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ABSTRACT

We study the problem of binding actions to objects in object-factored world mod-
els using action-attention mechanisms. We propose two attention mechanisms
for binding actions to objects, soft attention and hard attention, which we eval-
uate in the context of structured world models for five environments. Our ex-
periments show that hard attention helps contrastively-trained structured world
models to learn to separate individual objects in an object-based grid-world en-
vironment. Further, we show that soft attention increases performance of fac-
tored world models trained on a robotic manipulation task. The learned ac-
tion attention weights can be used to interpret the factored world model as the
attention focuses on the manipulated object in the environment. Source code:
https://github.com/ondrejba/action attention iclr 22.

1 INTRODUCTION

Reinforcement learning agents often operate in domains that contain multiple objects, such as
robotic manipulation (e.g. Janner et al. (2019); Li et al. (2020)) or game playing (e.g. Bellemare
et al. (2013); Guss et al. (2019)). An action performed by an agent in an object-based environment is
unlikely to affect all objects at once. A household robot might pick up a single object or push several
objects, but it will not move all objects in a room at once. In Atari Pong, the agent only controls
the paddle while the other two objects–the ball and the other player–are not directly influenced by
actions. The sparsity of interactions between actions and objects is a useful inductive bias for an
agent’s world model.

We implement a learned binding of an action to objects, which is constrained to be sparse. The spar-
sity is enforced by an attention mechanism over objects, with individual weights being constrained
to sum to one using the softmax operator. Prior work considered structured action spaces in world
models for grid-worlds with objects (Kipf et al., 2020), a Tetris-like block stacking task (Janner
et al., 2019; Veerapaneni et al., 2019) and in model-free learning for 2D construction from blocks
(Bapst et al., 2019). Unlike our work, the binding of an action to a particular object, or an edge
between objects in a graph, was hand-coded, without any learning. Goyal et al. (2021) proposed
an attention mechanism for binding production rules (Lovett & R. Anderson, 2005), which include
information about action selection, to slots in a structured model.

We propose two different attention mechanisms and test them in object-based grid worlds, two
Atari games and a simulated robotic manipulation task. Firstly, we work with contrastively-learned
structured world models (C-SWMs, Kipf et al. (2020)) that jointly learn to factor states and predict
the dynamics of the environment. This class of models often requires a strong bias in order to learn
to properly distinguish objects without explicit supervision. To this end, we encode the bias that
an action affects exactly one object using a categorical random variable. We call this approach
hard attention, drawing on computer vision literature (Sharma et al., 2015). Secondly, we test our
idea in a realistic robotic manipulation domain, where the individual states are already factored into
object and our task is to learn factored world models (FWMs, Biza et al. (2022)). Here, the robot
is tasked with building towers from blocks; all blocks in a tower might potentially be affected by a
robot’s action. Hence, the categorical action binding bias is too restrictive. Instead, we propose a
soft attention module, which transforms and weights actions for each object based on their predicted
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impact on said object. It is based on single-head self-attention (Vaswani et al., 2017). We limit our
exploration of action binding to C-SWMs and FWMs; see Battaglia et al. (2018); Greff et al. (2020)
for a review of other structured model architectures.

Our results indicate two positive outcomes and one negative outcome. When each object can be
individually affected by an action, hard action attention proves an excellent inductive bias for learn-
ing to factor states. Conversely, when some objects are not directly affected by actions, neither soft
nor hard action attention makes a difference. Finally, we show that soft attention can lead to large
improvements in a pick-and-place robotic manipulation task.

In summary, our main contributions are:
#1: We propose two novel attention modules over actions, soft and hard attention, that improve the
ability of structured models to factor states and to predict transition dynamics.
#2: We identify the phenomenon wherein a structured world model captures highly correlated in-
formation in all its available slots. This happens in Atari Pong and Space Invaders, where only the
player-controlled paddle or spaceship is directly affected by actions.

2 PRELIMINARIES: STRUCTURED AND FACTORED WORLD MODELS

World models are trained to make predictions about the state of an environment s0 after applying
a sequence of actions a1, a2, ... aT . It is commonly assumed that the state is represented as an
image and the transition dynamics are deterministic. We make no assumptions about the action
space. World models used in this paper learn a latent space without image reconstruction. That is,
the model encodes s0 into a latent encoding z0 and predicts the future z1:T based on a1:T .

Structured world models encode an image s into a latent state composed of K slots z1:K , each
represented as a feature vector. The model learns to assign objects in s to individual slots (i.e. to
factor the scene) without any direct supervision. We use the contrastively-trained structured world
model (C-SWM, Kipf et al. (2020))–it learns structured embeddings using a convolutional encoder
Eϕ and predicts the effects of actions using a graph neural network (GNN) Tθ (Gori et al., 2005).
The GNN uses a fnode and an edge network fedge to compute the next latent state of the kth object:

ẑt+1
k = ztk + Tθ(z

t, at)k = ztk + fnode

(
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The model is trained by contrastive learning using the following loss:
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The negative example z̄ is an encoding of a state randomly sampled form the training set and γ is
a hyper-parameter. Intuitively, the negative term in the loss states that a pair of randomly sampled
states should be at least γ apart in the embedding space. This prevents the model from converging
to a trivial solution.

We use factored world models to refer to world models that operate over factored states. That
is, they learn to model the transition dynamics of individual factors without having to learn to
discover factors. Biza et al. (2022) proposed a factored world model for pick-and-place robotic
manipulation tasks. The model receives a factored state s1:K composed of images of the K ob-
ject present in a scene. Each state factor is individually encoded into a latent factor: z1:K =
⟨fenc(s1), fenc(s2), ..., fenc(sK)⟩. The transition model and the training loss follow C-SWM with
the exception of two design decisions in the transition model. (1) several layers of GNNs are used
and skip connections are added in between layers and (2) the action is provided not only to the node
network fnode but also to the edge network fedge. We experiment with different numbers of GNN
layers, but omit the edge actions.

3 BINDING ACTIONS TO OBJECTS

In this section, we describe two attention mechanisms that bind actions to object slots. In both cases,
we start with a factored latent state z1:K , which is an output of an encoder of either C-SWM or
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FWM. We want to compare the individual factors to the action in order to determine which slots are
affected. First, we transform individual factors into key vectors, k = ⟨jk(z1), jk(z2), ..., jk(zK)⟩,
and the action into a query vector q = jq(a). Both jk and jq are Multi-Layer Perceptrons. The keys
and queries are used to compute attention weights α over object slots 1 to K for action a:

α = softmax(kT1 q, k
T
2 q, ..., k

T
Kq). (3)

It is important to note that in both the hard and soft attention modules described below, the attention
weights end up transforming the action that is given to the node network of the GNN transition
model. For the kth object slot, instead of computing fnode(zk, a, ...) we will use fnode(zk, a

′
k, ...),

where a′k is an action constructed specifically for the kth object slot.

Hard attention: We define a categorical variable M that represents the membership of an action to
a particular factor:

M ∼ Categorical(α1, α2, ..., αK). (4)
This random variable only plays a role when predicting the transitions and computing the positive
term of the contrastive loss (the negative term only depends on the current encoded state). During
training, we compute the expectation of M via summation over all of its possible assignments (same
as the number of object slots / factors). During inference, we take the assignment with the highest
probability. The random variable is used as follows:

ẑt+1
k = ztk + Tθ(z

t, pad(at,m))k | M = m, (5)

with the pad(at,m) operator assigning action at to the mth slot and zeros to all other slots. Finally,
the positive term of the contrastive loss function is computed as follows:
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Soft attention: Unlike hard attention, soft attention weights individual actions provided to slots by
attention weights without defining a probabilistic model. We follow the single-head self-attention
module from the Transformer (Vaswani et al., 2017). The action a is first transformed into a value
vector v = jv(a). Then, the value vector is multiplied by the previously computed attention weights
for each factor: a′ = ⟨α1v, α2v, ..., αKv⟩. We then pass the (newly) factored action a′ into the
transition model. Note the individual factors in the action are all equal up to a multiplicative factor.
Table 2 in the Appendix visualizes α in a robotic pick-and-place task.

4 EXPERIMENTS

We aim to answer the following questions:

1. Does hard attention help C-SWM factor environments where each object can be independently
affected by an action (2D Shapes and 3D Cubes)?

2. Does the same apply when some objects are only indirectly (or not at all) affected by actions
(Atari Pong and Space Invaders)?

3. Does soft attention increase the performance of factored world models in robotic manipulation?

4.1 ENVIRONMENTS

We use two grid-world (2D Shapes and 3D Cubes) and two Atari environments (Atari Pong
and Space Inveders) from Kipf et al. (2020) and a robotic manipulation environment from Biza et al.
(2022). We make changes to 2D Shapes and 3D Cubes in order to better study the effect of
action attention. We describe each environment below.

• 2D Shapes and 3D Cubes: In both environments, five objects of different shapes and colors
are placed in a 5×5 grid-world. Each object can be moved independently and the objects are
not allowed to pass through each other. Crucially, Kipf et al. (2020) represented actions as a
pair of object index and direction of movement. As the action space was factored by design, C-
SWM could use this information to make state factorization easier. We change the action space to
represent object position and direction of movement. Hence, the model does not know the index
of the object being moved, making state factorization more challenging.
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Table 1: Results for 2D grid-world Shapes and 3D grid-world Cubes with unfactored states and
actions (different from Kipf et al. (2020), where actions are factored) as well as Atari Pong and Space
Invader datasets from Biza et al. (2021). We report means and standard deviations for Hits@1 and
Mean Reciprocal Rank for 1, 5 and 10 step predictions. Each model was run 20 times in Shapes
and Cubes, and 4 times in Atari. The results for Atari differ from Biza et al. (2021) because we
use 1k instead of a 100 negative states during evaluation, making the task harder. Additionally, we
report correlation between individual slots of C-SWM.

1 Step 5 Steps 10 Steps Slot

Model H@1 MRR H@1 MRR H@1 MRR Correl.

2D
GRID

SHAPES C-SWM 28.7±2.6 42.9±2.6 3.7±0.8 10.9±1.6 1.5±0.4 5.4±1.0 1.00±0.00

Soft Attention 30.9±2.9 45.7±2.6 4.3±0.8 12.5±1.5 1.7±0.4 6.3±1.0 1.00±0.00

Hard Attention 98.7±5.3 99.1±3.6 95.5±16.9 96.3±14.5 93.4±20.5 94.3±18.7 0.08±0.08

3D
GRID

CUBES C-SWM 32.0±3.4 46.3±3.1 4.8±1.2 13.3±2.1 2.0±0.5 7.0±1.4 1.00±0.00

Soft Attention 40.8±12.1 54.5±10.6 9.0±6.3 20.0±8.4 4.0±2.9 11.3±5.1 0.99±0.02

Hard Attention 97.3±5.9 98.3±3.9 88.8±18.2 91.6±14.3 79.2±24.5 83.3±20.8 0.21±0.18

ATA
RI

PONG
C-SWM 93.2±1.1 96.3±0.6 36.3±3.8 49.5±3.8 11.2±2.4 19.5±1.8 0.84±0.11

Soft Attention 93.8±0.8 96.6±0.4 26.1±6.3 38.5±6.5 7.3±4.3 13.0±5.6 0.87±0.10

Hard Attention 92.9±0.2 96.2±0.1 28.3±7.1 41.9±6.9 9.6±3.6 16.8±4.7 0.85±0.10

ATA
RI

SPA
CE C-SWM 97.1±0.2 98.5±0.1 86.0±0.9 91.7±0.5 74.9±1.7 83.4±1.0 0.82±0.13

Soft Attention 96.7±0.6 98.3±0.3 86.2±0.8 91.7±0.5 76.2±0.7 84.0±0.3 0.67±0.05

Hard Attention 96.8±0.7 98.3±0.3 84.0±1.3 90.2±0.8 73.9±2.0 82.3±1.2 0.80±0.13

• Atari Pong and Space Invaders: C-SWM is trained and tested on modeling short action se-
quences (10 timesteps) in these two games. We use the approach from Biza et al. (2021), where a
trained agent acts for a random number of steps to reach an interesting starting state from which
a random policy is rolled out. The collected datasets contain only the random rollouts so that the
agent experiences both good and bad actions.

• Robotic Pick-and-Place: A simulated UR5 robotic arm manipulates six cubes. The action space
is the continuous space of (x, y) coordinates, where a pre-programmed pick or place action
is executed. The environment is observed by two side-viewing RGB cameras and additional two
RGB cameras capture the content of the robot’s hand. These observations are post-processed to
extract individual objects and their bounding boxes to capture each object independently (i.e. a
factored state space). The training task is to make a tower of four cubes; the model is then expected
to transfer to four testing tasks–wall, stairs, two towers of three and three towers of two–without
additional training.

4.2 SHAPES, CUBES AND ATARI GAMES

Setup: The C-SWMs are evaluated on their ability to predict future latent states in an evaluation
dataset using ranking metrics (Hits@1 and MRR, see Appendix A.1). These metrics check if the
predicted latent state is closer to the encoding of the true next state compared to a set of negative
states. Intuitively, we both test the ability of the model to predict the future and the ability of the
encoder to distinguish between states.

Result: Ranking scores are reported in Table 1. We would like to highlight the performance of
hard action attention in 2D Shapes and 3D Cubes. In these environments, baseline C-SWM
fails because the action space is not factored per individual object. In contrast, C-SWM with hard
attention encodes the correct inductive bias and learns to assign individual objects to separate slots
in most cases.

We do not see the same increase in performance in Atari games: baseline C-SWM, soft attention
and hard attention achieve comparable results. To explain this result, we introduce a new metric
to measure the correlation between individual slots. If all slots capture the same information given
a single input state, the correlation coefficient is going to be 1 (please see Appendix A.1). We
see that successful models in 2D Shapes and 3D Cubes have a low slot correlation, as each
individual object should be represented by a different slot. Conversely, all models in Atari (as well
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Figure 1: Zero-shot transfer results in block position prediction error (left, the lower the better) and
action action sequence ranking (middle, the higher the better) in a UR5 pick-and-place environment
with six cubes (right). We average over four random seeds and shade the 95% confidence interval.

as failed models in 2D Shapes and 3D Cubes) have high correlation between slots. We show
one example of this phenomenon in Figure 2 in the Appendix where the latent space of all slots is
nearly identical (the first slot seems to be flipped, but follows the same pattern).

The correlation metric results suggest that C-SWM has no need for more than one slot in Atari
games. This is supported by the original results from Kipf et al. (2020). We hypothesize that since
the action often affects only one object (the paddle in Pong and the spaceship in Space Invaders),
there is not enough information to guide C-SWM to factor objects not directly affected by the action.

4.3 ROBOTIC PICK-AND-PLACE

Setup: We replicate the experiment from Biza et al. (2022), where a UR5 robotic arm picks and
places six cubes. A dataset of expert demonstrations is available for the training task and the model
is evaluated on its ability to predict the block positions and rank action sequences in expert demon-
strations of the zero-shot transfer tasks. The block position prediction metric measures if ground-
truth information about the positions of all blocks can be decoded from the learned latent space. The
action ranking metric measures if the model can distinguish action sequences that successfully solve
a task from perturbed action sequences that do not. See Appendix A.1 for additional information.

Result: Factored world models with soft action attention outperform the baseline models when the
number of GNN layers is set to one or two (Figure 1). As the number of layers increases to three
and four, the performance of the two models converges. The attention weights predicted by Soft
Attention for a model with one graph neural network layer are shown in Table 2 in the Appendix.
The model correctly identifies which object is being manipulated. Additionally, the model pays
attention to where a particular cube is being placed. When building a tower, the cubes below the
placed object also receive the information about the place action with a low (but non-zero) weight.
We believe this behavior emerged because placement of a cube can often move the cubes below.

Furthermore, we hypothesize that the diminishing benefit of soft attention as we add more GNN
layers can be explained by the increasing capacity of the model. A single GNN layer can benefit
from the pre-computed information about which object will be affected. On the other hand, a stack
of four GNN layers receives the information about the action at each layer, making it easier to
distinguish affected and unaffected objects within the transition model.

5 CONCLUSION

We propose two attention mechanisms for binding actions to objects, soft attention and hard atten-
tion, and validate them on the task of learning structured world models in five environments. As one
of our reviewers pointed out, ”there seems to be a dilemma between soft and hard attention – the soft
attention is more expressive, however, it also under-performs hard attention in some experiments.”
We view this trade-off from the perspective of expressiveness versus bias. Hard attention provides
a strong bias (that all actions move exactly one object), which allows C-SWM to converge to the
right solution in the grid-world environments. Conversely, soft attention is more flexible in pro-
viding information about the action to several objects. This construction fits our simulated robotic
manipulation task, where several cubes might move at once when they are being stacked.

5



Published at the ICLR 2022 workshop on Objects, Structure and Causality

ACKNOWLEDGEMENTS

This work is supported in part by NSF 1724257, NSF 1724191, NSF 1763878, NSF 1750649, NSF
1835309, NSF 2107256 and NASA 80NSSC19K1474.

REFERENCES

Victor Bapst, Alvaro Sanchez-Gonzalez, Carl Doersch, Kimberly L. Stachenfeld, Pushmeet Kohli,
Peter W. Battaglia, and Jessica B. Hamrick. Structured agents for physical construction. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, vol-
ume 97 of Proceedings of Machine Learning Research, pp. 464–474. PMLR, 2019.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinı́cius Flores
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
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State:

Slot 1:

Slot 2:

Slot 3:

Figure 2: Visualization of encoded states for a single episode of Atari Pong. Each state is encoded
into a latent state with three slots, and we color encodings from blue to purple as the time progresses.

A APPENDIX

A.1 EVALUATION METRICS

C-SWM Hits@1 and Mean Reciprocal Rank: We follow the evaluation setup from Kipf et al.
(2020). An evaluation dataset of episodes of length 10 is collected. The agent’s encoder is used
to encode all states in the evaluation dataset into latent states. Then the agent predict the next
latent state t = 1, t = 5 or t = 10 steps into the future given a sequences of 1, 5 or 10 actions
respectively. The predicted latent state is then compared to the actual encoded state at timestep t
(the positive example) and to all states at timestep t from other episodes (the negative example). The
Hits@1 metric simply counts the fraction of times the predicted latent state was closer to the positive
example than to all other negative examples. The Mean Reciprocal Rank (MRR) metric computes

1

|D|

|D|∑
n=1

1

rankn
, (7)

where D is the evaluation dataset and rankn is the index of the positive examples in the sorted list
of distances between the predicted latent state and the set of the positive and all negative examples.

The original evaluation code does not always handle duplicate states in different episodes well. It is
assumed that two identical images will be encoded into the same latent state (i.e. all float32 values
will be exactly equal), but this does not happen in practice even when pytorch is set to a deterministic
mode. Duplicate states are infrequent in 2D Shapes and 3D Cubes, but fairly common in Atari.
In the Atari experiments, we check for duplicate states and remove negative states that are identical
to a particular positive state.

Slot Correlation: we compute the absolute value of the Pearson correlation coefficient between
every pair of object slots. This value is averaged over all pairs of object slots and over all states
in the evaluation set. The resulting value is bounded between zero and one, where zero means no
correlation between slots and one means that all slots capture the same information.

FWM Block Position RMSE and Action Sequence Hits@1: We use the same metrics as Biza
et al. (2022). To the block position prediction, we train a Multi-Layer Perceptron to predict the
spatial (x, y, z) position of each block from the latent space of FWMs. Only the MLP is trained,
all other weights are frozen. Then, we compute the root mean squared error between the actual and
predicted block positions. The dataset used in this evaluation is the dataset of expert demonstrations
for the four zero-shot transfer tasks.

In action sequence ranking, we generate one correct and ten incorrect trajectories for each zero-
shot transfer task. We also provide the model with an example of a goal state. The model encodes
the goal state and predicts the resulting latent state of all eleven action sequences. If the predicted
result for the correct trajectory is the closest to the encoded goal state, the prediction of the model is
considered correct. Hits@1 once again measures the fraction of correct predictions.
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Task State sequences and attention weights
Init Pick Place Pick Place Pick Place Pick Place Pick Place

Wall

Stairs

2 towers

3 towers

Table 2: Visualization of attention weights for the four zero-shot transfer tasks in our pick-and-place
experiment. Individual bars are connected to objects in the images by their colors.
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