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Figure 1. Overview of the 2BY2 Dataset. We propose the first large-scale daily pairwise object assembly dataset 2BY2, which contains
1,034 instances and 517 pairwise objects with pose and symmetry annotations.

Abstract

3D assembly tasks, such as furniture assembly and com-
ponent fitting, play a crucial role in daily life and repre-
sent essential capabilities for future home robots. Existing
benchmarks and datasets predominantly focus on assem-
bling geometric fragments or factory parts, which fall short
in addressing the complexities of everyday object interac-
tions and assemblies. To bridge this gap, we present 2BY2,
a large-scale annotated dataset for daily pairwise objects
assembly, covering 18 fine-grained tasks that reflect real-life
scenarios, such as plugging into sockets, arranging flowers
in vases, and inserting bread into toasters. 2BY2 dataset
includes 1,034 instances and 517 pairwise objects with pose
and symmetry annotations, requiring approaches that align
geometric shapes while accounting for functional and spatial
relationships between objects. Leveraging the 2BY2 dataset,
we propose a two-step SE(3) pose estimation method with
equivariant features for assembly constraints. Compared to
previous shape assembly methods, our approach achieves

state-of-the-art performance across all 18 tasks in the 2BY2
dataset. Additionally, robot experiments further validate the
reliability and generalization ability of our method for com-
plex 3D assembly tasks.

1. Introduction
Assembly tasks are ubiquitous, such as assembling furniture,
repairing household appliances, or putting together electron-
ics. Successfully completing these tasks requires precise
reasoning about the spatial relationships between pairs of
objects. For robots to assist in these activities, they need to
accurately estimate the 6D pose of each objects—including
both their orientation and position in space. This capability
is essential for domestic robots to help humans with various
tasks, as it enables them to interact with their environment
in a meaningful way.

Daily object pairwise assembly not only requires con-
sidering the geometric constraints and spatial relationships
between objects to achieve precise alignment but also



needs to exhibit a certain level of generalization. Existing
methods and benchmarks for solving assembly problems
[34, 35, 54, 55, 68], typically focus on matching local ge-
ometric shapes, which often results in suboptimal perfor-
mance in everyday assembly scenarios which require seman-
tic and spatial alignment. This is because they are primarily
trained and tested on existing assembly datasets that consist
of large-scale geometric fragments, such as Breaking Bad
[44] and Neural Shape Mating [7]. Compared with existing
assembly tasks that focus on putting together fractures of
objects, daily pairwise assembly tasks are more challenging
and hold greater practical significance in human life.

To bridge this gap, we introduce 2BY2, the first large-
scale daily pairwise assembly dataset comprising 18 fine-
grained tasks, shown as Figure 1. Compared to previous
datasets and benchmarks, 2BY2 contains 1,034 instances
and 517 pairwise objects with pose and symmetry annota-
tions, covering a variety of pairwise assembly tasks reflecting
everyday scenarios, which require approaches that align ge-
ometric shapes while accounting for functional and spatial
relationships between objects, as shown in Table 1.

Building on this dataset, we propose a two-step pairwise
network architecture for assembly tasks. Mimicking the hu-
man assembly process like we firstly put the vase on the
table and then arrange flower in it, our approach predicts
the pose of each object in a step-by-step manner to assem-
ble them to a predefined canonical space, which refers to a
standard coordinate system that aligns with the principles
of the human world, with detailed definition in Section 3.2.
The network leverages a custom two-scale Vector Neuron
DGCNN [11] encoder with spherical convolution [9] to ex-
tract SE(3) equivariant and SO(3) invariant features from
point cloud inputs. Additionally, a feature fusion module
and a two-step training and evaluation strategy are used to
improve pose prediction accuracy.

We evaluate our approach on 18 tasks in 2BY2 dataset
to demonstrate the effectiveness on multi-task object pair-
wise assembly prediction. Compared to existing baselines,
our method achieves an average improvement of 0.046 in
translation RMSE and 8.97 in rotation RMSE. Moreover,
we validate the effectiveness of our approach on three multi-
category task, namely Lid Covering, Inserting and High
Precision Placing, as well as the All task, which is defined
in Section 2. Besides, real-world robot experiments validate
the practical applicability of our approach.

Our main contributions are listed as follows:
1. We introduce 2BY2, the first large-scale daily pairwise

object assembly dataset. By providing comprehensive pose
and symmetry annotations for 517 pairwise objects across
18 fine-grained tasks, 2BY2 pushes the boundaries of real-
world 3D assembly challenges and establishes a benchmark
for pairwise assembly tasks.

2. Our two-step pairwise SE(3) pose estimation method,

leveraging equivariant geometric features, demonstrates su-
perior performance compared to existing shape assembly
methods, significantly reducing translation and rotation er-
rors and enhancing the accuracy of 6D pose estimation.

3. Our approach achieves state-of-the-art performance on
the benchmark, with real-world robot experiments demon-
strating its capability, providing a generalizable solution for
robot manipulation using pairwise object assembly.

2. Related Work
2.1. Object Assembly Benchmarks and Datasets

Object reassembly has led to various datasets in computer
vision and robotics. In computer vision, datasets like Auto-
Mate [27] and JoinABLe [56] focus on reassembling frag-
ments using geometric clues, while early datasets [5, 15, 24,
45] were limited in scale. Recent efforts, such as Neural
Shape Mating [7] and Breaking Bad [44], generate large-
scale fractured object data using parametric segmentation.
In robotics, benchmarks like Factory [38], RLBench [26],
and RoboSuite [73] lack diverse shapes and assembly tasks
under varying initial poses. In contrast, our dataset includes
over 500 diverse object pairs across 3 categories and 18
assembly tasks, providing a comprehensive benchmark for
pairwise object assembly, supporting the development of
generalizable methods for real-world applications.

2.2. 3D Shape Assembly

3D shape assembly [14, 33, 36, 61, 66], also known as part
assembly, involves reconstructing objects from fragments,
such as shattered sculptures or disassembled furniture. Ex-
isting methods use graphical models [6, 25, 29] and neu-
ral networks [8, 28, 31, 52, 57, 62, 63, 65, 69, 71] to cap-
ture geometric and semantic relationships. Approaches such
as [7, 39, 67, 68] focus on pose estimation and part assembly
without relying on predefined semantic information. Few-
shot learning has been applied to assembly tasks [32], while
jigsaw puzzle techniques [35, 40] leverage shape completion
strategies. Recent works [19, 23, 43, 55] utilize diffusion
models to refine poses or point clouds for assembly. In con-
trast, our method introduces a two-step pairwise network for
step-by-step assembly, tailored to pairwise object alignment.

2.3. 6D Pose Estimation for Robot Manipulation

6D pose estimation is crucial in robotics and computer vi-
sion for object interaction in unstructured environments
[18, 48, 60]. Early handcrafted feature-based methods strug-
gled in cluttered scenes [17, 18], while CNN-based ap-
proaches improved performance but lacked generalization
[30, 60]. Domain randomization enhances robustness by
varying synthetic datasets [47, 48]. In assembly tasks, 6D
pose estimation aids manipulation planning with predefined
objects [42, 49]. Like [16, 20–23, 46, 64, 70, 72], our method



Dataset #OC #OS Task Number Pair Task Hierarchy Everyday Scenario Symmetry Assemble Type

PartNet [37] 24 26,671 - No No No No Semantic
AutoMate [27] 2 92,529 1 No No No No Geometric
JoinABLe [56] 6 8,251 1 No No No No Semantic
NSM dataset[7] 11 1,246 1 Yes No No No Geometric
Breaking Bad[44] - 10,474 1 No No No No Geometric
Factory[38] 8 60 8 Yes No No No Geometric

2BY2 Dataset (Ours) 36 1034 18 Yes Yes Yes Yes Geometric and Semantic

Table 1. Dataset Comparison. We compare 2BY2 dataset with exsiting datasets and benchmarks. #OC stands for the number of object
categories. #OS stands for the number of object shapes. Pair denotes whether the dataset is pairwise. Task Number refers to the number of
distinct assembly tasks, with the assembly of fractured pieces considered as a single task. Task Hierarchy stands for the different categories
of task from coarse to fine, with ours shown in Section 3.1. Everyday Scenario means whether the assemble task has practical significance
in real-world human applications. Symmetry denotes whether the dataset contains part symmetry annotation.

leverages equivariant features for efficient 6D pose learning
and improved generalization.

3. 2BY2 Dataset

3.1. 2BY2 Dataset Overview

We present the first large-scale 3D pairwise object assem-
bly dataset for everyday scenarios, with detailed annota-
tions for each object pair. The meshes in our dataset come
from 3D Warehouse [1], SAPIEN PartNet-Mobility [59],
Google SketchUp 3D Challenge [2], and Objaverse [10].
These meshes are manually paired, cleaned, annotated, and
scaled uniformly. The 2BY2 dataset contains 517 unique
pairs across three main tasks: Lid Covering, Inserting, and
High Precision Placing, further subdivided into multiple
subcategories, as shown in Table 2.

3.2. Data Annotation

To ensure high quality and reliability of our dataset, we con-
ducted systematic cleaning and annotation of the collected
meshes. First, we manually segment, integrate, and pair the
meshes, classify them into Object B and Object A. Object
B is the base or the receiving component, such as the nut, the
vase, the postbox. Object A, is the fitting component, such
as the bolt, the flower, the mail. This classification aligns
with intuitive human assembly logic and supports our net-
work’s prediction strategy, such as positioning a nut before
the bolt, as detailed in Sections 4 and 5.1. Automated scripts
were used to uniformly scale meshes and align each pair to a
canonical pose in world frame, defined as the object resting
stably on the XY plane with its lowest point aligned to Z=0.
For instance, bottles and vases are aligned as if placed on a
table, and mailboxes on the ground.

During point cloud generation, we utilized blue noise sam-
pling method [44] to extract point clouds uniformly from
each mesh surface with dimension (1024, 3). We also anno-
tated each object category with its inherent symmetry proper-
ties, specifically considering rotational symmetry along the

Z-axis, such as bottles, screws, and mirror symmetry along
the X-axis, such as bread, letters.

3.3. Data Division and Task Diversity Analysis

Our dataset provides diverse task coverage across categories,
with each further divided into specific sub-categories, see
Table 2. Objects within each category vary in shape, size,
and type. To enhance generalization, the testing set includes
objects with unseen geometric shapes, as shown in Figure 3.
We also compute Chamfer Distance on point clouds between
training and testing sets to quantify geometry differences,
as shown in Figure 2. This diversity ensures generalization
ability and applicability in real world scenarios and supports
robust 3D matching and assembly tasks.

Figure 2. Chamfer Distance Between Training and Testing Set.
We normalize point clouds and compute the Chamfer Distance. For
each task we calculate the distance separately between point cloud
of Object A and Object B in the training set and test set.

4. Problem Formulation
The task takes two point clouds as input, namely PA and
PB , each with dimension (1024, 3). These point clouds are
derived from objects OA and OB from predefined canoni-
cal pose, as detailed in 3.2, respectively, and is randomly
augmented with SO(3) rotation and being translated to its
centroid. The desired output would be two individual SE(3)
pose two assemble OA and OB to the canonical pose.



Task
Lid Covering Inserting High Precision Placing

Kit Bot Ket Cof Cup Plu Chi Let Bre Nut Coi Key Usb Box Tis Flo Tea Pos

Pair Num 24 86 28 26 16 14 19 32 24 20 21 20 20 25 20 60 42 21

Table 2. 2BY2 Dataset Statistics Overview. The figure presents the number of object pairs across all task categories in the 2BY2 dataset,
where each pair consists of two unique objects. The first row categorizes tasks into three major groups, while the second row provides a
detailed breakdown of specific task categories. Specifically, Kit = Kitchenport, Bot = Bottle, Ket = Kettle, Cof = Coffee machine, Cup =
Cup, Plu = Plug into socket, Chi = Children’s toy, Let = Letter into mailbox, Bre = Bread into toaster, Nut = Bolt into nut, Coi = Coin into
piggy bank, Key = Key into lock, Usb = USB cap, Box = Shoe boxing, Tis = Tissue placement on rack, Flo = Flower into vase, Tea =
Teaware arrangement on tray, Pos = Positioning a cup on the coffee machine for coffee dispensing.

Figure 3. Task Diversity Visualization. The image shows selected
objects from four different tasks: USB, Bottle, Letter, and Plug in
Socket. On the left are the objects selected on training set, and on the
right is the testing set. As seen in the legend, object geometry varies
in both the training and testing set, with the testing set containing
novel shapes not seen in the training set.

5. Method

5.1. Two-step Pairwise Network Architecture

To effectively learn pairwise object assembly, we propose a
two-step pairwise network architecture with two branches:
Branch B (BB) and Branch A (BA), as shown in Figure 4.
Branch B predicts the pose of PB, which is the socket, us-
ing a two-scale Vector Neuron DGCNN encoder [11] to
extract SE(3) equivariant features, denoted as EB, followed
by MLP-based pose prediction heads for translation and ro-
tation. The transformed PB and inserter object PA, which is
the plug, are then passed to Branch A, which extracts SE(3)
equivariant features, denoted as EA and SO(3) invariant fea-
tures (IB). The features are fused through element-wise
multiplication, allowing BA to predict the pose of PA using
information from both objects. This architecture ensures geo-
metric alignment and matching by leveraging shared feature
representations while reducing feature interference.

Our two-step pairwise network is inspired by the human
approach to pairwise assembly tasks. For example, when ar-

ranging a vase with flowers, one intuitively first positions the
vase correctly before placing the flowers inside. Similarly,
inserting an envelope into a mailbox requires identifying the
mailbox slot’s pose first. By mimicking this sequential strat-
egy, our model simulates human decision-making process,
enabling more efficient and accurate assembly tasks.

5.2. Two-scale SE(3) Equivariant and SO(3) Invari-
ant Feature Extraction

We employ a two-scale SE(3) Vector Neuron DGCNN, an en-
hanced variant of the original Vector Neuron DGCNN [11],
as our encoder to extract SE(3) equivariant and SO(3) in-
variant features. This architecture leverages equivariance to
improve sample efficiency of the model, while incorporat-
ing a two-scale information fusion mechanism to capture
geometric features at two different scales.

SE(3) Equivariance and SO(3) Invariance. SE(3) equiv-
ariance combines SO(3) rotation and T(3) translation equiv-
ariance: rotation equivariance ensures that a network’s out-
put rotates with the input, while translation equivariance
shifts the output accordingly. SO(3) invariance means the
network’s output remains unchanged under any 3D rotation.
By leveraging SE(3) equivariance, the model benefits from
improved sample efficiency and generalization. This is par-
ticularly advantageous for assembly tasks, where objects
may appear in arbitrary poses.

Vector Neuron DGCNN. The Vector Neuron Net-
work [11] extends traditional neurons from scalars to 3D
vectors, designs vector-based convolutional layers and non-
linear functions like pooling and ReLU to support SO(3)
equivariant and SO(3) invariant feature extraction. VNN
operates in vector space, captures richer geometric relation-
ships and ensures more robust feature representations for
downstream tasks.

Two-scale Vector Neuron DGCNN. We propose a two-
scale Vector Neuron DGCNN for extracting SE(3) equivari-
ant and SO(3) invariant features EB, IB, and EA. As shown
in Figure 4, the encoder comprises two branches with dif-
ferent K values, each consisting of multiple Vector Neuron
convolutional layers followed by pooling. The extracted fea-
tures from both branches are concatenated and further pro-



Figure 4. Our Two-Step Pairwise Network. We utilize two-scale VN DGCNN as our encoder to extract equivariant and invariant feature.
We first predict the canonical pose of OB and then predict the pose of OA according to it.

cessed through an additional Vector Neuron convolutional
layer. Point clouds PB and PA are independently processed,
forming graphs that propagate through both branches.

The SO(3) rotation equivariance of our encoder is ensured
by the inherent equivariant properties of the Vector Neuron
layers. To achieve T(3) translation equivariance, with an
input point cloud P = (p1, p2, ..., pn), pi ∈ R3, we compute
its centroid x = (Σn

i=1pi)/n, and get the input point cloud
as P ′ = P −x. In this way, our prediction is T(3) translation
equivariant, i.e., f is our encoder and P is the original point
cloud.

f(P + T ) = f(P) + T , T ∈ R3 (1)

Our two-scale VN DGCNN employs dual K-nearest
neighbor (KNN) values to extract features across two distinct
scales, enhancing its ability to capture both local and global
information. This pyramid structure enables the network to
simultaneously grasp overall object shapes and fine-grained
details, improving feature extraction.

5.3. Cross Object Fusion Module

We utilize point-wise multiplication, shown in Figure 4, as
our cross object fusion module designed in BA. We fuse the
feature of PB and PA by multiplying IB and EA, so that
each point in PA will have the geometry feature of both PA

and PB . This approach integrates the geometric feature of

PB in each point while preserving the rotation equivariance
of PA, i.e., f is an equivariant neural network, R is random
rotation matrix,

f(R · (IB ∗ EA)) = R · f(IB ∗ EA), R ∈ R3×3 (2)

5.4. Pose Prediction

At both branches, we utilizes two seperate MLPs as our
pose prediction head, to separately predict the translation
T ∈ R3 and rotation R ∈ R3×3. Compared to predicting
translation and rotation within a single prediction head, this
approach helps mitigate the issue of differing convergence
speeds between the two components.

5.5. Training and Evaluation Strategy

We adopt a separate training and evaluation strategy for
our network. To minimize the impact of pose prediction
errors of PB on PA, we train BA and BB independently.
Specifically, for BA, during training, we utilize PB under
canonical pose, which is our ground truth point cloud of
PB, to train our model. During testing, we first predict the
pose of PB, then use the transformed PB, along with the
initial PA to predict A’s pose, as shown in Figure 4. This
phased, two-step training and evaluation strategy reduces
errors caused by joint training of object poses, ensuring more
accurate predictions.



5.6. Loss Function

To train our network to robustly predict poses, we use the
following equation as our loss function:

L = λrotLrot + λtransLtrans (3)

Specifically, for predicted pose translation Tpred ∈ R3,
rotation Rpred ∈ R3×3 and ground truth pose translation
Tgt ∈ R3 and rotation Rgt ∈ R3×3, we use L1 loss to
compute our Ltrans:

Ltrans = L1(Tpred, Tgt) (4)

As for the rotation, we utilize Geodesic Distance, which
measures the shortest path between two rotations on the
rotation manifold. It offers a smooth and bounded angular
error, ensuring stable gradients and accurately achieving
precise rotation alignment.

Lrot = arccos

(
tr(RgtRT

pred)− 1

2

)
(5)

6. Experiments
In this section, we present a comprehensive evaluation and
analysis of our two-step pairwise network architecture by
addressing the following key questions:

1. How does our network perform on 2BY2 tasks com-
pared to existing baseline approaches, including matching-
based, graph-network-based, and diffusion-based assembly
methods?

2. How well does our network generalize across multiple
tasks within the 2BY2 dataset? Can our network effectively
handle a diverse set of tasks simultaneously?

3. Can our network generalize to real-world robot tasks?

6.1. 2BY2 Dataset Main Experiment

6.1.1 Experiment Set Up

Tasks. We divide the 18 assembly tasks in the 2BY2 dataset
into training and testing sets individually and compared the
performance of our method with various baseline approaches.
To further evaluate its cross-task generalization ability, we
conducted additional experiments on tasks such as Lid Cov-
ering, Insertion, and High Precision Placement, as well as
All task, which requires the method to handle all tasks in the
entire dataset. See Table 2 for task details.

Evaluation metrics. Following metrics from datasets
like Breaking Bad [44] and Neural Shape Mating [7], we use
Root Mean Squared Error (RMSE) to evaluate both rotation
and translation of the predicted SE(3) pose. Specifically,
rotations are represented using Euler angles with symmetry
considerations, see Section 3.2 for symmetry details.

Training parameters. We set batch size to be 4, and the
initial learning rate of Adam Optimizer [12] to be 1e-4. We
train models for 1000 epochs for them to fully converge.

6.1.2 Baselines

We compare our method with SE-3 assembly [58], Puzzlefu-
sion++ [55], Jigsaw [35] and Neural Shape Mating [7].
• SE-3 Assembly [58] proposes a network architecture to

leverage SE(3) equivariance for representations consider-
ing multi-part correlations, and predict the pose of each
part jointly.

• Puzzlefusion++ [55] proposes an auto-agglomerative 3D
fracture assembly framework. It iteratively aligns and
merges fragments using a diffusion model for 6-DoF align-
ment and a transformer model for verification.

• Jigsaw [35] leverages hierarchical features of global and
local geometry to match and align the fracture surfaces,
and recovers the global pose of each piece to restore the
underlying object.

• Neural Shape Mating [7] utilizes PointNet for feature
encoding and a transformer for feature fusion to learn
the correlations between assembly parts, enabling joint
prediction of their poses.

6.1.3 2BY2 Benchmark Results and Analysis

Table 3 presents the quantitative performance of our method
compared to all baselines. The results show that our approach
outperforms the baselines across 18 fine-grained assembly
tasks, with an average improvement of 0.046 in translation
RMSE and 8.97 in rotation RMSE.

Additionally, we evaluate our method on three cross-
category tasks defined in Section 3.1, namely Lid Cover-
ing, Inserting and High Precision Placing, and achieve the
state-of-the-art performance. Moreover, in the most compre-
hensive All task, we outperform the baseline by 0.123 in
translation and 10.90 in rotation, demonstrating strong gen-
eralization across tasks and object shapes. In the meantime,
baseline comparisons confirm the rigor and challenge of our
tasks. Results on challenging tasks like Plug and Key high-
light our framework’s effectiveness in complex scenarios.

We analyze that the superior performance of our designed
network is due to the approach of separately predicting the
poses of the two objects in a step-by-step manner. This pre-
vents the pose errors from interfering with each other, which
often occurs in other baselines when predicting both poses si-
multaneously. Additionally, the design of our encoder makes
our network more sensitive to subtle changes in rotation and
translation, resulting better performance.

6.2. Real-World Robot Experiment

Real-world robot experiment setup. As shown in Figure 5,
we conduct our real-world robot experiments using a UR5
robotic arm, equipped with a Robotiq 2F-85 Gripper. We
select four tasks, Cup, Flower, Bread and Plug, demonstrat-
ing that our model exhibits strong generalization ability on
unseen real-world objects.



Task Jigsaw [35] Puzzlefusion++ [55] NSM [7] SE(3)-Assembly [58] Ours
RMSE(T) RMSE(R) RMSE(T) RMSE(R) RMSE(T) RMSE(R) RMSE(T) RMSE(R) RMSE(T)↓ RMSE(R)↓

Lid Covering 0.398 33.33 0.408 37.74 0.184 33.45 0.125 21.37 0.090 16.12
Kitchenport 0.477 45.80 0.423 47.23 0.237 57.47 0.093 17.29 0.068 16.60
Bottle 0.411 34.71 0.385 35.23 0.227 78.58 0.147 36.92 0.076 27.70
Kettle 0.335 43.71 0.372 38.38 0.215 61.10 0.133 13.15 0.111 11.56
Coffeemachine 0.527 32.67 0.437 34.64 0.253 50.66 0.142 24.43 0.076 22.83
Cup 0.408 33.55 0.439 33.58 0.260 67.35 0.160 46.46 0.122 23.18
Inserting 0.364 53.58 0.327 57.83 0.275 69.93 0.199 46.3 0.142 38.03
Plug 0.372 56.89 0.348 48.89 0.303 52.26 0.176 18.58 0.094 9.74
Childrentoy 0.268 59.88 0.245 63.21 0.271 93.77 0.302 80.52 0.242 57.81
Letter 0.409 67.99 0.357 72.08 0.317 76.48 0.121 39.24 0.094 33.74
Bread 0.220 57.84 0.201 60.92 0.171 65.50 0.111 51.13 0.090 36.40
Nut 0.476 40.08 0.323 47.29 0.271 55.32 0.102 46.68 0.051 35.60
Coin 0.406 39.62 0.348 51.40 0.289 62.58 0.111 28.69 0.107 22.88
Key 0.384 42.85 0.348 50.38 0.290 63.60 0.087 17.28 0.045 16.32
Usb 0.463 67.41 0.342 58.23 0.252 69.90 0.215 32.28 0.128 28.98
Precision Placing 0.375 73.94 0.287 67.81 0.211 85.02 0.134 57.86 0.115 44.84
Box 0.137 33.72 0.134 40.47 0.130 72.47 0.071 25.08 0.066 21.53
Tissue 0.292 82.39 0.265 85.18 0.175 79.78 0.183 73.02 0.115 64.37
Flower 0.328 64.39 0.283 59.04 0.246 87.18 0.213 64.89 0.125 42.23
Teaport 0.302 68.33 0.324 61.01 0.288 56.32 0.085 40.59 0.050 26.11
Position 0.423 58.07 0.389 57.55 0.257 70.11 0.166 28.17 0.141 24.46

ALL 0.360 53.34 0.342 58.23 0.284 70.30 0.233 52.34 0.110 41.44

Table 3. Quantitative Evaluation on 2BY2 for Pairwise Object Assembly. Our method outperforms the baseline across all 18 fine-grained
assembly tasks, as well as demonstrating significant improvement on three cross-category assembly tasks. It achieves a lower task average
with a reduction of 0.046 in translation RMSE and 8.97 in rotation RMSE.

Figure 5. Real Robot Setup. We conduct real-world robot experi-
ments on Cup, Flower, Bread and Plug tasks.

We place objects in the scene with random initial poses
and scan them to obtain their point clouds. Using pre-trained
models on selected data of 2BY2 dataset, we predict the pose
of each object. A manually designed grasping pose is then
applied to pick up each object, and based on the predicted
poses, the robotic arm plans a trajectory to complete the
assembly. We use SE(3) assembly [58] as the baseline and
test our approach on 10 different initial poses. As shown in
Table 4, our method significantly outperforms the baseline.

Task Cup Flower Bread Plug Overall

SE(3) [58] 2/10 4/10 1/10 2/10 22.5%
Ours 8/10 10/10 6/10 7/10 77.5%

Table 4. Real-World Robot Experiment Success Rate Results.

7. Ablation Study

In this section, we conduct comprehensive experiments to
demonstrate the rationality of our network design and the
effectiveness of each module.

Encoder. To validate the effectiveness of two-scale Vector
Neuron(VN) DGCNN, we compare it with other encoders:
VN DGCNN [11], DGCNN [53], and PointNet [41].

Two-step network design. We compare our method with
an end-to-end approach, which jointly predicts the pose of
PA and PB. Specifically, we utilize BA and the input point
cloud of PA and PB to get the 6D pose of PA, while using
the same encoder to extract EB and pass it through the same
pose prediction head to predict the pose of PB .

As shown in in Table 5, we show the results of ab-
lation studies on Lid covering, Inserting and Precision
Placing, which are more comprehensive and require cross-
task generalization abilities. The performance declines in
both translation and rotation when we removing our two-
scale VN DGCNN encoder and change it to Vector Neuron
DGCNN [11], DGCNN [53], Pointnet [41]. It demonstrates



Figure 6. Qualitative Results Comparison. We highlight Bottle, Plug, Bread, Letter, Childrentoy, Key, and Flower tasks to demonstrate
our improved translation and rotation predictions compared to baseline methods.

Task Vector Neuron DGCNN [11] DGCNN [53] PointNet [41] w/o Two-step Ours
RMSE(T) RMSE(R) RMSE(T) RMSE(R) RMSE(T) RMSE(R) RMSE(T) RMSE(R) RMSE(T) ↓ RMSE(R)↓

Lid Covering 0.098 18.23 0.245 70.06 0.234 65.32 0.117 18.74 0.090 16.12
Inserting 0.157 41.22 0.234 62.25 0.234 66.80 0.164 41.11 0.142 38.03
Precision Placing 0.121 48.01 0.245 65.19 0.211 72.47 0.137 46.38 0.115 44.84

ALL 0.123 44.67 0.277 72.46 0.264 75.38 0.139 45.20 0.110 41.44

Table 5. Ablation Study Results. We compare various encoders including Vector Neuron DGCNN [11], DGCNN [53], PointNet [41],
and our proposed two-scale Vector Neuron DGCNN. We also compare end-to-end networks with two-step networks to demonstrate the
effectiveness of each component in our network design.

that our encoder effectively exploits the advantage of SE(3)
equivariance, enabling greater sample efficiency and more
robust generalization abilities. Compared with version in Fig-
ure 4, the experiment performance declines when we change
our two-step network in a joint-learning manner, proving
that our two-step network design can reduce error caused by
jointly predictions and thereby is more effective.

8. Conclusion

2BY2 is a significant step in bridging the gap between
geometry-based assembly tasks and everyday object assem-

blies. With pose and symmetry annotations for 517 object
pairs across 18 fine-grained tasks, 2BY2 sets a new bench-
mark for 3D assembly challenges. Our two-step pairwise
SE(3) pose estimation framework, which leverages equiv-
ariant features, demonstrates superior performance over ex-
isting approaches in reducing both translation and rotation
errors. Robot experiments further validate the method’s gen-
eralizability in practical 3D assembly scenarios. In conclu-
sion, 2BY2 provides both a comprehensive benchmark and
an effective framework, with the aim of inspiring and sup-
porting more generalizable solution in robot manipulation.
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A. Appendix Section
A.1. 2BY2 Dataset

Unlike previous datasets like Breaking Bad and Neural
Shape Mating [7, 44] which focus on assembly of object
fragments, our 2BY2 dataset focuses on pairwise assembly
of daily objects with geometry and task variety, includes
tasks that can be quite challenging for robot manipulation.
For example Plug, Bread, flower are very challenging in
real world becuase they require precise pose alignment to
achieve assembly success.

In previous datasets such as Breaking Bad, the pose of
each fragment depends on all the other fragments. However,
in daily pairwise assembly task, the pose of the Object B,
such as bottle and toaster, is not affected by Object A, such
as cap and bread, and is only determined by the canonical
space. In contrast, the pose of Object A is influenced by
the geometry and pose of Object B. For instance, the pose
of a cap is determined by the rim of the cup, while the
pose of a piece of bread is dictated by the slot of the toaster.
Consequently, previous methods that jointly predict the poses
of two objects are not well-suited for daily pairwise assembly
tasks. To address this, we propose a two-step paired network
architecture that sequentially predicts the pose of each object,
effectively mitigating pose errors introduced by joint pose
prediction in prior approaches.

A.1.1 Dataset Collection

We segment, integrate, and pair meshes obtained online,
scaling them to a global scale of 3.0. Each mesh pair is
categorized into Object B and Object A, where Object B
serves as the receiving component, and Object A functions
as the fitting component. Similar to Breaking Bad [44], we
triangulate each mesh using blender [4] and use blue noise
sampling method to extract the point cloud from the surface
of each mesh, and use padding to make sure each dimension
aligns with (1024, 3).

A.1.2 Symmetry Annotation

Each object is associated with a JSON file specifying its
symmetry type. In this work, we account for two types of
symmetry: axis symmetry along the x, y, z axes, and rota-
tional symmetry around the x, y, z axes.

A.1.3 Task Definition

In the Lid Covering category, Object A refers to the lid,
and Object B refers to the corresponding body, including
Kitchen, Bottle, Kettle, Coffeemachine, and Cup.

In the Inserting category:
• In Plug, Object A is the plug, and Object B is the socket.

Figure 7. The Definition of Canonical Pose. The left image illus-
trates the canonical pose of the task bottle, while the right image
represents the canonical pose of plug.

• In Children’s Toy, Object A is the block, such as cylinder
and cone, and Object B is the board with slots.

• In Letter, Object A is the mail, and Object B is the postbox.
• In Bread, Object A is the bread, and Object B is the toaster.
• In Nut, Object A is the bolt, and Object B is the nut.
• In Coin, Object A is the coin, and Object B is the piggy

bank.
• In Key, Object A is the key, and Object B is the lock.
• In USB, Object A is the cap, and Object B is the USB body.

In the High Precision Placing category:

• In the Box task, Object A refers to the shoes, and Object B
refers to the box. The goal is to neatly place the shoes in
the shoebox.

• In the Tissue task, Object A refers to the tissue, and Object
B refers to the tissue rack. The goal is to place the tissue
on the rack.

• In the Flower task, Object A refers to the flower, and
Object B refers to the vase.

• In the Teapot task, Object A refers to the teapot, and Object
B refers to the tea tray. The goal is to neatly place the teapot
on the tray.

• In the Position task, Object A refers to the cup, and Object
B refers to the coffee machine. The goal is to place the cup
underneath the spout of the coffee machine.

A.1.4 Definition of Canonical Pose in Different Tasks

In all tasks except for Plug, the canonical pose refers to the
assembled state where the two objects are placed on the XY
plane under the influence of gravity, ensuring stable con-
tact with the plane. Additionally, the positive Z-axis passes
through the geometric center of the object’s base, ensuring
proper central and vertical alignment, as shown in Figure 9.

In the Plug task, the canonical pose is defined as the state
where the socket is placed on the XZ plane, representing the
wall, as shown in Figure 9.



Figure 8. Task Diversity Visualization. From left to right, each
column shows selected meshes from training set and test set of
Kitchenport, Coin, Cup, Coffeemachine, Position, Toilet, Shoes,
Flower.

Notably, in tasks where only a single relative pose is
required—such as plugging into a socket which is fixed
on the wall—the plug’s pose can be determined through
coordinate transformation, as illustrated in Section A.3.3.

A.1.5 Data Splition

As described in the main paper, our 2BY2 dataset includes
18 fine-grained tasks, such as Bottle and Children’s Toy, and
4 tasks which require cross-category generalization ability,
which is Lid Covering, Inserting, High Precision Placing
and All. We ensure geometric diversity when assigning each
object exclusively to either the training or test set, as shown
in Figure 8.

For cross-category tasks like Lid Covering, the training
and test sets both include objects from its own categories,
such as Kitchen, Bottle, Kettle, Coffeemachine, and Cup.
Similar applies to the Inserting and High Precision Placing
tasks. For the All task, both the training and test sets include
all 18 fine-grained tasks.

For each of the 18 fine-grained task, we maintain a
training-to-test set ratio of approximately 3:2. For Lid Cov-
ering, Inserting, High Precision Placing and All, the ratio is
controlled at roughly 5:2.

A.2. Methodology

A.2.1 SE(3) Equivariant and SO(3) Invariant Feature

Robots operate within a three-dimensional Euclidean space,
where manipulation tasks inherently encompass geometric
symmetries such as rotations. Recent works [16, 23, 51, 63,
64, 72] leverage symmetry to enable robust learning and
generalization. As illustrated in the main paper, SE(3) equiv-
ariant feature, which is extracted by our designed encoder,

leverage symmetry to improve sample efficiency. In both
branch, SE(3) equivariant features of OB and OA are used
for object pose estimation.

SO(3) invariant features encode geometric shape infor-
mation in the latent space, independent of the input point
cloud’s orientation. In BA, the SO(3) invariant feature of
PB is extracted to facilitate the pose estimation of PA. Intu-
itively, the predicted pose of the bread is determined by the
geometry of the toaster slot.

A.3. Experiment

A.3.1 Data Augmentation

During training, we apply SO(3) data augmentation to all
methods, including both our approach and the baselines,
which provides sufficient data for network convergence and
ensures fair comparison. Notably, as pointed out by [50],
although our network exhibits SE(3) equivariance, SO(3)
data augmentation still benefits the learning process.

A.3.2 2BY2 Dataset Experiment

Similar to Breaking Bad [44], we also use Chamfer Dis-
tance (CD) as our additional evaluation metric to validate
the effectiveness our multi-step pairwise network.

Evaluation Metric. Chamfer Distance (CD) [3] is a com-
mon metric used to measure the similarity between two
point clouds or sets. It is widely applied in computer vision,
3D shape matching, point cloud alignment. More specifi-
cally, given two point clouds P = {p1, p2, . . . , pm} and
Q = {q1, q2, . . . , qn}, Chamfer Distance between P and Q
is defined as:

CD(P,Q) =
1

|P |
∑
p∈P

min
q∈Q

∥p−q∥22+
1

|Q|
∑
q∈Q

min
p∈P

∥q−p∥22

(6)
More specifically, we use the average Chamfer Distance

between the predicted P ′
B and ground truth PB , and the

predicted P ′
A and ground truth PA:

CD =
1

2
(CD(P ′

B , PB) + CD(P ′
A, PA)) (7)

Results and Analysis. As detailed in the main paper, we
compare our multi-step pairwise network with SE-3 assem-
bly [58], Puzzlefusion++ [55], Jigsaw [35] and Neural Shape
Mating [7]. As shown in Table 6 and Figure , our method
consistently outperforms all baselines across 18 fine-grained
tasks, demonstrating significantly improved alignment and
geometric matching accuracy. This highlights the superior
precision and effectiveness of our multi-step pairwise net-
work. Moreover, in tasks such as Lid Covering, Inserting,
Precision Placing, and the overall All category, our method
achieves a substantial margin of improvement over the base-
lines, further indicating its robust generalization ability.



Figure 9. Qualitative Results Comparison. We highlight Kettle, USB, Toilet, Shoes, Teapot, Nut tasks to demonstrate our improved
translation and rotation predictions compared to baseline methods.

A.3.3 Real-robot Experiment

In some tasks in the real world, instead of two poses, only
one relative pose is needed to solve the pairwise assembly
task. For example, when plugging into the socket that is
fixed to the wall, only the pose of the plug is needed. To
resolve tasks like these, we first infer the socket’s pose in our
defined world frame. In this step, we are not rotating socket
arbitrarily. Then estimate the plug’s target pose in defined
world frame. The plug’s target pose in the real world can be
calculated using a coordinate transformation.

Moreover, rather than relying on pre-defined grasping
poses, numerous existing grasping methods, such as [13, 21],
can generate adaptable grasps efficiently. The motion trajec-
tory can then be computed using motion planning library.

A.4. Ablation Study

As detailed in the main paper, we compare our method on
Lid covering, Inserting, and High precision placing and All

task in 2BY2 dataset with other encoders: Vector Neuron
DGCNN [11], DGCNN [53], PointNet [41] and an end-to-
end approach which jointly predicts the pose of PA and
PB .

Evaluation Metric. Similar to Section A.3.2, We choose
Chamfer Distance (CD) as our additional evalution metric.

Results and Analysis. As shown in Table 7, replacing
our multi-scale VN DGCNN encoder with Vector Neuron
DGCNN [11], DGCNN [53], or PointNet [41] results in
a performance drop, highlighting that our encoder better
captures geometric features and exhibits greater sensitiv-
ity to pose transformations. Additionally, substituting our
multi-step network with a joint-learning approach leads to an
increase in Chamfer Distance, underscoring the effectiveness
of our multi-step network design.

A.5. Limitations and Future Works

The current design of our network is primarily constrained
by the scope of the 2BY2 dataset, which could be further ex-



Task Jigsaw [35] Puzzlefusion++ [55] NSM [7] SE(3)-Assembly [58] Ours
CD CD CD CD CD ↓

Lid Covering 1.665 1.809 1.082 0.453 0.362
Kitchenport 1.100 1.169 0.772 0.323 0.230
Bottle 1.640 1.738 1.194 0.601 0.321
Kettle 1.277 1.425 0.903 0.428 0.163
Coffeemachine 1.290 1.394 1.178 0.394 0.189
Cup 1.336 1.260 1.093 0.493 0.268
Inserting 0.712 0.842 0.860 0.431 0.278
Plug 0.752 0.746 0.411 0.194 0.085
Childrentoy 1.037 0.917 0.874 0.814 0.791
Letter 1.296 0.862 0.341 0.191 0.140
Bread 0.406 0.301 0.139 0.144 0.105
Nut 0.131 0.665 0.946 0.368 0.059
Coin 0.946 0.921 0.756 0.146 0.134
Key 0.603 0.829 0.441 0.149 0.032
Usb 0.541 0.656 0.508 0.327 0.266
Precision Placing 0.888 0.472 0.366 0.306 0.255
Box 0.263 0.234 0.205 0.102 0.093
Tissue 0.462 0.644 0.335 0.349 0.232
Flower 0.463 0.361 0.371 0.376 0.295
Teaport 0.577 0.475 0.345 0.157 0.069
Position 0.759 0.735 0.585 0.548 0.302

ALL 1.223 1.469 1.100 0.679 0.268

Table 6. Quantitative Evaluation on 2BY2 for Pairwise Object Assembly. Our method outperforms the baseline across all 18 fine-grained
assembly tasks, as well as demonstrating significant improvement on 4 cross-category assembly tasks, including Lid covering, Inserting,
Precision Placing and All. It achieves an average reduction of 0.138 in Chamfer Distance.

Task Vector Neuron DGCNN [11] DGCNN [53] PointNet [41] w/o Multi-step Ours
Chamfer Distance Chamfer Distance Chamfer Distance Chamfer Distance Chamfer Distance ↓

Lid Covering 0.387 0.873 0.875 0.439 0.362
Inserting 0.297 0.483 0.489 0.290 0.278
Precision Placing 0.274 0.864 0.729 0.283 0.255

ALL 0.294 0.806 0.816 0.307 0.268

Table 7. Ablation Study Results. We compare various encoders including Vector Neuron DGCNN [11], DGCNN [53], PointNet [41],
and our proposed multi-scale Vector Neuron DGCNN. We also compare end-to-end networks with multi-step networks to demonstrate the
effectiveness of each component in our network design.

panded to include a wider range of tasks and more complex
everyday scenarios. Additionally, rather than hardcoding
the grasping pose, a policy network for robotic manipula-
tion could be trained using the 2BY2 dataset. Furthermore,
the network architecture can be optimized to reduce com-
putational overhead, improving its suitability for real-time
robotic operations.
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