
One-shot Imitation Learning via Interaction Warping

Ondrej Biza1, Skye Thompson2, Kishore Reddy Pagidi1, Abhinav Kumar1,
Elise van der Pol3,∗, Robin Walters1,∗, Thomas Kipf4,∗

Jan-Willem van de Meent1,5,†, Lawson L.S. Wong1,†, Robert Platt1,†
1 Northeastern University, 2 Brown University, 3 Microsoft Research,

4 Google DeepMind, 5 University of Amsterdam
∗ Equal contribution. † Equal advising.

biza.o@northeastern.edu

Abstract: Learning robot policies from few demonstrations is crucial in open-
ended applications. We propose a new method, Interaction Warping, for one-shot
learning SE(3) robotic manipulation policies. We infer the 3D mesh of each ob-
ject in the environment using shape warping, a technique for aligning point clouds
across object instances. Then, we represent manipulation actions as keypoints
on objects, which can be warped with the shape of the object. We show suc-
cessful one-shot imitation learning on three simulated and real-world object re-
arrangement tasks. We also demonstrate the ability of our method to predict object
meshes and robot grasps in the wild. Webpage: https://shapewarping.github.io.

Keywords: 3D manipulation, imitation learning, shape warping

1 Introduction

Figure 1: The Mug Tree task.

In one-shot imitation learning, we are given a sin-
gle demonstration of a desired manipulation behav-
ior and we must find a policy that can reproduce the
behavior in different situations. A classic example
is the Mug Tree task, where a robot must grasp a
mug and hang it on a tree by its handle. Given a
single demonstration of grasping a mug and hanging
it on a tree (top row of Figure 1), we want to ob-
tain a policy that can successfully generalize across
objects and poses, e.g. differently-shaped mugs and
trees (bottom row of Figure 1). This presents two
key challenges: First, the demonstration must gener-
alize to novel object instances, e.g. different mugs.
Second, the policy must reason in SE(3), rather than
in SE(2) where the problem is much easier [1].

To be successful in SE(3) manipulation, it is generally necessary to bias the model significantly
toward the object manipulation domains in question. One popular approach is to establish a corre-
spondence between points on the surface of the objects in the demonstration(s) with the same points
on the objects seen at test time. This approach is generally implemented using keypoints, point de-
scriptors that encode the semantic location of the point on the surface of an object and transfer well
between different novel object instances [2, 3, 4]. E.g., points on handles from different mugs should
be assigned similar descriptors, thereby helping to correspond handles on different mug instances. A
key challenge therefore becomes how to learn semantically meaningful keypoint descriptors. Early
work used hand-coded feature labels [4]. More recent methods learn a category-level object descrip-
tor models during a pre-training step using implicit object models [5] or point models [2].

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://shapewarping.github.io

This paper proposes a different approach to the point correspondence problem based on Coherent
Point Drift (CPD) [6], a point-cloud warping algorithm. We call this method Interaction Warping.
Using CPD, we train a shape-completion model to register a novel in-category object instance to a
canonical object model in which the task has been defined via a single demonstration. The canonical
task can then be projected into scenes with novel in-category objects by registering the new objects
to the canonical models. Our method has several advantages over the previous work mentioned
above [2, 3, 4]. First, it performs better in terms of its ability to successfully perform a novel instance
of a demonstrated task, both in simulation and on robotic hardware. Second, it requires an order-of-
magnitude fewer object instances to train each new object category – tens of object instances rather
than hundreds. Third, our method is agnostic to the use of neural networks – the approach presented
is based on CPD and PCA models, though using neural networks is possible.

2 Related Work

We draw on prior works in shape warping [7, 8] and imitation learning via keypoints [4]. Shape
warping uses non-rigid point cloud registration [9], a set of methods for aligning point clouds or
meshes of objects, to transfer robot skills across objects of different shape. Our paper is the first
to use shape warping to perform relational object re-arrangement and to handle objects in arbitrary
poses. Second, keypoints are a state abstraction method that reduces objects states to the poses of a
set of task-specific keypoints. We use keypoints to transfer robot actions. The novelty in our work
is that our interaction points are found automatically and warped together with object shape.

Few-shot Learning of Manipulation Policies: Keypoint based methods have been used in few-
shot learning of object re-arrangement [4, 10, 11]. These methods rely on human-annotated object
keypoints. Follow-up works proposed learned keypoints for learning tool affordances [12, 13, 14]
and for model-based RL [15]. A related idea is the learning of 2D [16] and 3D [5, 17, 18, 19]
descriptor fields, which provide semantic embeddings for arbitrary points. A keypoint can then be
matched across object instances using its embedding. We specifically compare to Simeonov et al.
[5, 17] and show that our method requires fewer demonstrations. In separate lines of works, Pan
et al. [2] (also included in our comparison) tackled object re-arrangement using cross-attention [20]
between point clouds and Wen et al. [21] used pose estimation to solve precise object insertion.

Shape Warping and Manipulation: We use a learned model of in-class shape warping originally
proposed by Rodriguez et al. [22]. This model was previously used to transfer object grasps [7, 23,
24] and parameters for skills such as pouring liquids [25, 8]. Our method jointly infers the shape
and pose of an object; prior work assumed object pose to be either given [8] or detected using a
neural pose detector [24]. Gradient descent on both the pose and the shape was previously used by
Rodriguez et al. [7], Rodriguez and Behnke [23], but only to correct for minor deviations in pose.
A second line of work transfers grasps by warping contact points [26, 27, 28, 29, 30, 22, 31, 32].
Finally, point-cloud warping has been used to manipulate deformable objects [33, 34].

3 Background

So
ur

ce
 o

ve
r t

ar
ge

t

Initial Final

Figure 2: Coherent Point Drift warping.

Coherent Point Drift (CPD) Given two point
clouds, X(i) ∈ Rn×3 and X(j) ∈ Rm×3, Coher-
ent Point Drift (CPD) finds a displacement Wi→j ∈
Rn×3 of the points X(i) that brings them as close as
possible (in an L2 sense) to the points X(j) [6]. CPD
is a non-rigid point-cloud registration method – each
point in X(i) can be translated independently. CPD
minimizes the following cost function,

J(Wi→j) = −
m∑

k=1

log

n∑
l=1

exp

(
− 1

2σ2

∥∥∥X(i)
l + (Wi→j)l −X

(j)
k

∥∥∥)+
α

2
ϕ(Wi→j), (1)

2

using expectation maximization over point correspondences and distances (see [6] for details). This
can be viewed as fitting a Gaussian Mixture Model of n components to the data X(j). Here, ϕ(Wi→j)
is a prior on the point displacements that regularizes nearby points in X(i) to move coherently,
preventing the assignment of arbitrary correspondences between points in X(i) and X(j).

Generative Object Modeling Using CPD: CPD can be used as part of a generative model
for in-category object shapes as follows [7]. Assume that we are given a set of point clouds,
{X(1), . . . ,X(K)}, that describe K object instances that all belong to a single category, e.g. a set of
point clouds describing different mug instances. Each of these point clouds must be a full point cloud
in the sense that it covers the entire object. Select a “canonical” object X(C), C ∈ {1, 2, ...,K} and
define a set of displacement matrices WC→i = CPD(X(C),X(i)), i ∈ {1, 2, ...,K}. The choice of
C is arbitrary, but we heuristically choose the C that is the most representative (Appendix A.2). Now,
we calculate a low rank approximation of the space of object-shape deformations using PCA. For
each matrix WC→i ∈ Rn×3, let W̄C→i ∈ R3n×1 denote the flattened version. We form the 3n×K
data matrix W̄C =

[
W̄C→1, . . . , W̄C→K

]
and calculate the d-dimensional PCA projection matrix

W ∈ R3n×d. This allows us to approximate novel in-category objects using a low-dimensional
latent vector vnovel ∈ Rd, which can be used to compute a point cloud

Y = X(C) +Reshape(Wvnovel), (2)

where the Reshape operator casts back to an n× 3 matrix.

Shape Completion From Partial Point Clouds: In practice, we want to be able to approximate
complete point clouds for objects for which we only have a partial view [8]. This can be accom-
plished using the generative model by solving for

L(Y) = D(Y,X(partial)), (3)

using gradient descent on v. Essentially, we are solving for the latent vector that gives us a recon-
struction closest to the observed points. To account for the partial view, Thompson et al. [8] use the
one-sided Chamfer distance [35],

D
(
X(i),X(j)

)
=

1

m

m∑
k=1

min
l∈{1,...,n}

∥∥∥X(i)
l −X

(j)
k

∥∥∥
2
. (4)

Note that X(i) ∈ Rn×3 and X(j) ∈ Rm×3 do not need to have the same number of points (n ̸= m).

4 Interaction Warping

This section describes Interaction Warping (IW), our proposed imitation method (Figure 3). We
assume that we have first trained a set of category-level generative object models of the form de-
scribed in Section 3. Then, given a single demonstration of a desired manipulation activity, we

observed point cloud

v1, s1, t1, R1object shape
and pose
inference v2, s2, t2, R2

grasp
prediction placement

prediction

grasp demo placement demoinferred scene

Tgrasp Tplace

1s
t P

rin
ci

pa
l A

xi
s.

2n
d

Pr
in

ci
pa

l A
xi

s.

0.0-1.0 1.0

warping model

Figure 3: Interaction Warping pipeline for predicting grasp and placement poses from point clouds.

3

detect the objects in the demonstration using off-the-shelf models. For each object in the demon-
stration that matches a previously trained generative model, we fit the model to the object in order to
get the pose and completed shape of the object (Section 4.1 and 4.2). Next, we identify interaction
points on pairs of objects that interact and corresponding those points with the matching points in
the canonical object models. Finally, we reproduce the demonstration in a new scene with novel
in-category object instances by projecting the demonstrated interaction points onto the completed
object instances in the new scene (Section 4.3).

4.1 Joint Shape and Pose Inference

In order to manipulate objects in SE(3), we want to jointly infer the pose and shape of an object
represented by a point cloud X(partial). To do so, we warp and transform point cloud Y ∈ Rn×3 to
minimize a loss function,

L(Y) = D(Y,X(partial)) + βmax
k

∥Yk∥22 , (5)

which is akin to Equation 3 with the addition of the second term, a regularizer on the size of the
decoded object. Our implementation regularizes the object to fit into the smallest possible ball. The
main reason for the regularizer is to prevent large predicted meshes in real-world experiments, which
might make it impossible to find collision-free motion plans.

We parameterize Y as a warped, scaled, rotated and translated canonical point cloud,

Y = [(X(C) +Reshape(Wv))︸ ︷︷ ︸
Equation 2

⊙s]RT + t. (6)

Here, X(C) is a canonical point cloud and v ∈ Rd parameterizes a warped shape (as described
in Section 3), s ∈ R3 represents scale, R ∈ SO(3) is a rotation matrix and t ∈ R3 represents
translation. We treat s and t as row vectors in this equation.

We directly optimize L with respect to v, s and t using the Adam optimizer [36]. We parameterize
R using R̂ ∈ R2×3, an arbitrary matrix, and perform Gram-Schmidt orthogonalization (Algorithm
5) to compute a valid rotation matrix R. This parameterization has been shown to enable stable
learning of rotation matrices [37, 38]. We run the optimization with many initial random restarts,
please see Appendix A.4 for further details. The inferred v, s represent the shape of the object
captured by X(partial) and R, t represent its pose.

4.2 From Point Clouds to Meshes

We infer the shape and pose of objects by warping point clouds. But, we need object meshes to
perform collision checking for finding contacts between objects and motion planning (Section 4.3).
We propose a simple approach for recovering the mesh of a warped object based on the vertices and
faces of the canonical object.

First, we warp the vertices of the canonical object. To do so, the vertices need to be a part of X(C)

because our model only knows how to warp points in X(C) (Section 3). However, these vertices
(extracted from meshes made by people) are usually very biased (e.g. 90% of the vertices might be
in the handle of a mug), which results in learned warps that ignore some parts of the object. Second,
we add points to X(C) that are randomly sampled on the surface of the canonical mesh. X(C) is then
composed of approximately the same number of mesh vertices and random surface samples, leading
to a better learned warping. We construct X(C) such that the first V points are the vertices; note that
the ordering of points in X(C) does not change as it is warped.

Given a warped, rotated and translated point cloud Y (Equation 6), the first V points are the warped
mesh vertices. We combine them with the faces of the canonical object to create a warped mesh M .
Faces are represented as triples of vertices and these stay the same across object warps.

4.3 Transferring Robot Actions via Interaction Points

4

(a) (b) (c)

Figure 4: (a) Contacts between a gripper and a
bowl extracted from a demonstration. (b) Nearby
points between a mug and a tree extracted from
a demonstration of hanging the mug on the tree.
(c) A virtual point (red) representing the branch
of the tree intersecting the handle of the mug. The
red point is anchored to the mug using k nearest
neighbors on the mug (four are shown in green).

Consider the example of a point cloud of a mug
Y that is warped using Equation 6. We can se-
lect any point Yi and track it as the mug changes
its shape and pose. For example, if the point
lies on the handle of the mug, we can use it to
align handles of mugs of different shapes and
sizes. That can, in turn, facilitate the transfer
of manipulation policies across mugs. The key
question is how to find the points Yi relevant
to a particular task. We call these interaction
points.

Grasp Interaction Points: We define the grasp
interaction points as the pairs of contact points
between the gripper and the object at the point
of grasp. Let Y (A) and M (A) be the point cloud
and mesh respectively for the grasped object inferred by our method (Section 4.1, 4.2). Let M (G)

be a mesh of our gripper and TG the pose of the grasp. We use pybullet collision checking to find
P pairs of contact points (p(A)

j , p
(G)
j)Pj=1, where p

(A)
j is on the surface of M (A) and p

(G)
j is on the

surface of M (G) in pose TG (Figure 4a). We want to warp points p(A)
j onto a different shape, but our

model only knows how to warp points in Y (A). Therefore, we find a set of indices IG = {i1, ..., iP },
where Y

(A)
ij

is the nearest neighbor of p(A)
j .

Transferring Grasps: In a new scene, we infer the point cloud of the new object Y (A′) (Eq.
6). We solve for the new grasp as the optimal transformation T ∗

G that aligns the pairs of points
(Y

(A′)
ij

, p
(G)
j), j ∈ {1, ..., P}, ij ∈ IG. Here, Y (A′)

ij
are the contact points from the demonstration

warped to a new object instance. Note that there is a correspondence between the points in Y (A)

and Y (A′); shape warping does not change their order. We predict the grasp T ∗
G (Figure 5a) that

minimizes the pairwise distances analytically using an algorithm from Horn et al. [39].

Placement Interaction Points: For placement actions, we look at two objects being placed in
relation to each other, such as a mug being placed on a mug-tree. Here, we define interaction points
as pairs of nearby points between the two object, a generalization of contact points. We use nearby
points so that the two objects do not have to make contact in the demonstration; e.g., the mug might
not be touching the tree before it is released from the gripper. Similarly, the demonstration of an
object being dropped into a container might not include contacts.

Let Y (A) and Y (B) be the inferred point clouds of the two objects. We capture the original point
clouds from a demonstration right before the robot opens its gripper. We find pairs of nearby points
with L2 distance below δ, {(p(A) ∈ Y (A), p(B) ∈ Y (B)) :

∥∥∥p(A) − p(B)
∥∥∥ < δ}. Since there might

be tens of thousands of these pairs, we find a representative sample using farthest point sampling
[40]. We record the indices of points p(B)

j in Y (B) as IP = {i1, i2, ..., iP }.

We further add p
(B)
j as virtual points into Y (A) – this idea is illustrated in Figure 4 (b) and (c). For

example, we wish to solve for a pose that places a mug on a tree, such that the branch of the tree
intersects the mug’s handle. But, there is no point in the middle of the mug’s handle that we can use.
Hence, we add the nearby points p(B)

j (e.g. points on the branch of the tree) as virtual points q(A)
j to

Y (A). We anchor q(A)
j using L-nearest-neighbors so it warps together with Y (A). Specifically, for

each point p(B)
j we find L nearest neighbors (nj,1, ..., nj,L) in Y (A) and anchor q(A)

j as follows,

q
(A)
j =

1

L

L∑
k=1

Y (A)
nj,k

+ (p
(B)
j − Y (A)

nj,k
)︸ ︷︷ ︸

∆j,k

= p
(B)
j . (7)

To transfer the placement, we save the neighbor indices nj,k and the neighbor displacements ∆j,k.

5

(a) (b)

Figure 5: Predicting grasps using interaction point warping. (a) the predicted grasp for a bowl/plate
changes based on the curvature of the object. (b) the placement of a mug on a mug tree changes as
the mug grows larger so that the branch of the tree is in the middle of the handle.

Figure 6: Example of an episode of putting a mug on a tree starting from a tilted mug pose.

Transferring Placements: We infer the point clouds of the pair of new objects Y (A′) and Y (B′).
We calculate the positions of the virtual points with respect to the warped nearest neighbors,

q
(A′)
j =

1

L

L∑
k=1

Y (A′)
nj,k

+∆j,k. (8)

We then construct pairs of points (q(A
′)

j , Y
(B′)
ij

), j ∈ {1, ..., P}, ij ∈ IP and find the optimal trans-
formation of the first object T ∗

P that minimizes the distance between the point pairs. Since we know
how we picked up the first object, we can transform T ∗

P into the coordinate frame of the robot hand
and execute the action of placing object A′ onto object B′ (Figure 5b).

5 Experiments

We evaluate both the perception and imitation learning capabilities of Interaction Warping. In Sec-
tion 5.1, we perform three object re-arrangement tasks with previously unseen objects both in sim-
ulation and on a physical robot. In Section 5.2, we show our system is capable of proposing grasps
in a cluttered kitchen setting from a single RGB-D image.

We use ShapeNet [41] for per-category (mug, bowl, bottle and box) object pre-training (required by
our method and all baselines). We use synthetic mug-tree meshes provided by [17]. Our method
(IW) uses 10 training example per class, whereas all baselines use 200 examples. The training
meshes are all aligned in a canonical pose.

5.1 Object Re-arrangement

Setup: We use an open-source simulated environment with three tasks: mug on a mug-tree, bowl
on a mug and a bottle in a container [17]. Given a segmented point cloud of the initial scene, the
goal is to predict the pose of the child object relative to the parent object (e.g. the mug relative to
the mug-tree). A successful action places the object on a rack / in a container so that it does not
fall down, but also does not clip within the rack / container. The simulation does not test grasp
prediction. The three tasks are demonstrated with objects unseen during pre-training. We described
how our method (IW) uses a single demonstration in Section 4.3; to use multiple demonstration, IW
uses training prediction error to select the most informative one (Appendix A.5).

6

Train. Mug on Tree Bowl on Mug Bottle in Container
Method Demo Meshes Upright Arbitrary Upright Arbitrary Upright Arbitrary

R-NDF [17] 1 200 60.0 51.0 69.0 68.0 19.0 8.0
TAX-Pose [2] 1 200 61.0 41.0 16.0 9.0 4.0 1.0
IW (Ours) 1 10 86.0 83.0 82.0 84.0 62.0 60.0
R-NDF [17] 5 200 88.0 89.0 53.0 46.0 78.0 47.0
TAX-Pose [2] 5 200 82.0 51.0 29.0 14.0 6.0 2.0
IW (Ours) 5 10 90.0 87.0 75.0 77.0 79.0 79.0
R-NDF [17] 10 200 71.0 70.0 69.0 60.0 81.0 59.0
TAX-Pose [2] 10 200 82.0 52.0 20.0 20.0 2.0 1.0
IW (Ours) 10 10 88.0 88.0 83.0 86.0 70.0 83.0

Table 1: Success rates of predicted target poses of objects in simulation. Upright and Arbitrary refer
to the starting pose of the manipulated object. Measured over 100 trials with unseen object pairs.

Mug on Tree Bowl on Mug Bottle in Container Mean
Method Pick Pick&Place Pick Pick&Place Pick Pick&Place Pick Pick&Place

NDF1 [5] 93.3 26.7 75.0 33.3 20.0 6.7 62.8 22.2
R-NDF [17] 64.0 12.0 37.5 37.5 26.7 20.0 42.7 23.2
IW (Ours) 96.0 92.0 87.5 83.3 86.7 83.3 90.1 86.2

Table 2: Success rates of real-world pick-and-place experiments with a single demonstration. The
manipulated object (e.g. a mug) starts in an arbitrary pose (we use a stand to get a range of poses)
and the target object (e.g. a mug-tree) starts in an arbitrary upright pose. 1The target object (e.g.
the mug tree) is in a fixed pose for this experiment, as NDF does not handle target object variation.
Each entry is measured over 25 - 30 trials with unseen object pairs.

In our real-world experiment, we perform both grasps and placements based on a single demonstra-
tion. We capture a fused point cloud using three RGB-D cameras. We use point-cloud clustering and
heuristics to detect objects in the real-world scenes (details in Appendix B.1) and perform motion
planning with collision checking based on the meshes predicted by our method. We evaluate the
ability of each method to pick and place unseen objects with a varying shape and pose (Figure 8).
We provide a single demonstration for each task by teleoperating the physical robot. We do not have
access to the CAD models of objects used in the real-world experiment.

Result: We find that our method (IW) generally outperforms R-NDF [5] and TAX-Pose [2] on
the simulated relational-placement prediction tasks (Table 1) with 20 times fewer training objects.
We chose these two baselines as recent state-of-the-art SE(3) few-shot learning methods. IW can
usually predict with above 80% success rate even with 1 demo, whereas R-NDF and TAX-Pose can
only occasionally do so with 5+ demos, and often fail to reach 80% success rate at all. We use an
open-source implementation of R-NDF provided by the authors [42], which differs in performance
from the results reported in [17]. TAX-Pose struggles with precise object placements in the bowl
on mug and bottle in box tasks; it often places the pair of objects inside one another. Occasionally,
adding more demonstrations decreases the success rate because some demonstrations are of low
quality (e.g. using decorative mugs with strange shapes).

In real-world pick and place experiments, we demonstrate the ability of IW to solve the three object
re-arrangement tasks – mug on tree, bowl on mug and bottle in box – with unseen objects (Figure
8) and variation in the starting pose of objects (Table 2). We find that NDF and R-NDF [5, 17]
struggle with the partial and noisy real-world point clouds. This often results in both the pick and
place actions being too imprecise to successfully solve the task. Pre-training (R-)NDF on real-world
point clouds could help, but note that IW was also pre-trained on simulated point clouds. We find
that the warping of canonical objects is more robust to noisy and occluded point clouds. We show
an example episode of placing a mug on a tree in Figure 6.

7

(a) (b) (c) (d) (e)

Figure 7: Grasp prediction in the wild: (a) an RGB-D (depth not shown) image, (b) open-vocabulary
object detection and segmentation using Detic [43] and Segment Anything [44], (c) object meshes
predicted by our method based on segmented point clouds (we filter out distant and small objects),
(d) meshes projected into the original image, (e) grasps predicted by Interaction Warping projected
into the original image. Figure 9 has additional examples.

We use the meshes predicted by IW to perform collision checking during motion planning. We do
not perform collision checking (other than to avoid contact with the table) when using (R-)NDF as
these methods do not predict object meshes, but failures due to a collision between the robot and
one of the object were infrequent in real-world (R-)NDF trials.

5.2 Grasp Prediction in the Wild

Setup: In this experiment, we show that we can combine our method with a state-of-the-art object
detection and segmentation pipeline to predict object meshes and robot grasps from a single RGB-D
image. We use an open-vocabulary object detector Detic [43] to predict bounding boxes for common
household objects and Segment Anything [44] to predict segmentation masks within these bounding
boxes. We turn the predicted RGB-D images into point clouds and use our shape warping model to
predict a mesh for each object. Finally, we use interaction warping to predict a robot grasp based on
a single demonstration per each object class (details in Appendix B.2).

Result: We show the results for two example scenes in Figure 7 and 9. Our perception pipeline can
successfully detect objects in images with cluttered backgrounds. Our warping algorithm accounts
for the variation in the shape and size of objects and our interaction warping algorithm can generalize
the demonstrated grasps to the novel objects.

6 Limitations and Conclusion

We introduced Interaction Warping, a method for one-shot learning of SE(3) robotic manipulation
policies. We demonstrated that warping of shapes and interaction points leads to successful one-
shot learning of object re-arrangement policies. We also showed that we can use open-vocabulary
detection and segmentation models to detect objects in the wild and predict their meshes and grasps.

Limitations: Our method requires segmented point clouds of objects. We demonstrated a real-world
object detection pipeline in Section 5.2, but it can be difficult to capture clean point clouds aligned
with image-based segmentations. The joint inference of shape and pose of an object takes around
25 seconds per object on an NVIDIA RTX 2080 Ti GPU. Future work could train an additional
neural network to amortize the inference, or to predict favorable initialization. We use a PCA model
of shape warps for simplicity; this model cannot capture the details of objects, such as the detailed
shape of the head of a bottle. A model with higher capacity should be used for tasks that require
high precision. Finally, our predicted policy is fully determined by the shape warping model and a
single demonstration; our method does not learn from its failures, but it is fully differentiable.

8

Acknowledgments

This work was supported in part by NSF 1724191, NSF 1750649, NSF 1763878, NSF 1901117, NSF
2107256, NSF 2134178, NASA 80NSSC19K1474 and NSF GRFP awarded to Skye Thompson. We
would like the thank the CoRL reviewers and area chair for their feedback.

References
[1] D. Wang, R. Walters, and R. Platt. So(2)-equivariant reinforcement learning. In The Tenth

International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-
29, 2022. OpenReview.net, 2022.

[2] C. Pan, B. Okorn, H. Zhang, B. Eisner, and D. Held. TAX-Pose: Task-Specific Cross-Pose
Estimation for Robot Manipulation. In 6th Annual Conference on Robot Learning, Nov. 2022.

[3] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph
cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.

[4] L. Manuelli, W. Gao, P. R. Florence, and R. Tedrake. KPAM: KeyPoint Affordances for
Category-Level Robotic Manipulation. In T. Asfour, E. Yoshida, J. Park, H. Christensen, and
O. Khatib, editors, Robotics Research - The 19th International Symposium ISRR 2019, Hanoi,
Vietnam, October 6-10, 2019, volume 20 of Springer Proceedings in Advanced Robotics, pages
132–157. Springer, 2019.

[5] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-
mann. Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation.
In 2022 International Conference on Robotics and Automation, ICRA 2022, Philadelphia, PA,
USA, May 23-27, 2022, pages 6394–6400. IEEE, 2022.

[6] A. Myronenko and X. Song. Point-Set Registration: Coherent Point Drift. IEEE Trans. Pattern
Anal. Mach. Intell., 32(12):2262–2275, Dec. 2010. ISSN 0162-8828.

[7] D. Rodriguez, C. Cogswell, S. Koo, and S. Behnke. Transferring Grasping Skills to Novel
Instances by Latent Space Non-Rigid Registration, Sept. 2018.

[8] S. Thompson, L. P. Kaelbling, and T. Lozano-Perez. Shape-Based Transfer of Generic Skills.
In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 5996–
6002, May 2021.

[9] X. Huang, G. Mei, J. Zhang, and R. Abbas. A comprehensive survey on point cloud registra-
tion. CoRR, abs/2103.02690, 2021.

[10] W. Gao and R. Tedrake. kPAM 2.0: Feedback Control for Category-Level Robotic Manipula-
tion. IEEE Robotics and Automation Letters, 6(2):2962–2969, Apr. 2021. ISSN 2377-3766.

[11] W. Gao and R. Tedrake. kPAM-SC: Generalizable Manipulation Planning using KeyPoint
Affordance and Shape Completion. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 6527–6533, May 2021.

[12] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese. KETO: learning keypoint representations
for tool manipulation. In 2020 IEEE International Conference on Robotics and Automation,
ICRA 2020, Paris, France, May 31 - August 31, 2020, pages 7278–7285. IEEE, 2020.

[13] M. Vecerik, J.-B. Regli, O. Sushkov, D. Barker, R. Pevceviciute, T. Rothörl, C. Schuster,
R. Hadsell, L. Agapito, and J. Scholz. S3K: Self-Supervised Semantic Keypoints for Robotic
Manipulation via Multi-View Consistency, Oct. 2020.

[14] D. Turpin, L. Wang, S. Tsogkas, S. Dickinson, and A. Garg. GIFT: Generalizable Interaction-
aware Functional Tool Affordances without Labels, June 2021.

9

[15] L. Manuelli, Y. Li, P. Florence, and R. Tedrake. Keypoints into the Future: Self-Supervised
Correspondence in Model-Based Reinforcement Learning, Sept. 2020.

[16] P. R. Florence, L. Manuelli, and R. Tedrake. Dense Object Nets: Learning Dense Visual Object
Descriptors By and For Robotic Manipulation. In 2nd Annual Conference on Robot Learning,
CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceedings, volume 87 of Proceedings
of Machine Learning Research, pages 373–385. PMLR, 2018.

[17] A. Simeonov, Y. Du, Y.-C. Lin, A. R. Garcia, L. P. Kaelbling, T. Lozano-Pérez, and P. Agrawal.
SE(3)-Equivariant Relational Rearrangement with Neural Descriptor Fields. In 6th Annual
Conference on Robot Learning, Nov. 2022.

[18] H. Ryu, J. Lee, H. Lee, and J. Choi. Equivariant descriptor fields: Se(3)-equivariant energy-
based models for end-to-end visual robotic manipulation learning. CoRR, abs/2206.08321,
2022.

[19] E. Chun, Y. Du, A. Simeonov, T. Lozano-Perez, and L. Kaelbling. Local Neural Descriptor
Fields: Locally Conditioned Object Representations for Manipulation, Mar. 2023.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is All you Need. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[21] B. Wen, W. Lian, K. Bekris, and S. Schaal. You Only Demonstrate Once: Category-Level
Manipulation from Single Visual Demonstration. In Robotics: Science and Systems XVIII.
Robotics: Science and Systems Foundation, June 2022. ISBN 978-0-9923747-8-5.

[22] D. Rodriguez, A. Di Guardo, A. Frisoli, and S. Behnke. Learning Postural Synergies for Cat-
egorical Grasping Through Shape Space Registration. In 2018 IEEE-RAS 18th International
Conference on Humanoid Robots (Humanoids), pages 270–276, Nov. 2018.

[23] D. Rodriguez and S. Behnke. Transferring Category-Based Functional Grasping Skills by
Latent Space Non-Rigid Registration. IEEE Robotics and Automation Letters, 3(3):2662–
2669, July 2018. ISSN 2377-3766.

[24] T. Klamt, D. Rodriguez, M. Schwarz, C. Lenz, D. Pavlichenko, D. Droeschel, and S. Behnke.
Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-
Like Robot. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1–8, Oct. 2018.

[25] S. Brandi, O. Kroemer, and J. Peters. Generalizing pouring actions between objects using
warped parameters. In 2014 IEEE-RAS International Conference on Humanoid Robots, pages
616–621, Nov. 2014.

[26] Y. Li, J. L. Fu, and N. S. Pollard. Data-Driven Grasp Synthesis Using Shape Matching and
Task-Based Pruning. IEEE Trans. Visual. Comput. Graphics, 13(4):732–747, July 2007. ISSN
1077-2626.

[27] H. Ben Amor, O. Kroemer, U. Hillenbrand, G. Neumann, and J. Peters. Generalization of
human grasping for multi-fingered robot hands. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2043–2050, Oct. 2012.

[28] U. Hillenbrand and M. A. Roa. Transferring functional grasps through contact warping and lo-
cal replanning. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2963–2970, Oct. 2012.

[29] R. Jäkel, S. R. Schmidt-Rohr, S. W. Rühl, A. Kasper, Z. Xue, and R. Dillmann. Learning of
Planning Models for Dexterous Manipulation Based on Human Demonstrations. Int J of Soc
Robotics, 4(4):437–448, Nov. 2012. ISSN 1875-4805.

10

[30] T. Stouraitis, U. Hillenbrand, and M. A. Roa. Functional power grasps transferred through
warping and replanning. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 4933–4940, May 2015.

[31] D. Pavlichenko, D. Rodriguez, C. Lenz, M. Schwarz, and S. Behnke. Autonomous Bimanual
Functional Regrasping of Novel Object Class Instances. In 2019 IEEE-RAS 19th International
Conference on Humanoid Robots (Humanoids), pages 351–358, Oct. 2019.

[32] H. Tian, C. Wang, D. Manocha, and X. Zhang. Transferring Grasp Configurations using Active
Learning and Local Replanning. In 2019 International Conference on Robotics and Automa-
tion (ICRA), pages 1622–1628, May 2019.

[33] A. X. Lee, A. Gupta, H. Lu, S. Levine, and P. Abbeel. Learning from multiple demonstrations
using trajectory-aware non-rigid registration with applications to deformable object manipula-
tion. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5265–5272, Hamburg, Germany, Sept. 2015. IEEE. ISBN 978-1-4799-9994-1.

[34] J. Schulman, J. Ho, C. Lee, and P. Abbeel. Learning from Demonstrations Through the Use
of Non-rigid Registration. In M. Inaba and P. Corke, editors, Robotics Research, volume 114,
pages 339–354. Springer International Publishing, Cham, 2016. ISBN 978-3-319-28870-3
978-3-319-28872-7.

[35] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf. Parametric correspondence and
chamfer matching: Two new techniques for image matching. In R. Reddy, editor, Proceed-
ings of the 5th International Joint Conference on Artificial Intelligence. Cambridge, MA, USA,
August 22-25, 1977, pages 659–663. William Kaufmann, 1977.

[36] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization, Jan. 2017.

[37] L. Falorsi, P. de Haan, T. R. Davidson, N. D. Cao, M. Weiler, P. Forré, and T. S. Cohen.
Explorations in homeomorphic variational auto-encoding. CoRR, abs/1807.04689, 2018.

[38] J. Y. Park, O. Biza, L. Zhao, J. van de Meent, and R. Walters. Learning symmetric embeddings
for equivariant world models. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu,
and S. Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July
2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research,
pages 17372–17389. PMLR, 2022.

[39] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed-form solution of absolute orienta-
tion using orthonormal matrices. J. Opt. Soc. Am. A, 5(7):1127–1135, Jul 1988.

[40] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point strategy for progressive
image sampling. In 12th IAPR International Conference on Pattern Recognition, Conference
C: Signal Processing / Conference D: Parallel Computing, ICPR 1994, Jerusalem, Israel, 9-13
October, 1994, Volume 3, pages 93–97. IEEE, 1994.

[41] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich 3D Model Reposi-
tory, Dec. 2015.

[42] A. Simeonov, Y. Du, L. Yen-Chen, , A. Rodriguez, , L. P. Kaelbling, T. L. Perez,
and P. Agrawal. Se(3)-equivariant relational rearrangement with neural descriptor fields.
https://github.com/anthonysimeonov/relational ndf, 2022.

[43] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra. Detecting twenty-thousand classes
using image-level supervision. In S. Avidan, G. J. Brostow, M. Cissé, G. M. Farinella, and
T. Hassner, editors, Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Is-
rael, October 23-27, 2022, Proceedings, Part IX, volume 13669 of Lecture Notes in Computer
Science, pages 350–368. Springer, 2022.

11

[44] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W. Lo, P. Dollár, and R. B. Girshick. Segment anything. CoRR, abs/2304.02643,
2023.

[45] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 2980–
2988. IEEE Computer Society, 2017.

[46] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar. Masked-attention Mask
Transformer for Universal Image Segmentation, June 2022.

[47] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan,
C. L. Zitnick, and P. Dollár. Microsoft COCO: Common Objects in Context, Feb. 2015.

[48] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene Parsing through
ADE20K Dataset. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5122–5130. IEEE, July 2017.

[49] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn, A. Dosovitskiy, A. Ma-
hendran, A. Arnab, M. Dehghani, Z. Shen, X. Wang, X. Zhai, T. Kipf, and N. Houlsby. Simple
Open-Vocabulary Object Detection with Vision Transformers, July 2022.

12

A Method Details

We included the code for both our simulated and real-world experiments for reference. Please find
it in the supplementary material under iw code. Algorithms 1 and 2 describe our warp learning and
inference.

Algorithm 1 Warp Learning

Input: Meshes of K example object instances {obj1, obj2, ..., objK}.
Output: Canonical point cloud, vertices and faces and a latent space of warps.
Parameters: Smoothness of CPD warping α and number of PCA components L.

1: PCD =
〈
SampleS(obji)

〉K
i=1

. ▷ Sample a small point cloud per object (Appendix A.1).
2: C = SelectCanonical(PCD). ▷ Select a canonical object with index C (Appendix A.2).
3: canon = Concat(objC .vertices,SampleL(objC)). ▷ Use both vertices and surface samples.
4: for i ∈ {1, 2, ...,K}, i ̸= C do
5: WC→i = CPD(canon,PCDi, α). ▷ Coherent Point Drift warping (Section 3).
6: end for
7: DW = {Flatten(WC→i)}Ki=1,i̸=C . ▷ Dataset of displacements of canon.
8: PCA = FitPCA(DW ,n components = L). ▷ Learn a latent space of canonical object warps.
9: return Canon(points = canon, vertices = objC .vertices, faces = objC .faces),PCA.

Algorithm 2 Warp Inference and Mesh Reconstruction

Input: Observed point cloud pcd, canonical object canon and latent space PCA.
Output: Predicted latent shape v and pose T .
Parameters: Number of random starts S, number of gradient descent steps T , learning rate η

and object size regularization β.

1: tg = 1
|pcd|

∑|pcd|
i=1 pcdi.

2: pcd = pcd− tg . ▷ Center the point cloud.
3: for i = 1 to S do
4: Rinit = Random initial 3D rotation matrix.

5: Initialize v =
(
0 0 ... 0

)
, s =

(
1 1 1

)
, tl =

(
0 0 0

)
, R̂ =

(
1 0 0
0 1 0

)
.

6: Initialize Adam [36] with parameters v, s, tl, r and learning rate η.
7: for j = 1 to T do
8: δ = Reshape(Wv).
9: X = canon.points + δ. ▷ Warped canonical point cloud.

10: R = GramSchmidt(R̂).
11: X = (X ⊙ s)RT

initR
T + tl. ▷ Scaled, rotated and translated point cloud.

12: L = 1
|pcd|

∑|pcd|
k min

|X|
l ∥pcdk −Xl∥22. ▷ One-sided Chamfer distance.

13: L = L+ βmax
|X|
l ∥Xl∥22. ▷ Object size regularization.

14: Take a gradient descent step to minimize L using Adam.
15: end for
16: end for
17: Find parameters v∗, s∗, t∗l , R

∗
init, R

∗ with the lowest final loss across i ∈ {1, 2, ..., S}.
18: X = canon.points + Reshape(Wv∗).
19: X = (X ⊙ s∗)(R∗

init)
T (R∗)T + t∗l + tg . ▷ Complete point cloud in workspace coordinates.

20: vertices = ⟨X1, X2, ..., X|canon.vertices|⟩. ▷ First |canon.vertices| points of X are vertices.
21: return Mesh(vertices = vertices, faces = canon.faces). ▷ Warped mesh.

13

A.1 Point Cloud Sampling

We use trimesh1 to sample the surface of object meshes. The function
trimesh.sample.sample surface even samples a specified number of points and then
rejects points that are too close together. We sample 2k points for small point clouds (SampleS)
and 10k point for large point clouds (SampleL).

A.2 Canonical Object Selection

Among the K example objects, we would like to find the one that is the easiest to warp to the other
objects. For example, if we have ten examples of mugs, but only one mug has a square handle,
we should not choose it as it might be difficult to warp it to conform to the round handles of the
other nine mugs. We use Algorithm 3, which computes K ∗K − 1 warps and picks the object that
warps to the other K − 1 objects with the lowest Chamfer distance. We also note an alternative and
computationally cheaper algorithm from Thompson et al. [8], Algorithm 4. This algorithm simply
finds the object that is the most similar to the other K − 1 objects without any warping.

Algorithm 3 Exhaustive Canonical Object Selection

Input: Point clouds of K training objects ⟨X(1),X(2), ...,X(K)⟩.
Output: Index of the canonical object.

1: for i = 1 to K do
2: for j = 1 to K, j ̸= i do
3: Wi→j = CPD(X(i),X(j)) ▷ Warp point cloud i to point cloud j.

4: Ci,j =
1

|X(j)|
∑|X(j)|

k=1 min
|X(i)|
l=1

∥∥∥X(j)
k − (X(i) +Wi→j)l

∥∥∥2
2

5: end for
6: end for
7: for i = 1 to K do
8: Ci =

∑K
j=1,j ̸=i Ci,j ▷ Cumulative cost of point cloud i warps.

9: end for
10: return argminKi=1 Ci ▷ Pick point cloud that is the easiest to warp.

Algorithm 4 Approximate Canonical Object Selection [8]

Input: Point clouds of K training objects ⟨X(1),X(2), ...,X(K)⟩.
Output: Index of the canonical object.

1: for i = 1 to K do
2: for j = 1 to K, j ̸= i do

3: Ci,j =
1

|X(j)|
∑|X(j)|

k=1 min
|X(i)|
l=1

∥∥∥X(j)
k −X

(i)
l

∥∥∥2
2

4: end for
5: end for
6: for i = 1 to K do
7: Ci =

∑K
j=1,j ̸=i Ci,j

8: end for
9: return argminKi=1 Ci

A.3 Gram-Schmidt Orthogonalization

We compute a rotation matrix from two 3D vectors using Algorithm 5 [38].

1https://github.com/mikedh/trimesh

14

Algorithm 5 Gram-Schmidt Orthogonalization

Input: 3D vectors u and v.
Output: Rotation matrix.

1: u′ = u/∥u∥
2: v′ = v−(u′·v)u′

∥v−(u′·v)u′∥
3: w′ = u′ × v′

4: return Stack(u′, v′, w′)

A.4 Shape and Pose Inference Details

The point clouds Y ∈ Rn×3 starts in its canonical form with the latent shape v equal to zero. We set
the initial scale s to one, translation t to zero and rotation R̂ to identity,

v =
(
0 0 ... 0

)︸ ︷︷ ︸
d

, s =
(
1 1 1

)
, t =

(
0 0 0

)
, R̂ =

(
1 0 0
0 1 0

)
. (9)

R̂ is then transformed into R ∈ SO(3) using Algorithm 5. We minimize L with respect to v, s, t
and R̂ using the Adam optimizer [36] with learning rate 10−2 for 100 steps. We set β = 10−2. We
found the optimization process is prone to getting stuck in local minima; e.g., instead of aligning
the handle of the decoded mug with the observed point cloud, the optimizer might change the shape
of the decoded mug to hide its handle. Hence, we restart the process with many different random
initial rotations and pick the solution with the lowest loss function. Further, we randomly subsample
Y to 1k points at each gradient descent step – this allows us to run 12 random starting orientations
at once on an NVIDIA RTX 2080Ti GPU.

A.5 Using Multiple Demonstrations

Our method transfers grasps and placements from a single demonstration, but in our simulated ex-
periment, we have access to multiple demonstrations. We implement a simple heuristic for choosing
the demonstration that fits our method the best: we make a prediction of the relational object place-
ment from the initial state of each demonstration and select the demonstration where our prediction
is closest to the demonstrated placement. The intuition is that we are choosing the demonstration
where our method was able to warp the objects with the highest accuracy (leading to the best place-
ment prediction). This is especially useful in filtering out demonstrations with strangely shaped
objects.

B Experiment Details

B.1 Object re-arrangement on a physical robot

We use a UR5 robotic arm with a Robotiq gripper. We capture the point cloud using three RealSense
D455 camera with extrinsics calibrated to the robot. For motion planning, we use MoveIt with
ROS1. To segment the objects, we use DBSCAN to cluster the point clouds and simple heuristics
(e.g. height, width) to detect the object class.

B.2 Grasp prediction in the wild

We use a single RealSense D435 RGB-D camera. Our goal is to be able to demonstrate any task
in the real world without having to re-train our perception pipeline. Therefore, we chose an open-
vocabulary object detection model Detic [43], which is able to detect object based on natural lan-
guage descriptions. We used the following classes: ”cup”, ”bowl”, ”mug”, ”bottle”, ”cardboard”,
”box”, ”Tripod”, ”Baseball bat”, ”Lamp”, ”Mug Rack”, ”Plate”, ”Toaster” and ”Spoon”. We use

15

(a) (b) (c)

Figure 8: Objects used for the real-world tasks: (a) mug on tree, (b) bowl (or plate) on mug and (c)
bottle in box. We use a single pair of objects to generate demonstrations and test on novel objects.

the predicted bounding boxes from Detic to condition a Segment Anything model [44] to get ac-
curate class-agnostic segmentation masks. Both Detic2 and Segment Anything3 come with several
pre-trained models and we used the largest available. Finally, we select the pixels within each seg-
mentation mask and use the depth information from our depth camera to create a per-object point
cloud. We use DBSCAN to clouster the point cloud and filter out outlier points. Then, we perform
mesh warping and interaction warping to predict object meshes and grasps.

Previously, we experimented with Mask R-CNN [45] and Mask2Former [46] trained on standard
segmentation datasets, such as COCO [47] and ADE20k [48]. We found that these dataset lack the
wide range of object classes we would see in a household environment and that the trained models
struggle with out-of-distribution viewing angles, such as looking from a steep top-down angle. We
also experimented with an open-vocabulary object detection model OWL-ViT [49] and found it to
be sensitive to scene clutter and the viewing angle.

C Additional Results

Training and inference times: We measure the training and inference times of TAX-Pose, R-NDF
and IW (Table 3). Both R-NDF and IW take tens of seconds to either perceive the environment or
to predict an action. This is because both of these methods use gradient descent with many random
restarts for inference. On the other hand, TAX-Pose performs inference in a fraction of second but
requires around 16 hours of training for each task. Neither R-NDF nor IW require task-specific
training. We do not include the time it takes to perform pre-training for each class of objects, which
is required by all three methods, because we used checkpoints provided by the authors of TAX-Pose
and R-NDF.

Additional real-world grasp predictions: We include additional examples of real-world object
segmentation, mesh prediction and grasp prediction in Figure 9.

D Limitations

Limitations of shape warping: Shape warping works well when we can smoothly warp shapes
between object instances, but it would struggle with a changing number of object parts. For example,
if we had a set of mug trees that have between one and six branches, shape warping would pick one
of these trees as the canonical object and it would not be able to change the number of branches in
the canonical tree.

Further, many object-oriented point cloud based methods (like IW and NDF) are limited by the
receptive field of the point cloud they model. For example, if we wanted to perform a cooking task,
both of these methods would not be able to model the entire kitchen aisle or the entire stove. We

2https://github.com/facebookresearch/Detic
3https://github.com/facebookresearch/segment-anything

16

Method Training Perception Grasp prediction Placement prediction

TAX-Pose [2] 16.5 ± 1.3 h - 0.02 ± 0.01 s 0.02 ± 0.01 s
R-NDF [17] - - 21.4 ± 0.5 s 42.5 ± 1.8 s
IW (Ours) - 29.6 ± 0.2 s 0.01 ± 0.01 s 0.003 ± 0.004 s

Table 3: Approximate training and inference times for our method and baselines measured over five
trials. R-NDF and IW do not have an explicit training phase, as they use demonstrations nonpara-
metrically during inference. Only IW has a perception step that is separate from the action prediction
step. We do not include the time it takes to capture a point cloud or to move the robot. Training and
inference times were measured on a system with a single NVIDIA RTX 2080Ti GPU and an Intel
i7-9700K CPU.

(a) (b) (c) (d) (e)

Figure 9: Additional examples, please see Figure 7.

Figure 10: Example of mug on tree episode.

17

Figure 11: Example of bowl/plate on mug episode.

Figure 12: Example of bottle in box episode.

would have to manually crop the point cloud only to the top of the stove or the particular burner we
want to place a pan onto.

Limitations of joint shape and pose inference: Joint shape and pose inference is prone to getting
stuck in local minima. For example, instead of rotating a mug to match its handle to the observed
point cloud, our inference method might change the shape of the mug to make the handle very
small. We address this problem by using many random starting orientations – the full inference
process takes 25 seconds per object on an NVIDIA RTX 2080 Ti GPU.

Pose inference might also fail when we do not see the bottom of the object. We subtract the table
from the point cloud, so an observed point cloud of a mug might have an opening both at the top
and at the bottom. Then, the inference process might not be able to tell if the mug is right side up or
upside down.

18

	Introduction
	Related Work
	Background
	Interaction Warping
	Joint Shape and Pose Inference
	From Point Clouds to Meshes
	Transferring Robot Actions via Interaction Points

	Experiments
	Object Re-arrangement
	Grasp Prediction in the Wild

	Limitations and Conclusion
	Method Details
	Point Cloud Sampling
	Canonical Object Selection
	Gram-Schmidt Orthogonalization
	Shape and Pose Inference Details
	Using Multiple Demonstrations

	Experiment Details
	Object re-arrangement on a physical robot
	Grasp prediction in the wild

	Additional Results
	Limitations

