasks with varying chal-
lenges. Compared with the classic navigation pipeline that
always requires a globally accurate metric map, empirical
results demonstrate the effectiveness and robustness of CMN,
improving the average navigation success rate by 20% —38%
using different coarse-grid maps and by 17% using hand-
drawn maps in previously unseen environments.
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Framework overview. CMN requires a 2-D coarse map I, and a panoramic RGB observation o as input. (1) The local occupancy predictor

predicts the top-down local occupancy grid m: € ) from the panoramic RGB observation (Section IV-B). (2) Using the predicted local occupancy grid as
the observation, CMN estimates the robot’s location on the coarse map using a modified Bayesian filter and outputs a global heuristic vector h¢ (Section
IV-C). (3) Finally, CMN plans a local reactive action a; based on the global heuristic vector hs (Section IV-D).

II. RELATED WORK

Using a global map for robot navigation has been well-
studied in the literature. The global map is a model of
the environment that varies from a complete CAD model
to a simple graph of interconnections or interrelationships
between the objects in the environment [10]. Among the
different map representations, the grid representation [3],
[11], usually known as “occupancy maps”, is widely used in
robot localization [12], [13], [14], [15] and navigation [16],
[17]. However, they usually assume the maps are globally ac-
curate and metrically consistent with the environment. Unlike
these methods, CMN uses coarse maps (e.g., coarse-grid and
hand-drawn maps) that might contain metric inconsistencies
with the environment.

There is much less work on robot navigation without a
metrically consistent map. [18], [19], [20] use topological
representations of the environments, which could be ex-
tracted from provided blueprints or computed from a SLAM
map [21]. However, these topological methods typically still
rely on metric sub-maps for local navigation, which are
collected prior to construction of the topological map. Thus
topological navigation methods cannot be easily adapted
to navigate in new environments given only the graph. In
contrast, CMN navigates using the graph alone, without
needing to first create a metric map of the environment.

Hand-drawn maps have also been used in robot navigation.
However, [6] points out that most of the research [22], [23],
[24], [25], [26] focuses on designing human-robot interaction
systems where hand-drawn sketches are used to generate
human-robot communication signals. Other research such as
[27] aims to evaluate the navigability of hand-drawn maps
using multiple-hypotheses tracking. [28] studies hand-drawn
map interpretation and matching, which still converts the
map into a topological representation. [29] proposes an al-
gorithm to determine the relationship of the objects between
a hand-drawn sketch map and the occupancy grid built by a
robot to facilitate human-robot interaction during navigation.
In summary, those systems involve human operators in-the-
loop, whereas CMN is a fully autonomous navigation system

that can use hand-drawn maps.

Fully autonomous navigation systems using hand-drawn
maps are studied in [6], [30], [31], [32]. [30] proposes an
approach to fit the hand-drawn maps to the local occupancy
obtained from the stereo sensor using the FastSLAM algo-
rithm [33] with particle swarm optimization. Most closely
related to our work is [6] (extending [S] from localization
to navigation), which proposed fitting the local occupancy
to the hand-drawn map. However, the above work assume
having the initial robot location to track the robot’s location.
For CMN, we consider a more challenging setup in which
the initial robot location is unknown. Instead, CMN has to
estimate the robot’s location from a uniform distribution.
Additionally, [6] assumes the existence of a diffeomorphism
between the sketch map and the world. To estimate this, [6]
requires the robot’s location as input. However, we assume
no robot location information is available to CMN.

III. PROBLEM STATEMENT

The problem of visual navigation in unseen environments
can be formulated as a partially observable Markov decision
process (POMDP) [34]. In particular, we call it the env-
POMDRP. In our navigation setup, we assume that the robot is
additionally provided with a 2-D coarse map I,,,. Therefore,
in addition to the env-POMDP, we formulate a related
POMDP, the map-POMDP, that operates on the correspond-
ing 2-D coarse map, with much smaller observation and state
spaces. We argue that the map-POMDP can be used to solve
the navigation task without explicitly solving the original
env-POMDP, which motivates our use of coarse maps.

The env-POMDP, defined in the real world, is a POMDP,
represented as a tuple (S, A, T,R,0,Q,7). S, A, Q are
finite sets of states, actions, and observations, respectively. 7 :
SxAxS — [0,1] is the transition function. O: SxAxO —
[0, 1] is the observation probability. R: S x AxS — R is the
goal-conditioned reward function. + is the discount factor. In
visual navigation, the states s consist of the 2-D location and
the orientation (x,y,6). The observations o are egocentric
images captured at corresponding states s. The actions a are
also egocentric movements.



Similarly, we also define the map-POMDP for the coarse
map, represented as (3 AT RO, Z ,7). We assume that
the map-POMDP is related to the env-POMDP but has
two mismatches. First, the observation space (2 #+ Z) and
likelihood (O # ) are different, resulting in perception mis-
match because the observation z in the unseen environment
is egocentric images, while the observation Z on the map
is top-down local occupancy. Second, states on the coarse
map do not necessarily correspond to states in the unseen
environment, resulting in motion mismatch. For example,
moving one state on the map might correspond to traversing
multiple states in the environment.

We assume the map is coarse such that |S| < |S| and
Q)] < |Q|. Therefore, instead of maintaining a belief Bel(s;)
over S, CMN maintains a belief Bel(3;) over S. To do so,
CMN learns a mapping function F, : Q — Q) that maps
observations from images to local occupancy grids (Section
IV-B). CMN also assumes a stochastic relationship between
A and A (Section IV-C) because the map coarseness is
unknown. To ensure the belief Bel($;) is useful, we assume
that there exists an unknown diffeomorphism between the
map and the real world (Section IV-A), meaning that any
arbitrary robot trajectory in the real world can be described
on the coarse map [6]. Therefore, given the belief Bel (8¢),
CMN derives a policy 7 (h¢|Bel(8;), §4) of the map-POMDP
that is used as the heuristic to generate the policy 7(a¢|he, sg)
of the env-POMDP (Section IV-D), where h; is the heuristic
vector and §, is the goal state on the coarse map.

IV. COARSE MAP NAVIGATOR

CMN consists of three components: (1) a local occupancy
predictor that maps visual observations (images) to local oc-
cupancy grids, (2) a modified Bayesian filter that maintains a
belief over the robot’s locations on the coarse map, and (3) a
tree-structured heuristic planner that plans a reactive action in
the environment based on the heuristic vector computed from
the latest belief. We first explain the assumptions we make
on coarse maps, before describing the CMN components.

A. Assumptions on coarse maps

Using CMN, the robot is provided with a coarse map of an
unseen environment beforehand. In particular, we consider
two types of coarse maps: coarse-grid and hand-drawn
maps. Unlike other methods that use blueprints to generate
topological representations [20], CMN uses the original maps
and treat them as coarse occupancy grids.

We formally define the relationship between the real world
and the coarse map based on the manifold formalism in
[6]. A coarse map is modeled as a 2-D Euclidean space
E,, :== (I, Ryn), where I, is a rasterized image and R, is
the reference frame. Similarly, the real world is also modeled
a 2-D Euclidean space F,, := (I, R,). We assume that
there exists a diffeomorphism F; : I,, € R? — I,, € R?
that transforms the pixels representing the free space between
the two rasterized image representations. The formulation
implies that any robot trajectory in the real world can be
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Fig. 3. Given one example environment in Gibson, (d) shows the top-
down 3-D view. (a) - (c) show the metric map, the coarse-grid map, and
the hand-drawn map, respectively. (e) shows the misalignment between
the metric map and the coarse-grid maps. (f) shows the misalignment
between the metric map and the hand-drawn map. The coarse maps and
the metric maps are manually aligned. Dark gray represents the overlapped
region, whereas light gray represents the mismatched region. There exists a
significant difference between the coarse maps and the metric maps. (The
color scheme is changed to highlight the map differences.)

represented on the coarse map using the diffeomorphism
operator Fy. For the full formulation, please see [6], [5].
We only use the formulation to define the map-
environment relationship. However, unlike [6], we do not
estimate the unknown diffeomorphism operator F,; because
such estimation requires the robot’s location, which we
assume is unavailable to CMN. To obtain a coarse-grid
map, we downsample the real environment into a coarse
occupancy grid, where each grid cell is considered occupied
if the occupancy rate is above a threshold. The hand-drawn
maps are drawn by a human operator. Figure 3 shows an
example of a coarse-grid map and a hand-drawn map.

B. Predicting the local occupancy from visual observations

__Given a coarse map image [,,, CMN maintains a belief
Bel(8) over the states S on it. Therefore, we first need to
map the environment observation space € to the coarse map
observation space ). Furthermore, it is also important that
CMN can quickly generalize to novel observations in unseen
environments. To this end, we train a deep perception model
that predicts local occupancy grids from visual observations
(Figure 4), which we call the local occupancy predictor.

As shown in Figure 2, the local occupancy predictor takes
in a panoramic observation o; consisting of 4 RGB images
and outputs an n X n local occupancy grid ;. Formally, the
local occupancy map predictor defines a mapping function
Fyp: Q= ). We model F as a deep neural network param-
eterized by . Similar to [35], the local occupancy predictor
adopts a deep convolutional autoencoder architecture and is
extended to tackle panoramic image observations.

To train the local occupancy predictor, we built an offline
dataset {(0;,m;)}Y, that contains pairwise training data,
where o; is the panoramic observation and m; is the corre-
sponding ground truth local occupancy. Using the pairwise
data (o0;,m;), we train the local occupancy predictor by
minimizing the mean squared error between the predicted
local occupancy 7; and the ground truth m; using stochastic
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Fig. 4. Given a panoramic RGB observation, the deep perception model
makes a good local occupancy prediction. F, L, B, and R stands for the
front view, left view, back view, and right view, respectively.

gradient descent. We implement our method in PyTorch. We
use Adam [36] with L2 regularization (weight decay = 10~7)
and set the learning rate = 10~%, We re-scale the pixel value
of the RGB observations from [0, 255] to [0, 1] and use binary
cross-entropy loss. We train the local occupancy predictor
with 4 random seeds. For each seed, we randomly split the
navigation dataset into training, validation, and test sets.

C. Localizing the robot on the coarse map

Using the predicted local occupancy as the observation,
CMN needs to estimate the robot’s location on the coarse
map. Importantly, we directly treat the original coarse map
as a discrete occupancy grid. Defined in Section IV-A, the
coarse map is a different representation of the real world
with an unknown diffeomorphism operator F,;. However,
CMN does not estimate the diffeomorphism operator due to
the lack of the robot’s positional information. Instead, CMN
makes a simple modification to a discrete Bayesian filter
[37] to localize the robot on the coarse map. In particular,
we argue that the predicted local occupancy m contains rich
information to correct errors during the belief update.

First, the coarse map image is converted into a binary
occupancy grid where each pixel corresponds to one grid
cell with value 1 if occupied, and 0 if empty. Given this
binary occupancy grid, we assume that the robot’s initial
location is unknown but that the goal is marked on the grid.
Therefore, CMN starts with a uniform belief Bel($y) over
the entire state space § € S on the grid/map. Suppose the
belief is Bel(s;) at time step ¢, the robot takes action a; and
observes 0,41 in the real world. We explain the modified
Bayesian filtering on the coarse map as follows.

Computing the predictive belief with a “noisy” transi-
tion update: We assume the robot’s motion is deterministic
in the real world. Specifically, the transition probability
p(s’|s,a) is 1, if s’ is the resulting state after the robot
takes a at state s, and 0 otherwise. Therefore, if the map is
strictly aligned with the real world (i.e., S = 3), updating the
predictive belief on the map is easy. However, when the map
is coarse (|S| < |S|), there exists an unknown relationship
between the predictive belief update on the coarse map and
the motion of the robot in the real world. Intuitively, one state
5 on the coarse map corresponds to a region in the real world
of unknown size. In other words, the robot might remain in
the same state on the coarse map even though it moves across

several states in the real world. To tackle this issue, CMN
proposes a “noisy” transition update. Specifically, when the
robot takes an action a in the real world, we assume the robot
will move to the next deterministic state §' on the map with
probability p and remain in the same state S with probability
1—p. Therefore, CMN performs the following “soft” update:
Bel (3141 =8)=p-Bel(3, =8)+ (1 —p)- Bel(3, =§)

1
Instead of using a fixed p, CMN randomly samples p from
a uniform distribution between [0, 1] because p is unknown
and varies in different coarse maps. The randomly sampled
p can be considered as an inductive bias representing how
likely the robot remains in the same grid cell on the coarse
map after taking one forward action in the real world. Thus,
we call the update in Equation 1 a “noisy” transition update.

Correcting the predictive belief with an estimated mea-
surement model: Although the predictive belief Bel (8¢41)
is noisy, it roughly estimates the robot’s motion. Fur-
thermore, the predicted local occupancy grid /m contains
rich information to correct the belief. Therefore, the noisy
predictive belief Bel (8¢11) can be corrected using the
measurement model. The measurement model on the map is
defined as p(m¢41|8¢41, Gr), Where myyq is the observation
of §;,1 after taking a,. Specifically, m € Q) is an n x n local
occupancy grid on the map. However, the robot observes a
panoramic RGB observation 0;4; in the real world rather
than the local occupancy grid my; on the map. Thus,
the local occupancy predictor from Section IV-B is used
to predict the local occupancy grid i1 = Fy(0p41).
Finally, we propose a measurement model proportional to
a normalized similarity score between M, and my41:

n2

. . . F -
p(mt+1|5t+1;at) o (1 o | ¢(0t+1) mt+1> )

Note that the scale mapping between coarse map and en-
vironment is not explicitly considered, though it is learned
by the local occupancy predictor (implicitly via the training
data); addressing this is future work. Using the estimated
measurement model, we can correct the predictive belief:

Bel(3i11) o p(mes1|si41,ae) Bel (541)  (3)
D. Planning a local action using the global heuristic

Given the latest belief, we first use it to extract a global
heuristic that indicates a rough direction toward the goal.
The state § with the highest probability is selected to be
the location estimate (ties are broken randomly). Next, the
A* search algorithm [38] is applied to find the shortest path
L = {§,51,...,8,} between the location estimate § and the
goal 3,. Using the first two states 5, 3; € L, the heuristic is
computed as h = §; — § and is normalized as a unit vector.

Given the heuristic vector h, we propose a tree-structured
planner. The key idea is to select the action that moves the
agent in a similar direction indicated by A in the real world.
Specifically, we build a k-step lookahead tree where the k-th



layer is expanded by applying each action in the action space
for each node in the (k—1)-th layer. Consider a planner with
k steps, it results in a search tree with |A|* leaf nodes. For
each leaf node, we can compute a normalized directional
vector. Next, we compute the cosine similarity between each
leaf directional vector and the heuristic vector. We select
the leaf node with the maximal cosine similarity and then
traverse to the root node. The immediate action after the
root node is selected as the best action to execute. Since all
the leaf directional vectors can be computed relatively, CMN
does not require any absolute robot’s location as input.

V. EXPERIMENTS

To systematically demonstrate the effectiveness of CMN,
we evaluate it on a simulated indoor visual navigation
task using both coarse-grid and hand-drawn maps. In each
navigation trial, the robot is initialized at a random unknown
location in an environment it has not encountered before. The
robot is given a map of the environment, either coarse-grid
or hand-drawn, with the goal marked on it. The robot is
tasked with navigating to the goal location using egocentric
visual observations, its orientation, and the provided coarse
map. We define three tasks with increasing challenges by
changing the provided map types and sensor inputs.

Table I shows a summary of the evaluated navigation tasks.
We evaluate most extensively on Task CI (Coarse-grid map
with Image observations), where a coarse-grid map is auto-
matically generated from the simulator, and egocentric visual
observations are provided to the robot. We also evaluate on
a smaller set of hand-drawn maps in Task HD (Hand-Drawn
maps). Finally, to isolate the effect of perception, we consider
Task CG (Coarse-grid map with Grid observations), where
we directly provide the true local occupancy from the coarse
map surrounding the robot, instead of visual observations. In
this case, we skip the perception step from Section IV-B and
directly use the provided local occupancy instead.

TABLE I
TASK VARIANTS AND CHALLENGES INVOLVED
Task CG | Task CI | Task HD
Coarse-grid map v V4

Hand-drawn map vV

Local grid observations v
Image observations Vv Vv
Location uncertainty VA VA VA
Motion uncertainty Vv Vv Vv
Observation uncertainty Vv Vv
Non-uniform scale (MPP) vV

A. Simluation environment

Habitat [9] is a photo-realistic simulator for embodied
agent navigation. In Habitat, each environment is recon-
structed using the RGB images captured from real houses.
Habitat can seamlessly integrate different datasets to generate
visually rich 3-D environments for indoor navigation. In this
work, we use the environments from the Gibson [39] dataset,
which contains 45 houses with different sizes and interior
appearances. We randomly sample 33 houses to construct
the offline dataset to train the deep perception model and

hold out 9 unseen environments for navigation evaluation.
Note that the collected offline dataset is exclusively used for
training the local-occupancy predictor (Section IV-B), with
no navigation-related training involved.

Obtaining coarse maps: Each Habitat environment has a
pre-built metric occupancy map. To obtain coarse-grid maps,
we downsample the metric occupancy maps using Habitat’s
built-in functions. The coarseness of the maps is controlled
by the Meters Per Pixel (MPP) parameter. In this work,
we examine MPP = 0.3, 0.4, and 0.5. MPP > 0.5 causes
excessive distortion and are not usable. For example, MPP
= 0.3 means one pixel on the map represents a 0.3 x 0.3 m?
region in the real environment. To generate hand-drawn
coarse maps, a human operator observes the top-down 3-D
views of the environments and draws the maps.

Local observations: We consider two types of local obser-
vations: (1) Grid observation: 3 X 3 occupancy grid cropped
from the map, and (2) Image observation: 4 x 80 x 80 x 3
RGB images captured from the four directions (front, back,
left, right), forming a panoramic view.

Robot actions: The robot has three available ac-
tions: {move_forward, turn_left, turn._right}.
move_forward advances the robot by 0.15 m. The turning
actions will turn the robot 90° in the respective directions.

Navigation episode: Each navigation episode has a max-
imum horizon of 500 time steps. An episode will terminate
automatically if the distance between the robot and the goal
location is smaller than a threshold value (success) or it
reaches the maximal time horizon (failure).

B. Evaluation metrics

To measure CMN’s performance, we use the mean Success
Rate (SR) and the mean Success rate weighted by Path
Length (SPL) [40] as evaluation metrics. We sample N = 50
episodes with arbitrary start and goal locations in each test
environment. The mean SR is defined as ZNSQ where S;
equals to 1 if the ¢-th episode is successful and O otherwise.
The mean SPL is defined as 4 vazl Sim, where [;
is the length of the shortest path distance and p; is the length
of the actual path taken by the agent in the i-th episode. We
report the final results by averaging the mean SR and mean

SPL over all test environments.

C. Compared approaches

We compare our approach, Coarse Map Navigator (CMN),
against two baselines. The first method, Monte-Carlo Scale
Estimation (MCSE), is based on the approach in [5], [6],
where a particle filter is used to estimate the scale of
local deformations in the coarse map. This estimate informs
the transition probabilities and the observation model. The
second method, Rescaled Map Navigator (RMN), scales the
coarse map to the size of the true environment, assuming that
this scale is provided. The resulting rescaled map is similar
in dimension to a classical metric map, but the features may
be less smooth and rougher due to the coarsening operator.
The scale parameter (i.e., MPP) is not typically available, but
we provide this privileged information to RMN only. We use



TABLE 11
TASK CI: COARSE-GRID MAPS WITH IMAGE OBSERVATIONS

MPP = 0.3 MPP = 0.4 MPP = 0.5
Method SR SPL SR SPL SR SPL
RND 10.7% 9.5% 10.7% 9.5% 10.7% 9.5%
RMN 53.3% 45.8% 54.1% 11.4% 49.3% 11.3%
MCSE 78.9% 28.4% 76.9% 28.8% | 70.0%  30.4%
CMN 91.6% 50.7% | 87.8% 51.2% | 70.0% 37.7%
TABLE III
TASK CG: COARSE-GRID MAPS WITH GRID OBSERVATIONS
MPP = 0.3 MPP = 0.4 MPP = 0.5
Method SR SPL SR SPL SR SPL
RMN 70.4% 33.4% 63.0% 29.1% 57.8% 26.2%
CMN 94.7% 58.0% | 95.7% 57.3% | 83.8% 51.9%

RMN to illustrate how a standard navigation pipeline using
a metric map may behave when using a coarse map instead.

To our knowledge, there is no visual navigation method
that takes in visual observations and outputs a coarse local
occupancy grid, so all the compared methods use our pro-
posed local occupancy predictor (except in Task CG). Ad-
ditionally, for fairness and ease of comparison, all compared
approaches use the same planner as CMN.

Finally, we also include a Random policy (RND) to show
that the evaluated navigation tasks are non-trivial.

D. Results

Table II shows that CMN outperforms RMN by a signif-
icant margin across various MPP scales, demonstrating the
effectiveness of our proposed framework. We hypothesize
that CMN variants are better because of two reasons. (1) No
scaling: The coarse maps already contain some inaccuracies,
so scaling them up for RMN might further amplify these
inaccuracies. (2) Smaller belief space: Although coarse maps
are rough, they shrink the size of the belief space over
potential robot locations.

Somewhat surprisingly, MCSE also performs worse than
CMN, even though MCSE attempts to estimate the local
scale parameter, whereas CMN essentially samples the scale
at random (in the “noisy” transition update). We hypothesize
that the local scale may actually be quite difficult to estimate
accurately, especially when using visual observations. MCSE
was only previously evaluated on laser rangefinder data,
which may be more appropriate for scale estimation.

Overall, CMN is also significantly better in SPL, indicat-
ing that not only does it achieve greater navigation success,
it does so more efficiently compared to other methods.

Table IIT shows the performance when image observations
are replaced with the true local coarse occupancy grid,
thereby removing the perception (local occupancy predic-
tion) component. The task becomes significantly easier and
CMN is able to achieve high success rates. Although RMN
performance also improves significantly, the gap is still large
compared to CMN, suggesting that simply rescaling the
coarse map is not an adequate approach, even if the scale
(MPP) was known and perceptual ambiguity was removed.

Finally, we consider a more realistic setup in Task HD,
where coarse maps are drawn by non-expert human beings.

TABLE IV
TASK HD: HAND-DRAWN MAPS WITH IMAGE OBSERVATIONS

Method | SR SPL
RMN 58.5% 23.8%
CMN 75.6% 36.5%

iy iy iy
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Fig. 5. Visualization of trajectories for CMN (top row) using different
coarse maps (bottom row). Column (a) shows the top-down view and the
ground-truth metric map of one environment. Columns (b) — (d) show the
trajectories of the robot using coarse-grid maps with MPP = 0.3,0.4,0.5
respectively (input coarse maps shown in bottom row). Column (e) shows
the trajectory of the robot using a hand-drawn map.

|

A human operator draws the coarse map by observing a
3-D top-down view of an environment. The hand-drawn
maps are different from the coarse-grid maps because they
introduce scale inconsistency. For RMN, we still resize the
hand-drawn occupancy maps to the ground-truth size; for
CMN, we directly use the provided hand-drawn maps (e.g.,
as a scanned image). CMN still achieves 75.6% navigation
success rate using hand-drawn maps (see Table IV).

Figure 5 shows an example of CMN navigating using
various types of coarse maps. Please see the accompanying
video for more examples.

VI. CONCLUSION

In this work, we propose CMN, a fully autonomous
navigation system that can use different coarse maps and
visual input to perform robot navigation in previously un-
seen environments. In CMN, the proposed local occupancy
predictor makes reliable predictions from visual inputs and
facilitates quick generalization to new environments. Us-
ing predicted local occupancy grids as observations, the
modified Bayesian filter enables CMN to tackle errors and
misalignment between the coarse map and the real world.
We demonstrate the performance of CMN through systematic
experiments, which provide empirical insight into CMN.

In the future, we will consider several extensions to CMN.
For perception, we will reduce the number of required
cameras and use just the forward-facing camera as visual
input, which requires improvements to the local occupancy
predictor. We will also consider more challenging coarse and
incomplete maps. For instance, coarse maps that only contain
walls, but not furniture, will require a more sophisticated
belief model to tackle the increasing localization difficulty
caused by the missing furniture information. Finally, since
indoor environments are usually dynamic and populated by
humans, we envision extending CMN to social navigation.
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