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Abstract

Language grounding is broadly defined as the problem of mapping natural language instructions to robot behav-
ior. To truly be effective, these language grounding systems must be accurate in their selection of behavior, efficient
in the robot’s realization of that selected behavior, and capable of generalizing beyond commands and environment
configurations only seen at training time. One choice that is crucial to the success of a language grounding model
is the choice of representation used to capture the objective specified by the input command. Prior work has been
varied in its use of explicit goal representations, with some approaches lacking a representation altogether, resulting
in models that infer whole sequences of robot actions, while other approaches map to carefully constructed logical
form representations. While many of the models in either category are reasonably accurate, they fail to offer either
efficient execution or any generalization without requiring a large amount of manual specification. In this work, we
take a first step towards language grounding models that excel across accuracy, efficiency, and generalization through
the construction of simple, semantic goal representations within Markov decision processes. We propose two related
semantic goal representations that take advantage of the hierarchical structure of tasks and the compositional nature
of language respectively, and present multiple grounding models for each. We validate these ideas empirically with
results collected from following text instructions within a simulated mobile-manipulator domain, as well as demon-
strations of a physical robot responding to spoken instructions in real time. Our grounding models tie abstraction in
language commands to a hierarchical planner for the robot’s execution, enabling a response-time speed-up of several
orders of magnitude over baseline planners within sufficiently large domains. Concurrently, our grounding models
for generalization infer elements of the semantic representation that are subsequently combined to form a complete
goal description, enabling the interpretation of commands involving novel combinations never seen during training.
Taken together, our results show that the design of semantic goal representation has powerful implications for the
accuracy, efficiency, and generalization capabilities of language grounding models.

1 Introduction

As robots become ubiquitous, there is a greater need for a simple yet effective means of interaction between them and
their human collaborators. Natural language is a powerful tool that facilitates seamless interaction between humans
and robots. Not only does it offer flexibility and familiarity, but it also eliminates the need for end users to have
knowledge of low-level programming. The challenge, however, lies in dealing with the full scope of natural language
in all of its complexity and diversity. The end goal is for any human to instruct their robot collaborator through
language as if they were interacting with another human. To this end, we address the problem of accurate and efficient
language grounding along two specific dimensions of language complexity: abstraction and generalization.

In everyday speech, humans use language at multiple levels of abstraction. For example, a brief transcript from an
expert human forklift operator instructing a human trainee has very abstract commands such as “Grab a pallet,” mid-
level commands such as “Make sure your forks are centered,” and very fine-grained commands such as “Tilt back a
little bit” all within thirty seconds of dialog. Humans use these varied granularities to specify and reason about a large
variety of tasks with a wide range of difficulties. Furthermore, these abstractions in language map to subgoals that are
useful when interpreting and executing a task. In the case of the forklift trainee above, the subgoals of moving to the
pallet, placing the forks under the object, then lifting it up are all implicitly encoded in the command “Grab a pallet.”
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By decomposing generic, abstract commands into modular sub-goals, humans exert more organization, efficiency,
and control in their planning and execution of tasks. A robotic system that can identify and leverage the degree of
specificity used to communicate instructions would be more accurate in its task grounding and more robust towards
varied human communication. Moreover, this notion of abstraction in language parallels abstraction in sequential
decision-making [Gopalan et al.l [2017]. A language grounding model that properly identifies linguistic abstraction
can then use hierarchical planning effectively, enabling more efficient robot execution. Thus, in this work, we think of
abstraction as the key to achieving efficiency.

End users of a fully-deployed language grounding systems will also expect generalization. For instance, consider
a robot operating in the home that has been trained on the command “Take the silverware to the kitchen.” If the robot
is also trained on natural language descriptions of all the rooms in the home, then it should be able to generalize taking
silverware to each known room, such as “Take the silverware to the dining room.” Despite never having been trained
on commands that specifically involve both the dining room and silverware, the robot should be able to generalize and
combine its prior understanding of moving silverware with its existing knowledge of the dining room to successfully
plan and complete the task. In other words, the grounding model should be indifferent between the kitchen and
dining room as object destinations and recognize both as potential parameters for a more general object manipulation
template. Without such generalization capabilities, a language grounding model would require a training corpus
of commands large enough to capture the full combinatorial space of tasks, environment variables, and the various
possible relationships between them; that is, every desired behavior would need to be enumerated and accounted for
during training. A robotic system that can associate semantic meaning with the individual environment components,
and combine them in novel ways to handle new natural language commands, has a much greater chance of being able
to generalize from a significantly smaller amount of training data.

Existing approaches for language grounding map between natural language commands and task representations
that are essentially sequences of primitive robot actions [Chen and Mooney}, 2011} Matuszek et al.,[2012} [Tellex et al.}
2011[]. While effective at directing robots to complete predefined tasks, mapping to fixed sequences of robot actions is
unreliable in changing or stochastic environments. Accordingly,|[MacGlashan et al.[[2015] decouple the problem and
use a statistical language model to map between language and robot goals, expressed as reward functions in a Markov
Decision Process (MDP). Then, an arbitrary planner solves the MDP, resolving any environment-specific challenges
with execution. As a result, the learned grounding model can transfer to other robots with different action sets so long
as there is consistency in the task representation (in this work, reward functions). The desire to scale up to larger,
more complex environments, however, reveals an inherent trade-off within MDPs between accommodating low-level
task representations for flexibility and decreasing the time needed to plan through higher level representations of the
decision-making problem [Gopalan et al., |2017]. In parallel, performing a single inference to arrive at the inter-
mediate reward function representation compromises the opportunity to associate semantic meaning with individual
components of that representation, thereby affecting generalization.

To address these problems, we present two novel approaches for mapping natural language commands to robot
behavior. The first approach tackles the varying granularity of natural language by mapping to reward functions at
different levels of abstraction within a hierarchical planning framework. This approach enables the system to quickly
and accurately interpret both abstract and fine-grained commands. By coupling abstraction-level inference with the
overall grounding problem, we exploit the subsequent hierarchical planner to efficiently execute the grounded tasks.
The second approach tackles the issue of generalization through grounding models that factor the output space and
compose reward functions through a multi-step inference process. Rather than inferring the entire semantic represen-
tation all at once, these grounding models decompose the representation and infer its constituent elements. As a result,
the approach is able to attribute meaning to specific components of the semantic representation, enabling it to exhibit
a higher degree of generalization at testing time over baseline approaches.

Statement of Contributions

Preliminary versions of this work were presented in/Arumugam et al.|[2017] and [Karamcheti et al.|[2017]]. The models
proposed in these prior papers respectively examined, in isolation, the issues of efficient execution and generalization.
In this extended version, we present a unified view of the previous approaches, using them as evidence in support
of language grounding systems that make careful use of semantic goal representations to simultaneously realize the
desiderata of accurate, efficient, and generalizable models. Additionally, we provide new and superior results for the
models presented in|Karamcheti et al.|[2017], demonstrating the ability to generalize over goal-oriented commands.



(a) Simulation of Cleanup world. (b) Cleanup world with a Turtlebot agent.

Figure 1: Sample configurations of the Cleanup world task on the Turtlebot mobile manipulator and on the simulated
environment. (a): Simulated Cleanup world used to collect data for this work. Moreover, the simulator allows us to test
out framework before runs on the robot. (b): Examples of high-level (goal-oriented) and fine-grained (action-oriented)
commands issued to the Turtlebot robot in a mobile-manipulation task.

2 Related Work

While the various environments in which robots can be found are expanding to include the home, the workplace,
and on the road, the most common interfaces for controlling these robots remain fixed in either teleoperation or
directly programmed behaviors. Humans use natural language to communicate ideas, motivations, and goals with other
humans. It has been a long-standing goal in the field of artificial intelligence to have an agent understand and perform
tasks that are specified through natural language. SHRDLU [Winograd, [1971] is one of the earliest examples of such
an agent wherein handwritten rules enabled the understanding and grounding of language commands to behavior using
simple programs. Despite this early success, however, the field cannot rely on methods that require the enumeration
of all possible grammar rules.

One alternative methodology maps language commands directly to the action sequences that an agent must execute
to realize the task [Tellex et al., [2011] [Matuszek et al.| 2012| |Artzi and Zettlemoyer} [2013]. [Tellex et al.|[2011] learn
the probabilistic meaning of individual words given natural language and associated trajectories. Given a sentence
at testing time, inference is performed over the space of possible trajectories to identify one that best grounds the
task specified by the input. Matuszek et al.[[2012] learn to translate natural language to a synthetic control language
that can execute directly within the environment. |Artzi and Zettlemoyer| [2013]] learn a mapping of language to an
event-semantics-based representation of the trajectories. The core restrictions of the aforementioned methods are that
they limit the space of possible tasks to explicit robot action sequences and heavily rely on the determinism of the
underlying environment.

Another line of language grounding research first maps language to an intermediate semantic representation that
can be converted to agent behavior [Zelle and Mooneyl, 1996, [Zettlemoyer and Collins|, 2005, |Howard et al., 2014}
MacGlashan et al., 2015]]. Examples of semantic representations include lambda calculus expressions, reward func-
tions, and constraints for the agent to satisfy in the environment. Semantic parsing translates natural language into a
lambda calculus expression using a grammar that is executable by an agent [Liang} 2016]. Zelle and Mooney| [|[1996]]
leverage this approach to enable the execution of linguistic queries on a geographical database. Zettlemoyer and
Collins|[20035] solve the same problem but begin with a partial lexicon and learn new grammar rules during the course
of learning the semantic parser. We note that by diverging from the semantic parsing approaches, our approach does
not require a manually pre-specified grammar.

Howard et al.|[2014] tackle motion planning problems in the robotics domain by learning the meaning of words
while mapping from natural language to planner constraints. This method extends ideas from Tellex et al.[[2011] where



inference is performed over the smaller space of constraints rather than the space of all possible trajectories. [Paul et al.
[2016] learn the meaning of abstract concepts like rows and columns of objects allowing for commands that capture a
large space of possible behaviors. MacGlashan et al.|[2015]] proposed grounding natural language commands to reward
functions associated with certain tasks, leaving the challenge of execution in a potentially stochastic environment to
an arbitrary planning algorithm. They treat the goal reward function as a conjunction of propositional logic functions,
much like a machine language, to which a natural language task can be translated, using an IBM Model 2 (IBM2)
[Brown et al.| [1990} [1993]] language model. Additionally, reward functions can themselves be learned via inverse
reinforcement learning [Ng and Russell, [ 2000]] using trajectories from expert trainers.

Crucially, [MacGlashan et al.|[2015]] perform inference over reward function templates, or lifted reward functions,
along with environmental constraints. A lifted reward function merely specifies a task while leaving the environment-
specific variables of the task undefined. The environmental binding constraints then specify the properties that an
object in the environment must satisfy in order to be bound to a lifted reward function argument. In doing this, the
output space of the grounding model is never tied to any particular instantiation of the environment, but can instead
align to objects and attributes that lie within some distribution over environments. Given a lifted reward function and
environment constraints (henceforth jointly referred to as only a lifted reward function), a subsequent model can later
infer the environment-specific variables without needing to re-learn the language understanding components for each
environment. In order to leverage this flexibility, all of the proposed grounding models in this work produce lifted
reward functions which are then completed by a grounding module before being passed to a planner (see Section [5).

Planning in domains with large state-action spaces is computationally expensive as algorithms like value iteration
and bounded real-time dynamic programming (RTDP) need to explore the domain at the lowest, “flat” level of abstrac-
tion [Bellman, (1957, McMahan et al [2005]. Naively, this might result in an exhaustive search of the space before
the goal state is found. A better approach is to decompose the planning problem into smaller, more easily solved sub-
tasks that an agent can identify and select in sequence. A common method to describe subtasks is through temporal
abstraction in the form of macro-actions [McGovern et al., [1997] or options [Sutton et al., [1999]. These methods
achieve subgoals using either a fixed sequence of actions or a policy with fixed initial and terminal states respectively.
Planning with options requires computing the individual option policies by exploring and backing up rewards from
lowest level actions. This “bottom-up” planning is slow, as the reward for each action taken needs to be backed up
through the hierarchy of options, which is time consuming. Other methods for abstraction, like MAXQ [Dieterrichl
2000]], R-MAXQ [Jong and Stone, 2008]] and Abstract Markov Decision Processes (AMDPs) [Gopalan et al., [2017]]
involve providing a hierarchy of subtasks where each subtask is associated with a subgoal and a state abstraction rele-
vant to achieving the subgoal. Unfortunately, both MAXQ and R-MAXQ still suffer from the challenges of bottom-up
planning as they must back up the reward from individual action executions across the hierarchy.

We use AMDPs in this paper because they plan in a “top-down” fashion, where a planner first determines how
good a subgoal before solving the more computationally intensive problem of planning to achieve the subgoal. Con-
sequently, the planner restricts its computation to a minimal subset of all the subgoals within the hierarchy. AMDPs
offer model-based hierarchical representations in the form of a reward function and transition function to each sub-
task. Specifically, the AMDP hierarchy is an acyclic graph in which each node is a primitive action or an AMDP
that solves a subtask defined by its parent; the edges are actions of the parent AMDP. Depending on where a subgoal
AMDP resides in the hierarchy, its state space may either consist of low-level environment states (at the lowest level)
or abstract state representations built on top of the environment state (at any point above the ground level). AMDPs
have empirically been shown to achieve faster planning performance than other hierarchical methods.

The previous language grounding methods presented either map language to a semantic representation or a direct
trajectory. However, Dzifcak et al.|[2009] posited that natural language can be interpreted as both a goal state specifi-
cation and an action specification. While this idea is orthogonal to the idea of using abstractions, it is equally important
as humans often mix between goal-based commands, that specify some desired target state, and action-oriented com-
mands, that provide step-by-step instruction on exactly how to perform a task. To fully cover the space of possible
language commands, grounding models ought to be agnostic in realizing the specified behavior. To address this, in
our work, we put forth a single representation capable of capturing the semantics of both types of commands.

In this work, we use deep neural networks to perform language grounding. Deep neural networks have had great
success in many natural language processing (NLP) tasks, such as traditional language modeling [Bengio et al., 2000,
Mikolov et al., [2010}2011]], machine translation [|Cho et al., 2014} |Chung et al.| 2014]], and text categorization [lyyer,
et al., 2015]. One reason for their success is the ability to learn meaningful representations of raw data [Bengio
et al.l 2000, Mikolov et al. 2013]]. In the context of NLP, these representations, or “embeddings”, are often high-
dimensional vectors that not only represent individual words (similar to sparse word representations) but also capture



the semantics of the words themselves. NLP has also enjoyed in the use of recurrent neural networks (RNNs) that
contain specially constructed cells for mapping variable length inputs (in this work, language commands) to a fixed-
size vector representation [[Cho et al., 2014, |Chung et al., 2014, Yamada et al., |2016]. Our approach uses both word
embeddings and a state-of-the-art RNN models to map between natural language and MDP reward functions.

3 Background

We consider the problem of mapping from natural language to robot behavior within the context of Markov decision
processes. A Markov Decision Process (MDP) is a five-tuple of (S, A, T, R,~) where S represents the set of states
that define a fully-observable environment, .4 denotes the set of actions an agent can execute to transition between
states, 7 defines the transition probability distribution over all possible next states given a current state and executed
action, R defines the numerical reward earned for a particular transition, and  represents the discount factor or
effective time horizon under consideration. Planning in an MDP produces a mapping between states and actions, or
policy, that maximizes the total expected discounted reward.

We specify an Object-oriented Markov Decision Process (OO-MDP) to model the robot’s environment and ac-
tions [Diuk et al., 2008]]. An OO-MDP builds upon an MDP by adding sets of object classes and propositional func-
tions; each object class is defined by a set of attributes and each propositional function is parameterized by instances
of object classes. For example, an OO-MDP for the mobile robot manipulation domain seen in Figure [Ib|might denote
the robot’s successful placement of the orange block into the blue room via the propositional function blockinRoom
blockO room1, where blockO and room1 are instances of the block and room object classes respectively and the
blockInRoom propositional function checks if the location attribute of blockO is contained in room1. A true value
results in a reward signal of 41, and 0 otherwise. Using these propositional functions as reward functions that encode
termination conditions for each task, we arrive at a sufficient semantic representation for grounding language. In our
framework, as in | MacGlashan et al. [2015]], we wish to map from natural language to propositional reward functions
that correctly encapsulate the behavior indicated by the input command; we then have a fully-specified MDP that can
be solved with a planning algorithm to produce robot behavior.

In the previous example, the propositional function does not generalize well to different environment configura-
tions; notice that the correspondence between room1 and the blue room is specific to that particular instance of the
training environment. If the environment configuration changes at test time, a model trained to map to environment-
specific outputs would fail to produce the correct behavior. To remedy this problem, we “lift” the previous proposi-
tional functions to better generalize to unseen environments. Given a command like “Take the block to blue room,” the
corresponding lifted propositional function takes the form blockinRoom block0 roomlsBlue, denoting that the block
should end up in the room that is blue. We then assume an environment-specific grounding module (see Section [5.3)
that consumes these lifted reward functions and performs the actual low-level binding to specific room instances,
resulting in grounded propositional functions like blockinRoom blockO room1.

We evaluate all models on the Sokoban-inspired Cleanup World domain [Junghanns and Schaeeer, 1997, Mac-
Glashan et al.,|2015]]. The domain consists of a mobile-manipulator agent in a 2-D world with uniquely colored rooms
and movable objects. A domain instance is shown in Figure [T} The domain itself is implemented as an OO-MDP
where domain objects include rooms and interactable “blocks” (like the chair, basket, etc.) all of which have location
and color attributes.

4 Semantic Goal Representations

We follow the high-level structure of a language grounding system defined by MacGlashan et al.|[2015]). In particular,
we treat the language grounding problem as a decomposition into task inference and task execution components.
During task inference, we are given a natural language command c, and wish to identify the semantic representation
7, such that:

7 = argmax Pr(r | c) (D
Consequently, given a parallel corpus C at training time, we wish to find a set of model parameters 6 such that

0 = arg max H Pr(r | c,0) (2)
(e,r)eC



At inference time, given a language command ¢, we find the best 7 that maximizes the probability Pr(r | c, é) In
all models, r is a lifted propositional function that is independent of any environment. Accordingly, this lifted task
representation must be passed directly to the grounding module (see Section in order to arrive at an environment-
representation that can complete the MDP and be used for planning the task execution. In the following sections, we
define two types of semantic goal representations, each of which allows for more efficient execution and generalization
respectively.

4.1 Abstraction in Language

When contemplating the question of how to make a robot’s execution of a language command more efficient, one
possible consideration is that humans use language at multiple levels of abstraction. For example, as illustrated in
Figure[Ib] a natural language command like “Take the block to the blue room” specifies a high-level task relative to
a command like “Go north a little bit” that is trying to exercise more fine-grained control. To support fine-grained
tasks, MDPs need high-resolution state and action spaces; however, completing high-level tasks then requires long
action sequences, which makes planning inefficient. In contrast, hierarchical planning frameworks, are designed with
abstraction in mind and attempt to leverage the inherent hierarchical nature of a task in order to reduce the time needed
to solve complicated planning problems [Gopalan et al., [2017]]. We propose that one semantic goal representation for
efficient execution combines the latent granularity / of a natural language command with a lifted reward function  in
a hierarchical planning framework. Through this representation, we empower the system to accurately interpret and
quickly execute both abstract and fine-grained commands.

In order to effectively ground commands across multiple levels of complexity, we assume a predefined hierarchy
over the state-action space of the given grounding environment. Furthermore, each level of this hierarchy requires its
own set of reward functions for all relevant tasks and sub-tasks. In this work, we leverage the AMDP hierarchical
planning framework that enables efficient execution through the incremental planning of subtasks without solving
the full planning problem in its entirety. Finally, we assume that each command is generated from a single level of
abstraction (that is, no command supplied to the grounding model can represent a mixture of abstraction levels).

We can now reformulate the learning problem outlined in Equation |1} Given a natural language command ¢, we
find the corresponding level of the abstraction hierarchy [, and the lifted reward function r that maximizes the joint
probability of [, r given c. Concretely, we seek the level of the state-action hierarchy [ and the lifted reward function 7
such that:

[,# = argmaxPr(l,r | ¢) 3)

lLr

4.2 Factored Reward Functions

While a language command consists of multiple words, each having varied importance on the underlying task spec-
ification, the output of our language grounding models thus far has been a singleton reward function. That is, the
command “Take the block to blue room,” maps to a single output blocklnRoom blockO roomlIsBlue. We could,
however, treat the output in a more compositional manner and attempt to ground substrings in the natural language
to individual semantic tokens. For example, blockInRoom is uniquely specified by the substring “block to ...room.”
Similarly, blockO and roomlIsBlue are entirely identified by “the block” and “blue room” respectively. At testing time,
when presented with a novel command like “Take the block to the green room,” the fact that we’ve seen the command
“Take the block to blue room” during training should be sufficient for us to infer the blocklInRoom block0 piece of
the output. Unfortunately, a singleton reward function representation compromises our ability to generalize and reason
about the constituent elements of an output reward function.

For this reason, we turn to an alternate semantic representation that factors the output space (reward function). We
define the callable unit, which takes the form of a (possibly multiple) argument function. These functions are paired
with binding arguments whose possible values depend on the type and arity of the callable unit. In the previous exam-
ple, blockinRoom would be treated as a callable unit with two separate binding arguments blockO and roomlsBlue.
A language grounding model that uses this semantic representation must first infer the callable unit and then infer the
constituent binding arguments. By forcing the grounding model to be responsible for making these inferences sepa-
rately, we allow the model to generalize to novel commands that require the composition of concepts seen in isolation
during training.
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Figure 2: Model architectures for all three sets of deep neural network models. In blue are the network inputs, and in
red are the network outputs. Going left to right, green boxes denote significant structural differences between models.

By reformulating Equation [1}, we arrive at a new objective function for this factored output representation. Given
a natural language command c, our goal is to find the callable unit % and binding arguments & that maximize the
following joint probability:

U,a = arg max Pr(u,a | c) 4)

S Language Grounding Models

Here we outline two distinct classes of language grounding models, each of which maps between a natural language
command and a lifted reward function (propositional function) of an OO-MDP. We conclude the section with a brief
description of the Grounding Module which consumes a lifted reward function (that contains no environment-specific
entities) and maps to the appropriate grounded reward function that can be passed to an MDP planner.

5.1 Singleton Reward Functions & Abstraction

We compare four language models for identifying the most likely reward function and level of granularity: an IBM
Model 2 translation model (similar to|MacGlashan et al.|[2015]]), a deep neural network bag-of-words language model,
and two recurrent neural network (RNN) language models, with varying architectures. For information regarding the
collection procedure and format of the datasets used to train all models, please refer to Section [6.2] For detailed
descriptions and implementations of all the presented models, and associated datasets, please refer to the supplemental
repository: https://github.com/h2r/GLAMDP.

5.1.1 IBM Model 2

As a baseline, we formulate task inference as a machine translation problem, with natural language as the source
language and semantic task representations (lifted reward functions) as the target language. We use the well-known
IBM Model 2 (IBM2) machine translation model [Brown et al., 1990} |1993] as a statistical language model for scoring
reward functions given input commands. IBM2 is a generative model that solves the following objective (equivalent
to Equation 3| by Bayes’ rule):

l,# = argmaxPr(l,r) - Pr(c|l,r) )

,T

This task inference formulation follows directly from MacGlashan et al. [2015] and we follow in an identical
fashion for training the IBM2 using the standard expectation-maximization (EM) algorithm.
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5.1.2 Neural Network Language Models

We develop three classes of neural network architectures (see Figure 2)): a feed-forward network that takes a natural
language command encoded as a bag-of-words and has separate parameters for each level of abstraction (Multi-NN),
a recurrent network that takes into account the order of words in the sequence, also with separate parameters (Multi-
RNN), and a recurrent network that takes into account the order of words in the sequence and has a shared parameter
space across levels of abstraction (Single-RNN).

5.1.3 Multi-NN: Multiple Output Feed-Forward Network

We propose a feed-forward neural network [Bengio et al., 2000} Iyyer et al.,[2015] Mikolov et al., |2013] that takes in
a natural language command c as a bag-of-words vector ¢, and outputs both the probability of each of the different
levels of abstraction, as well as the probability of each reward function. We decompose the conditional probability
from Equation[3|as Pr(l,7 | ¢) = Pr(l | ¢)-Pr(r | I, ¢). Applying this to the corpus likelihood (Equation[2) and taking
logarithms, the Multi-NN objective is to find parameters o:

6= arg max Z logPr(l | ¢,0) +log Pr(r | L,¢,0) (6)
(@lryec

To learn this set of parameters, we use the architecture shown in Figure[2a] Namely, we employ a multi-output deep
neural network with an initial embedding layer, a hidden layer that is shared between each of the different outputs, and
then output-specific hidden and read-out layers, respectively.

The level-selection output is a k-element discrete distribution, where k is the number of levels of abstraction in
the given planning hierarchy. Similarly, the reward function output at each level L; is a probability distribution with
support on the reward functions at level L; of the hierarchy.

To train the model, we minimize the sum of the cross-entropy loss on each term in Equation[6] We train the network
via backpropagation, using the Adam Optimizer [Kingma and Ba, 2014]], with a mini-batch size of 16, and a learning
rate of 0.001. Furthermore, to better regularize the model and encourage robustness, we use Dropout [Srivastava et al.,
2014] after the initial embedding layer, as well as after the output-specific hidden layers with probability p = 0.5.

5.1.4 Multi-RNN: Multiple Output Recurrent Network

Inspired by the success of recurrent neural networks (RNNs) in NLP tasks [Cho et al., 2014} Mikolov et al., 2010,
2011} [Sutskever et al., 2014]], we propose an RNN language model that takes in a command as a sequence of words
and, like the Multi-NN bag-of-words model, outputs both the probability of each of the different levels of abstraction,
as well as the probability of each reward function, at each level of abstraction. RNNs extend feed-forward networks
to handle variable-length inputs by employing a set of one or more hidden states, which are updated after reading in
each input token. Instead of converting natural language command c to a vector ¢, we use an RNN to interpret it as a
sequence of words s = (c1, ¢z ... ¢,). The Multi-RNN objective is then:

6= arg max Z logPr(l ] s,0) + logPr(r | I,s,0) (7
(s,l,r)ec

This modification is reflected in Figure[2b] which is similar to the Multi-NN architecture, except in the lower layers
where we use an RNN encoder that takes the sequence of raw input tokens and maps them into a fixed-size state vector.
We use the gated recurrent unit (GRU) of |Cho et al.| [2014]], a particular type of RNN cell that have been shown to
work well on natural language sequence modeling tasks [[Chung et al., 2014, while requiring fewer parameters than
the long short-term memory (LSTM) cell [Hochreiter and Schmidhuber, |1997].

Similar to the Multi-NN, we train the model by minimizing the sum of the cross-entropy loss of each of the two
terms in Equation[7] with the same optimizer setup as the Multi-NN model. Dropout is used to regularize the network
after the initial embedding layer and the output-specific hidden layers.



5.1.5 Single-RNN: Single Output Recurrent Network

Both Multi-NN and Multi-RNN decompose the conditional probability of both the level of abstraction / and the lifted
reward function r given the natural language command c as Pr(l,r | ¢) = Pr(l | ¢) - Pr(r | I, ¢), allowing for the
explicit calculation of the probability of each level of abstraction given the natural language command. As a result,
both Multi-NN and Multi-RNN create separate sets of parameters for each of the separate outputs (that is, separate
parameters for each level of abstraction in the underlying hierarchical planner).

Alternatively, we can directly estimate the joint probability Pr(l,r | ¢). To do so, we propose a different type
of RNN model that takes in a natural language command as a sequence of words s (as in Multi-RNN), and directly
outputs the joint probability of each tuple (I, ), where [ denotes the level of abstraction, and r denotes the lifted reward
function at the given level. The Single-RNN objective is to find 6 such that:

0= argméix( ;EC logPr(l,r | s,0) (8)

With this Single-RNN model, we are able to significantly improve model efficiency compared to the Multi-RNN
model, as all levels of abstraction share a single set of parameters. Furthermore, removing the explicit calculation of
the level selection probabilities allows for the possibility of positive information transfer between levels of abstraction,
which is not necessarily possible with the previous models.

The Single-RNN architecture is shown in Figure We use a single-output RNN, similar to the Multi-RNN
architecture, with the key difference being that there is only a single output, with each element of the final output
vector corresponding to the probability of each level-reward tuple (I, ), given the natural language command c.

To train the model, we minimize the cross-entropy loss of the joint probability term in Equation[8] Training hyper-
parameters are identical to Multi-RNN, and Dropout is applied to the initial embedding layer and the penultimate
hidden layer.

5.2 Factored Reward Functions

While our Single-RNN model manages to generalize over syntax, it makes no attempt to leverage the compositional
structure of language and generalize over semantics. A unit-argument pair not observed at training time will not be
predicted, even if the constituent pieces were observed separately. To remedy this, the Single-RNN model would
require every possible unit-argument pair to be enumerated in the training data to adequately model the full output
space. Consequently, the requisite amount of data grows rapidly with task specifications that include more objects
with richer attributes.

To resolve this, we introduce the Deep Recurrent Action/Goal Grounding Network (DRAGGN) framework. The
DRAGGN framework maps natural language instructions to separate distributions over callable units and (possibly
multiple) binding constraints, where the callable units generate either action sequences or goal conditions. By treating
callable units and binding arguments as separate entities, we circumvent the combinatorial dependence on the size of
the domain.

This unit-argument separation is inspired by the Neural Programmer-Interpreter (NPI) [Reed and de Freitas,2016].
The callable units output by DRAGGN are analogous to the subprograms output by NPI. Additionally, both NPI and
DRAGGN allow for subprograms/callable units with an arbitrary number of arguments (by adding a corresponding
number of Binding Argument Networks, as shown at the top right of each architecture in Figure [3] each with its
own output space). In this work, we assume that each natural language instruction can be represented by a single
unit-argument pair with only one argument. Consequently, in our experiments, we assume that sentences specifying
sequences of commands have been segmented, and each segment is given to the model one at a time. At the cost of
extending training time, it is straightforward to extend our models to handle extra arguments by adding extra Binding
Argument Networks.

Recall the DRAGGN objective that is given exactly by Equation 4}

4,4 = arg max Pr(u,a| ¢) )

Depending on the assumptions made about the relationship between callable units ¢ and binding arguments a, we can
decompose the above objective in two ways: preserving the dependence between the two, and learning the relationship
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Figure 3: Architecture diagrams for the two Deep Recurrent Action/Goal Grounding Network (DRAGGN) models,
introduced in Sections [5.2.1 and [5.2.2] Both architectures ground arbitrary natural language instructions to callable
units and binding arguments.

between the units and arguments jointly; and treating the two as independent. These two decompositions result in the
Joint-DRAGGN and Independent-DRAGGN models respectively.

Given the training data of natural language and the space of unit-argument pairs, we train our DRAGGN models
end-to-end by minimizing the sum of the cross-entropy losses between the predicted distributions and true labels for
each separate distribution (that is, optimizing with respect to the predicted callable units and binding arguments). At
inference, we first choose the callable unit with the highest probability given the natural language instruction. We then
choose the binding argument(s) with highest probability from the set of valid arguments. The validity of a binding
argument given a callable unit is given a priori, by the specific environment. Note that we do not enforce this validity
restriction at training time.

Our models were trained using Adam, for 125 epochs, with a batch size of 16, and a learning rate of 0.001.

5.2.1 Joint DRAGGN (J-DRAGGN)

The J-DRAGGN models the joint probability in Equation ] via the shared RNN state in the DRAGGN Core (as de-
picted in Figure[3a). We first encode the constituent words of our natural language segment into fixed-size embedding
vectors. From there, the sequence of word embeddings is fed through an RNN denoted by the DRAGGN Core. After
processing the entire segment, the current gated recurrent unit (GRU) hidden state is then treated as a representative
vector for the entire natural language segment. This single hidden core vector is then passed to both the Callable Unit
Network and the Binding Argument Network, allowing for both networks to be trained jointly, enforcing a dependence
between the two.

The Callable Unit Network is a two-layer feed-forward network using rectified linear unit (ReLU) activation.
It takes the DRAGGN Core output vector as input to produce a probability distribution over all possible callable
units. The Binding Argument Network is a separate network with an identical architecture and takes the same input,
but instead produces a probability distribution over all possible binding arguments. The two models do not need to
share the same architecture; for example, callable units with multiple arguments require multiple different argument
networks, one for each possible binding constraint.

5.2.2 Independent DRAGGN (I-DRAGGN)

The I-DRAGGN, contrary to the J-DRAGGN, decomposes the objective from Equation [4] by treating callable units
and binding arguments as being independent, given the original natural language instruction. More precisely, rather
than directly estimating the joint probability of the callable unit c and the arguments a given the language instruction
(as J-DRAGGN does), the -DRAGGN assumes c and a are independent given the language instruction. This change
is realized in the network architectural differences between the J-DRAGGN and the I-DRAGGN. The I-DRAGGN
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Level Example Command Reward Function
= I Turn and move one spot to the right. goWest
0 Go three down, four over, two up. agentlnRoom agent0 roomlIsGreen
. [ Go to door, enter red room, blockinRegion blockO0 roomlsGreen
Ly push chair to green room door.
L Go to the door then go into the red room.  agentinRegion agent0 roomIsRed
Lo Go to the green room. agentInRegion agent0 roomlsGreen
(2) A starting instance of the Bring the chair to the blue room. blockinRegion blockO roomisBlue

Cleanup World domain. . .
(b) Example AMT commands and corresponding reward functions.

Figure 4: Amazon Mechanical Turk (AMT) dataset domain and examples.

Action-Oriented ~ Goal-Oriented Natural Language Callable Unit Argument
goUp(steps) agentinRoom(room) Go to the red room. agentinRoom roomlsRed
goDown(steps)  blockinRoom(room) Put the block in the green room.  blockinRoom  roomlIsGreen
golLeft(steps) Go up three spaces. goUp 3
goRight(steps) Head left for a step. goleft 2

Table 1: (a) Complete set of action and goal-oriented callable units for the Cleanup World domain. (b) Examples of
natural language phrases and corresponding callable units and arguments.

network architecture is shown in Figure 3b] Rather than encoding the constituent words of the natural language
instruction once, and feeding the resulting embeddings through a DRAGGN Core to generate a shared core vector, the
I-DRAGGN model embeds and encodes the natural language instruction twice, using two separate embedding matrices
and GRUs, one each for the callable unit and binding argument. In this way, the -DRAGGN model encapsulates two
disjoint neural networks, each with their own individual parameter sets that are trained independently. The latter half
of each individual network (the Callable Unit Network and Binding Argument Network) remains the same as that of
the J-DRAGGN.

5.3 Grounding Module

In all of our models, the inferred lifted reward function template must be bound to environment-specific variables.
The grounding module maps the lifted reward function to a grounded one that can be passed to an MDP planner.
In our evaluation domain (see Figure [Ib), it is sufficient for our grounding module to be a lookup table that maps
specific environment constraints to object ID tokens. In domains with ambiguous constraints (for instance, a “chair”
argument where multiple chairs exist), a more complex grounding module could be substituted. For instance, |Artzi and
Zettlemoyer| [2013]] present a model for executing lambda-calculus expressions generated by a combinatory categorical
grammar (CCG) semantic parser, which grounds ambiguous predicates and nested arguments.

6 Experiments

In this section we outline the series of experiments conducted to evaluate the ability of our grounding models to
accurately infer the task specified in natural language while also enabling either efficient execution or generalization.
We begin by providing a brief overview of the Cleanup World domain before describing the abstraction hierarchy
defined over the domain as well as the set of callable units and binding arguments defined over the domain. From
there we provide details of how our dataset was compiled before presenting the experimental details and results.

6.1 Domain

The Cleanup World domain [Junghanns and Schaeeer, |1997, [MacGlashan et al.l 2015]), illustrated in Figure [Ia] is a
mobile-manipulator robot domain that is partitioned into rooms (denoted by unique colors) with open doors (white
cells). Each room may contain some number of objects which can be moved (pushed) by the robot. This domain itself
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is modeled after a mobile robot that moves objects around, analogous to a robotic forklift operating in a warehouse
or a pick-and-place robot in a home environment. We use an AMDP from |Gopalan et al.|[2017], which imposes a
three-level abstraction hierarchy for planning.

The combinatorially large state space of Cleanup World simulates real-world complexity and is ideal for exploiting
abstractions. Under the OO-MDP formalism, each state represents a collection of objects (not to be confused with
the manipulable objects or blocks that may appear within an instance of Cleanup World), each belonging to a specific
object class characterized by some number of attributes. Consequently, each state represents more than just the robot
position but also the positions of all blocks as well as the object instances representing each room and each door. Ulti-
mately, this gives way to a large but structured state space for exploiting abstraction. At the lowest level of abstraction
Ly, the (primitive) action set available to the robot agent consists of north, south, east, and west actions. Users direct-
ing the robot at this level of granularity must specify lengthy step-by-step instructions for the robot to execute. At the
next level of abstraction L, the state space of Cleanup World only consists of rooms and doors. The robot’s position
is solely defined by the region (specifically, the room or door) it resides in. Abstracted actions are subroutines for
moving either the robot or a specific block to a room or door. It is impossible to transition between rooms without first
transitioning through a door, and it is only possible to transition between adjacent regions; any language guiding the
robot at L; must adhere to these dynamics. Finally, the highest level of abstraction, Lo, removes the concept of doors,
leaving only rooms as regions; all L; transition dynamics still hold, including adjacency constraints. Subroutines exist
for moving either the robot or a block between connected rooms. The full space of subroutines at all levels and their
corresponding propositional functions are defined by [Gopalan et al.,[2017]. Figure[4b|shows a few collected sample
commands at each level and the corresponding level-specific AMDP reward function.

For factored reward functions, goal-oriented callable units are paired with binding arguments that specify prop-
erties of environment entities that must be satisfied in order to achieve the goal. These binding arguments are later
resolved by the Grounding Module (see Section [5.3)) to produce grounded reward functions (OO-MDP propositional
logic functions) that are handled by an MDP planner. Action-oriented callable units directly correspond to the primi-
tive actions available to the robot and are paired with binding arguments defining the number of sequential executions
of that action. The full set of callable units along with requisite binding arguments are shown in Table T}

6.2 Dataset

To conduct our evaluation of efficient execution by leveraging abstraction in language, we performed an Amazon
Mechanical Turk (AMT) user study to collect natural language samples at various levels of abstraction in Cleanup
World. Annotators were shown video demonstrations of ten tasks, always starting from the state shown in Figure
For each task, users provided a command that they would give to a robot, to perform the action they saw in the
video, while constraining their language to adhere to one of three possible levels in a designated abstraction hierarchy:
fine-grained, medium, and coarse. This data provided multiple parallel corpora for treating language grounding as a
machine translation problem with ground truth reward functions and abstraction levels. We measured our system’s
performance by passing each command to the language grounding system and assessing whether it inferred both the
correct level of abstraction and the reward function. We also recorded the response time of the system, measuring
from when the command was issued to the language model to when the (simulated) robot would have started moving.
Accuracy values were computed using the mean of multiple trials of ten-fold cross validation. The space of possible
tasks included moving a single step as well as navigating to a particular room, taking a particular object to a designated
room, and all combinations thereof.

Unlike MacGlashan et al.| [2015]], the demonstrations shown were not only limited to simple robot navigation and
object placement tasks, but also included composite tasks such as “Go to the red room, take the red chair to the green
room, go back to the red room, and return to the blue room”. Commands reflecting a clear misunderstanding of the
presented task (for example, “please robot”) were removed from the dataset. Such removals were rare; we removed
fewer than 30 commands for this reason, giving a total of 3047 commands. Per level, there were 1309 Ly commands,
872 L1 commands, and 866 Lo commands. The Ly corpus included more commands since the tasks of moving the
robot one unit in each of the four cardinal directions do not translate to higher levels of abstraction.

To conduct our evaluation of generalization capability in the DRAGGN models, we re-use the previously specified
dataset of natural language commands for the single instance of Cleanup World domain seen in Figure [Ta] Since this
original dataset was compiled for analyzing the hierarchical nature of language, we were easily able to filter the com-
mands down to only those using high-level goal specifications and low-level trajectory specifications. Furthermore, to
better cover the full space of callable units and binding arguments, we used the same Amazon Mechanical Turk pro-
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Evaluated Lo Evaluated L;  Evaluated Lo Evaluated Ly Evaluated Ly  Evaluated Lo

Trained Lg 21.61% 17.20% 21.87% Trained Lo T7.67% 28.05% 23.26%

Trained L1 9.83% 10.23% 13.90% Trained L 32.79% 82.99% 74.65%

Trained Lo 14.94% 12.84% 31.49% Trained Lo 14.19% 58.62% 87.91%
(a) IBM2 Reward Grounding Baselines (b) Single-RNN Reward Grounding Baselines

Figure 5: Task grounding accuracy (averaged over 5 trials) when training IBM2 and Single-RNN models on a single
level of abstraction, then evaluating commands from alternate levels. This is similar to the MacGlashan et al.| [2015]
results, as we see that without accounting for abstractions in language, there is a noticeable effect on grounding
accuracy.

Level Selection Reward Grounding

Naive Bayes 70.89% 23.70%
IBM2 79.87% 27.26%
SVM - RBF 91.53% 46.64%
Logistic Regression 93.21% 71.45%
SVM - Linear 94.62% 72.86%
Multi-NN 93.51% 36.05%
Multi-RNN 95.71% 80.11%
Single-RNN 95.91% 80.46%

Table 2: Accuracy of 10-Fold Cross Validation (averaged over 3 runs) for each of the models on the AMT Dataset.
The three NN-based methods (below the line) are introduced in this work; the rest are baselines.

cedure detailed above to collect an additional 352 goal-oriented commands. This resulted in the addition of 4 unique
callable unit/binding argument pairs not originally present in the dataset used for the efficiency evaluation.

To produce a dataset of action-specifying callable units, experts annotated low-level trajectory specifications from
the efficient execution dataset. For example, the command “Down three paces, then up two paces, finally left four
paces” was segmented into “down three spaces,” “then up two spaces,” “finally left four spaces,” and was given a
corresponding execution trace of goDown 3, goUp 2, goLeft 4. The existing set of grounded reward functions in the
dataset were converted to callable units and binding arguments. Examples of both types of language are presented in
Table [T] with their corresponding callable unit and binding arguments. Our final dataset after the additional round of
data collection and segmentation consists of 4086 natural language commands total.

To fully show the capabilities of our model, we tested on two separate versions of the dataset. The first is the
standard dataset, consisting of a 90-10 split of the collected action-oriented and goal-oriented commands. The
second is a zero-shot dataset, which consists of a specific train-test split that evaluates how well models can predict
previously unseen action sequence and goal combinations. For example, in this dataset the action-oriented training
data might consist only of action sequences of the form goUp 3, and goDown 4, while the test data would only
consist of the “unseen” action sequence goUp 4. The goal-oriented “zero-shot“ dataset was constructed similarly. In
both datasets, we assume the test environment is configured the same as the train environment. We discuss the effects
and limitations of this assumption in Section[7}

6.3 Abstraction & Efficiency

Before diving into the efficiency of our grounding models that simultaneously infer reward function and level of
abstraction, we verify that the models can achieve high grounding accuracy. We then conclude with a series of
experiments that compare the execution times of the grounded tasks with traditional, flat planning approaches against
a hierarchical planner that can leverage the additional abstraction information inferred by our grounding models.
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6.3.1 Task Grounding

We present the baseline task grounding accuracies in Figure [5)to demonstrate the importance of inferring the latent
abstraction level in language. We simulate the effect of an oracle that partitions all of the collected AMT commands
into separate corpora according to the specificity of each command. For this experiment, any Ly commands that
did not exist at all levels of the Cleanup World hierarchy were omitted, resulting in a condensed L dataset of 869
commands. We trained multiple IBM2 and Single-RNN models using data from one distinct level and then evaluated
using data from a separate level. Training a model at a particular level of abstraction includes grounding solely to the
reward functions that exist at that same level. Reward functions at the evaluation level were mapped to the equivalent
reward functions at the training level (for instance, L, agentlnRegion to Ly agentinRoom). Entries along the
diagonal represent the average task grounding accuracy for multiple, random 90-10 splits of the data at the given level.
Otherwise, evaluation checked for the correct grounding of the command to a reward function at the training level
equivalent to the true reward function at the alternate evaluation level.

Task grounding scores are uniformly quite poor for IBM2; however, IBM2 models trained using Ly and Lo data
respectively result in models that substantially outperform those trained on alternate levels of data. It is also apparent
that an IBM2 model trained on L; data fails to identify the features of the level. We speculate that this is caused,
in part, by high variance among the language commands collected at L; as well as the large number of overlapping,
repetitive tokens that are needed for generating a valid machine language instance at L;. While these models are worse
than what MacGlashan et al. [2015]] observed, we note that we do not utilize a task or behavior model. It follows that
integrating one or both of these components would only help prune the task grounding space of highly improbable
tasks and improve our performance.

Conversely, Single-RNN shows the expected maximization along diagonal entries that comes from training and
evaluating on data at the same level of abstraction. These show that a model limited to a single level of language
abstraction is not flexible enough to deal with the full scope of possible commands. Additionally, Single-RNN demon-
strates more robust task grounding than statistical machine translation.

The task grounding and level inference scores for the models in Section are shown in Figure 2} Going beyond
the IBM2 baseline used by MacGlashan et al.|[2015], we examine other standard, non-neural-network-based classifi-
cation models for level and reward function inference. Specifically, we evaluate using naive Bayes, logistic regression,
and support vector machines (linear as well as with an RBF kernel), all supplied with a bag-of-words representation
of the natural language utterance, identical to that used by our Multi-NN model.

As we can see from these results, attempting to embed the latent abstraction level within the machine language of
IBM2 results in weak level inference. Furthermore, grounding accuracy falls even further due to sparse alignments
and the sharing of tokens between tasks in machine language (for example, agentinRoom agent0 room1 at L, and
agentinRegion agent0 room1 at L;). The fastest of all the neural models, and the one with the fewest number of
parameters overall, Multi-NN shows notable improvement in level inference over the IBM2; however, task grounding
performance still suffers, as the bag-of-words representation fails to capture the sequential word dependencies critical
to the intent of each command. We further observe this failure in the performance of the logistic regression and SVM
classification baselines; while capable of outperforming the Multi-NN model, they still fail to match the performance
of RNN models operating at the level of individual word tokens.

Turning to the best performing set of models, those based on RNNs, we see that the Multi-RNN again improves
upon level prediction accuracy and leverages the high-dimensional representation learned by initial RNN layer to train
reliable grounding models specific to each level of abstraction. Finally, Single-RNN has near-perfect level prediction
and demonstrates the successful learning of abstraction level as a latent feature within the neural model. By not using
an oracle for level inference, there is a slight loss in performance compared to the results obtained in Figure [Sb}
however, we still see improved grounding performance over Multi-RNN that can be attributed to the full sharing of
parameters across all training samples allowing for positive information transfer between abstraction levels.

6.3.2 Robot Execution

Fast response times are important for fluid human-robot interaction, so we assessed the time it would take a robot
to respond to natural language commands in our corpus. We measured the time it takes for the system to process a
natural language command, map it to a reward function, and then solve the resulting MDP to yield a policy so that
the simulated robot would start moving. We used Single-RNN for inference since it was the most accurate grounding
model, and only correctly grounded instances were evaluated, so our results are for 2634 of 3047 commands that
Single-RNN got correct.
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Figure 6: Relative inference + planning times for different planning approaches on the same correctly grounded AMT
commands. For each method pair, values less than 1 indicate the method on the numerator (left of ‘/”) is better. Each
data point is an average of 1000 planning trials.

We compared three different planners to solve the MDP:

e BASE: A state-of-the-art flat (non-hierarchical) planner, bounded real-time dynamic programming (BRTDP [McMa-
han et al., [2005]]).

e AMDP: A hierarchical planner for MDPs [Gopalan et al., 2017]]. At the primitive level of the hierarchy (L),
AMDP also requires a flat planner; we use BASE to allow for comparable planning times. Because the subtasks
have no compositional structure, a Manhattan-distance heuristic can be used at Ly. While BASE technically
allows for heuristics, distance-based heuristics are unsuitable for the composite tasks in our dataset. This il-
lustrates another benefit of using hierarchies: to decompose composite tasks into subtasks that are amenable to
better heuristics.

e NH (No Heuristic): Identical to AMDP, but without the heuristic as a fair comparison against BASE.

We hypothesize NH is faster than BASE (due to use of hierarchy), but not as fast as AMDP (due to lack of heuristics).

Since the actual planning times depend heavily on the actual task being grounded (ranging from 5ms for goNorth
to 180s for some high-level commands), we instead evaluate the relative times used between different planning ap-
proaches. FigurelEal shows the results for all 3 pairs of planners. For example, the left-most column shows %;
the fact that most results were less than 1 indicates that AMDP usually outperforms BASE. Using Wilcoxon signed-
rank tests, we find that each approach in the numerator is significantly faster (p < 1074°) than the one in the de-
nominator demonstrating that AMDP is faster than NH, which is in turn faster than BASE; this is consistent with our
hypothesis. Comparing AMDP to BASE, we find that AMDP is twice as fast in over half the cases, 4 times as fastin a
quarter of the cases, and can reach 20 times speedup. However, AMDP is also slower than BASE on 23% of the cases;
of these, half are within 5% of BASE, but the other half is up to 3 times slower. Inspecting these cases suggests that
the slowdown is due to overhead from instantiating multiple planning tasks in the hierarchy; this overhead is especially
prominent in relatively small domains like Cleanup World. Note that in the worst case this is less than a 2s absolute
time difference.

From a computational standpoint, the primary advantage of hierarchy is space/time abstraction. To illustrate
the potential benefit of using hierarchical planners in larger domains, we doubled the size of the original Cleanup
domain and ran the same experiments. Ideally, this should have no effect on L; and Lo tasks, since these tasks
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Standard Zero-Shot
Action-Oriented Goal-Oriented Action-Oriented  Goal-Oriented

Single-RNN 95.7 £ 0.1% 84 .4+ 0.3% 0.0+ 0% 0.0 + 0%
J-DRAGGN 96.3 £ 0.3% 84.5+0.4% 21.1+15.5% 2.4+ 1.8%
I-DRAGGN 97.1 +£0.3% 81.0 + 0.9% 97.0+ 0.0% 19.14+12.6%

Table 3: Accuracy results (mean and standard deviation across 3 random initializations) on both the standard and
zero-shot datasets. Bold indicates the singular model that performed the best, whereas italics denotes the best models
that were within the margin of error of each other.

are agnostic to the discretization of the world. The results are shown in Figure [6b] which again are consistent with
our hypothesis. Somewhat surprisingly though, while NH still outperforms BASE (p < 107159), it was much less
efficient than AMDP, which shows that the hierarchy itself was insufficient; the heuristic also plays an important
role. Additionally, NH suffered from two outliers, where the planning problem became more complex because the
solution was constrained to conform to the hierarchy; this is a well-known tradeoff in hierarchical planning [Dieterrich,
2000]. The use of heuristics in AMDP mitigated this issue. AMDP times almost stayed the same compared to the
regular domain, hence outperforming BASE and NH (p < 10~2%°). The larger domain size also reduced the effect of
hierarchical planning overhead: AMDP was only slower than BASE in 10% of the cases, all within < 4% of the time
it took for BASE. Comparing AMDP to BASE, we find that AMDP is 8 times as fast in over half the cases, 100 times
as fast in a quarter of the cases, and can reach up to 3 orders of magnitude in speedup. In absolute time, AMDP took
< 1s on 90% of the tasks; in contrast, BASE takes > 20s on half the tasks.

6.4 Generalization

Unlike efficiency, the ability for a model to generalize beyond what was seen at training time can be measured purely in
terms of grounding accuracy. Accordingly, we present language grounding accuracies for our two DRAGGN models
in in Table[3|and treat Single-RNN as a baseline.

All three models received the same set of training data, consisting of 2660 low-level action-oriented segments
and 1017 high-level goal-based sentences. All together, there are 17 unique combinations of action-oriented callable
units and respective binding arguments, alongside 10 unique combinations of goal-oriented callable units and binding
arguments present in the data. All three models also received the same set of held-out data consisting of 295 low-level
action-oriented segments and 114 high-level goal-oriented sentences.

In aggregate, the models that use callable units for both action and goal-based language grounding demonstrate
superior performance to the Single-RNN baseline, largely due to their ability to generalize, and output combinations
unseen at train time. We now consider these performance numbers by dataset.

6.4.1 Standard Dataset

Action Prediction: An action-oriented instruction is correctly grounded if the output trajectory specification corre-
sponds to the ground-truth action sequence. To ensure fairness, we augment the output space of Single-RNN to include
all distinct action trajectories found in the training data (an additional 17 classes). All models perform generally well
on this task, with Single-RNN correctly identifying the correct action callable unit on 95.7% of test samples, while
both DRAGGN models slightly outperform with 96.3% and 97.1% respectively.

Goal Prediction: An goal-based command is correctly grounded if the output of the grounding module corre-
sponds to the ground-truth (grounded) reward function. In our domain, all models predict the correct grounded reward
function with an accuracy of 81.0% or higher, with the Single-RNN and J-DRAGGN models being too close to call.

6.4.2 Zero-Shot Dataset

Action Prediction: The Single-RNN baseline model is completely unable to produce unit-argument pairs that were
never seen during training, whereas both DRAGGN models demonstrate some capacity for generalization. The I-
DRAGGN model in particular demonstrates a strong ability to disambiguate language pertaining to callable unit
prediction from language pertaining to binding argument prediction. This ability to disambiguate between the two
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outputs seemingly comes from the separate embedding spaces maintained for callable units and binding constraints
respectively.

Goal Prediction: The Single-RNN baseline is again completely unable to produce unit-argument pairs never
seen during training. However, while both DRAGGN models exhibit non-zero performance, the mean performance is
rather low, whereas the variance is quite high. Even with the separate embedding spaces for callable units and binding
arguments, the I-DRAGGN is unable to attain the same level of accuracy exhibited in the zero-shot action prediction
experiments.

6.5 Robot Demonstrations

We now outline a set of demonstrations conducted on a mobile robot, utilizing the Single-RNN and I-DRAGGN
models to ground and execute spoken natural language instructions in real time.

6.5.1 Abstraction

Using the trained grounding model and the corresponding AMDP hierarchy, we tested with a Turtlebot on a small-scale
version of the Cleanup World domain. To accommodate the continuous action space of the Turtlebot, the low-level,
primitive actions at Lj of the AMDP were swapped out for move forward, backward, and bidirectional rotation actions;
all other levels of the AMDP remained unchanged. The low level commands used closed loop control policies, which
were sent to the robot using the Robot Operating System Quigley et al.| [2009]. Spoken commands were provided
by an expert human user instructing the robot to navigate from one room to another. These verbal commands were
converted from speech to text using Google’s Speech API [[Googlel 2017|] before being grounded with the trained
Single-RNN model. The resulting grounding, with both the AMDP hierarchy level and reward function, fed directly
into the AMDP planner resulting in almost-instantaneous planning and execution. Numerous commands ranging from
the low-level “Go north” all the way to the high-level “Take the block to the green room” were planned and executed
using the AMDP with imperceivable delays after the conversion from speech to text. A video demonstration of the
end-to-end system is available online: https://youtu.be/9bU20ESRtvU

6.5.2 Generalization

In this section we use -DRAGGN to specify goal and action behaviors to a Turtlebot agent in a real environment
version of the Cleanup Domain. The natural language verbal command is first converted to text using Google’s
Speech API [Googlel 2017]. Next, we use -IDRAGGN to ground the natural language command to an executable task
on the robot. The agent then plans for the tasks using an Abstract Markov Decision Processes hierarchy [[Gopalan
et al., 2017] to speed up planning on the continuous domain.

The demo first highlights the robot’s capability to execute action specifications such as “go three steps down” and
“go up.” Second, we demonstrate goal-based tasks like “go to the green room” and “take the block to the blue room.”
Regardless of the command type, the robot maintains the ability to ground and plan in real time. Finally, we change
the map of the Cleanup domain to show that the robot can still ground the tasks in the new environment given task
specifications from I-DRAGGN. A video demonstration of the end to end task is submitted as supplemental material,
and is also available at this address: https://youtu.be/_ u8msi-nZTI.

7 Discussion

The results presented in the previous section highlight the capacity for neural-network based language grounding
models to improve accuracy, leverage abstraction, and display generalization. Taken together, they also form a more
cohesive picture showcasing the profound impact of task representation on model performance. Each type of ground-
ing model represents a specific choice of semantic task representation that, in turn, allows the model to yield certain
desirable properties. In Single-RNN, the representation was formed by simply including a latent language abstrac-
tion level with the inferred reward function to inform a more efficient hierarchical planner. In the DRAGGN models,
the representation changed more fundamentally, decomposing the constituent reward function components in order to
glean more information and generalize beyond the training data. We treat these findings as compelling evidence for the
importance of representation design in language grounding models and see the investigation of more cohesive repre-
sentations that integrate accuracy, efficiency, and generalization as an active direction of future work. We now discuss
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the experimental results for efficient abstraction and generalization separately, identifying limitations and points for
improvement.

7.1 Abstraction

While Single-RNN, our best grounding model, did achieve high performance and correctly grounded the vast ma-
jority of commands, it still suffered from a few errors that are worth analyzing. At the lowest level of abstraction,
the model experienced some confusion between robot navigation (agentinRoom) and object manipulation (blockIn-
Room) tasks. In the dataset, some users explicitly mention the desired object in object manipulation tasks while others
did not; without explicit mention of the object, these commands were almost identical to those instructing the robot to
navigate to a particular room. For example, one command that was correctly identified as instructing the robot to take
the chair to the green room in Figure[fa]is “Go down...west until you hit the chair, push chair north...” A misclassified
command for the same task was “Go south...west...north...” These commands ask for the same directions with the
same amount of repetition (omitted) but only one mentions the object of interest allowing for the correct grounding.
Overall, 83.3% of green room navigation tasks were grounded correctly while 16.7% were mistaken for green room
object manipulation tasks.

Another source of error involved an interpretation issue in the video demonstrations presented to users. The robot
agent shown to users as in Figure [da] faces south and this orientation was assumed by the majority of users; however,
some users referred to this direction as north (in the perspective of the robot agent). This confusion led to some
errors in the grounding of commands instructing the robot to move a single step in one of the four cardinal directions.
Logically, these conflicts in language caused errors for each of the cardinal directions as 31.25% of north commands
were classified as south and 15% of east commands were labeled as west.

Finally, there were various forms of human error throughout the collected data. In many cases, users committed
typos that actually affected the grounding result such as asking the robot to take the chair back to the green room instead
of the observed blue room. For some tasks, users often demonstrated some difficulty understanding the abstraction
hierarchy described to them resulting in commands that partially belong to a different level of abstraction than what
was requested. In order to avoid embedding a strong prior or limiting the natural variation of the data, no preprocessing
was performed in an attempt to correct or remove these commands. A stronger data collection approach might involve
adding a human validation step and asking separate users to verify that the supplied commands do translate back to
the original video demonstrations under the given language constraints as in MacMahon et al.| [2006].

7.2 Generalization

Our experiments show that the DRAGGN models improve over existing state-of-the-art in grounding action-oriented
language in an object manipulation domain. Furthermore, due to the factored nature of the output, the -lDRAGGN
model performs strongly in zero-shot action-oriented prediction.

Nevertheless, -DRAGGN did not perform as well as Single-RNN and J-DRAGGN on goal-oriented language in
the standard setting. This is possibly due to the small number of goal types in the dataset and the strong overlap in goal-
oriented language. Whereas the Single-RNN and J-DRAGGN architectures may experience some positive transfer
of information (due to shared parameters in each model), the - DRAGGN model does not because of its assumed
independence between callable units and binding arguments. This ability to allow for positive information transfer
suggests that J-DRAGGN would perform best in environments where there is a strong overlap in the instructional
language, with a relatively smaller but complex set of possible action sequences and goal conditions.

On action-oriented language in the zero-shot setting, -DRAGGN has grounding accuracy of around 20.2% while
I-DRAGGN achieves a near-perfect 97.0%. Since J-DRAGGN only encodes the input language instruction once, the
resulting vector representation is forced to characterize both callable unit and binding argument features. While this
can result in positive information transfer and improve grounding accuracy in some cases (specifically, goal-based
language), this enforced correlation heavily biases the model towards predicting combinations it has seen before. By
learning separate representations for callable units and binding arguments, -DRAGGN is able to generalize signifi-
cantly better. This suggests that -IDRAGGN would perform best in situations where the instructional language consists
of many disjoint words and phrases.

On goal-oriented language in the zero-shot setting, all models exhibit weak performance, although the - DRAGGN
does show some ability to generalize. This seems to indicate the difficulty of zero-shot language grounding in a
setting where the instructional language is complex, with multiple overlapping words and phrases, and high variance
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in expressive power. To better illustrate this, consider two commands from our goal-oriented dataset: “Go to the
red room,” vs. “Go from the red room to the blue room.” While both instructions ground to separate outputs (i.e
roomlsRed vs roomlsBlue), there is a lot of overlap in language, which would make it hard for the -DRAGGN to
learn effective embeddings in the binding argument space. Because goal-oriented language is less constrained and
generally more expressive than action-oriented language, zero-shot prediction is that much more difficult, and remains
an open problem.

While our results demonstrate that the DRAGGN framework is effective, more experimentation is needed to fully
explore the possibilities and weaknesses of such models. While we’ve already identified zero-shot goal prediction as
one such limitation, another shortcoming in the DRAGGN models is the need for segmented data. We found that all
evaluated models were unable to handle long, compositional instructions, such as “Go up three steps, then down two
steps, then left five steps”. Handling conjunctions of low-level commands requires extending our model to learn how to
perform segmentation, or producing sequences of callable units and arguments. In this work, we assume that the layout
of the training and testing environments are identical. Without this assumption, the scale of the testing domain could
dramatically differ from that of the training domain, rendering the grounding model completely incapable of handling
action-oriented commands. For instance, consider the model resulting from a training domain where the number of
action steps needed for completing tasks ranges from three to five. This model would experience difficulty fulfilling
action-oriented commands in a novel testing domain where the requisite number of action repetitions change to be
between ten and twenty steps. Note that this limitation is exactly one of the motivations for considering goal-oriented
grounding representations in MacGlashan et al.|[2015] and our work.

8 Conclusion

Real-world language grounding systems must extend beyond highly accurate identification of tasks specified through
natural language if they are to become widespread throughout the home and workplace. These systems must not only
be accurate in their interpretation of language but also be efficient in their execution of the identified task and be capable
of leveraging linguistic structure to generalize beyond commands only seen at training time. In this work, we show that
the choice of semantic goal representation used within a language grounding model has powerful implications for its
ability to meet these three desired criteria. Moreover, we introduce two distinct grounding models, each with their own
unique goal representation, that individually demonstrate improved efficiency through abstraction and generalization
over baseline models. By explicitly considering the latent level of abstraction in language, our Single-RNN model
can interpret a much wider range of natural language commands and leverage an existing hierarchical planner for
efficient execution of robot tasks. In parallel, our DRAGGN architectures factor the output space according to the
compositional structure of our semantic representation thereby allowing the model to exhibit mild generalization to
commands not seen during training.

There are limitations of this work that offer rich directions for future language grounding research. Here we have
assumed that all language commands exist at precisely one level of abstraction; clearly, in natural human discourse,
people shift freely between levels of abstraction within a single instruction. For instance, “go to the kitchen and
take a few steps to your left” Additionally, humans naturally use referential expressions in language to quickly
resolve ambiguities. Through the use of determiners, we would enable future language grounding systems to handle
commands like “bring the chair that’s in the blue room.” Commands that not only indicate what should be done but
also specify how it should be done pose another challenge. Allowing for commands to be qualified by adverbs like
“quickly” or “safely” could require another extension of a semantic representation to explicitly model the qualifiers.
In parallel, our factored output space, while being representative of a large body of tasks, is still relatively small. We
plan on scaling up to domains with larger output spaces potentially requiring us to explore other sequence-to-sequence
mapping approaches that can better handle the increase.
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