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1. Introduction

High-dimensional state spaces are common in deep reinforcement learning (Mnih et al.,
2015). Although states may be as large as images, typically the information required to
make good decisions is much smaller. This motivates the need for state abstraction, the
process of encoding states into compressed representations that retain features that inform
action and discard uninformative features.

One principled approach to state abstraction is bisimulation in Markov decision processes
(MDP) (Dean and Givan, 1997). Bisimulations formalize the notion of finding a smaller
equivalent abstract MDP that preserves transition and reward information; i.e., it retains
relevant decision-making information while reducing the state space size. We demonstrate
this idea in Figure 1, where a grid world with fifteen states is compressed into an MDP with
three states.

In this paper, we introduce an approach to finding approximate MDP bisimulations using
the variational information bottleneck (VIB, Tishby et al. (2001); Alemi et al. (2017)). The
VIB framework is typically used to learn representations that predict quantities of interest
accurately while ignoring certain aspects of the domain.

VIB methods have previously been applied to state abstraction, but the learned abstrac-
tion does not in general take the form of an MDP bisimulation (Abel et al., 2019). This is
problematic, because the abstract MDP can only represent the policies it was trained on,
but cannot be used to plan for new tasks. To resolve this, whereas Abel et al. (2019) use the
abstract states to predict actions from an expert policy, we use abstract states to predict
learned Q-values in the VIB objective.

In our setup, a learned encoder maps a state s in the original MDP into a continuous
embedding z. We map the continuous state z onto a discrete abstract state s̄ by performing
inference in a learned probabilistic model. Our VIB method learns an encoder (i.e. a state
abstraction s 7→ z) that is predictive of the Q-values that are returned by a deep Q-network,
but is regularized using structured prior over the embedding space (z). Concretely, we
propose using priors that prefer clusters with Markovian transition structure. A sequence of
embedded states (z1, z2, . . .) is treated as observations from either a Gaussian mixture model
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Figure 1: The Column World (left) has
3 columns and 30 rows (we only show 6
rows); the agent travels between adjacent
cells. Since the agent gets a reward 1 for
being in the right column (red) and 0 other-
wise, it is irrelevant in which row it is located.
Hence, the environment can be simulated
by an MDP with three states (right).
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Figure 2: During inference, our model first
takes a state, represented as an image here,
and encodes it as a continuous vector z
(green). Then, we predict state-action values
from z for each action a (red) and encode
z into a discrete abstract state s̄ using our
prior (blue).

(GMM) or an action-conditioned hidden Markov model (HMM), where each embedding zt is
emitted from a latent cluster representing abstract state s̄t. In the HMM case, we also learn
a cluster transition matrix for each action, serving as the abstract MDP transition model.
The key insight is that abstract states s̄ group together ground states s (and embeddings
z) with similar Q-values and similar transition properties, thereby forming an approximate
MDP bisimulation.

In addition to the neural encoder, the parameters of our GMM and HMM priors are
learned as well. The learned parameters (cluster means, covariances, and discrete transition
matrix between clusters) therefore form our abstract MDP state space and transition function.
When presented with tasks not seen during training, we can use the learned abstract model
to plan to solve these tasks without additional learning efficiently.

2. Learning bisimulations

We propose a variational method for finding bisimulations directly from experience. The
end result of our process is an abstract MDP, in which we can efficiently plan policies. Our
model consists of three parts:

1. A deep neural encoder q(z | s) that projects states (usually represented as images)
onto a low-dimensional continuous latent space (Figure 2 left).

2. A generative model p(z, s̄) with a tractable posterior p(s̄ | z), that encodes the prior
belief that the experience was generated by a small discrete Markov process (Figure 2
lower right).

3. A linear decoder p(y | z, a) that predicts state-action values from the continuous
encodings (Figure 2 upper right).

We tie the three models together using the deep variational information bottleneck
method (Alemi et al., 2017).
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2.1. Bisimulation as an information bottleneck

We apply deep IB methods to learn bisimulations as follows. Let q(st, a, y, st+1) be a
empirical distribution representing a dataset of transitions from state st to state st+1 under
an action a, selected by an arbitrary policy π. y = Qπ(st, a) denotes the state-action value
for the pair (st, a) under π. We will use the IB method to find a compact latent encoding
of st that enables us to predict y while simultaneously matching a prior on the temporal
dynamics of the process that generated the data. Let s = (st, st+1) denote a sequential pair
of states and z = (zt, zt+1) a corresponding sequential pair of latent states. The standard IB
formulation is:

RIB = Eq(s,a,y,z)
[
I(y; z|a)− βI(s; z|a)

]
≥ Eq(s,a,y,z)

[
log p(y|z, a)− β log

q(z|s, a)

p(z|a)

]
≥ Eq(s,a,y,z)

[
log p(y|zt, zt+1, a)− q(zt, zt+1|st, st+1, a)

p(zt, zt+1|a)

]
, (1)

where use q(s, a, y, z) = q(st, a, y, st+1)q(z|s, a) as shorthand notation and expand s =
(st, st+1) and z = (zt, zt+1) in the last identity.

We make two architectural decisions grounded in standard Markov assumptions. First,
we assume that the value y is conditionally independent of zt+1 given zt: q(y|zt, zt+1, a) =
q(y|zt, a). Second, we assume that zt is conditionally independent of zt+1, st+1, and a given
st and likewise that zt+1 is conditionally independent of zt, st, and a: q(zt, zt+1|st, st+1, a) =
q(zt|st)q(zt+1|st+1). Together, these two assumptions yield an IB lower bound of the form

LIB = Eq(s,a,y,z)
[

log p(y|zt, a)− β log
q(zt|st)q(zt+1|st+1)

p(zt, zt+1|a)

]
. (2)

LIB presents a trade-off between encoding enough information of st in order to predict y
(the first term of Equation 2) and making the sequence (zt, zt+1) likely under our prior (the
second term). This prior, p(zt, zt+1|a), is a key element of our approach and is discussed in
the next section.

Notice that log p(y | zt, a) (the first term in Equation 2) predicts a state-action value,
not a reward. This provides additional supervision. Without it, the model tends to collapse
all states where the agent does not receive a reward (if the reward function is sparse) into a
single abstract state.

2.2. Structured Priors

The denominator of the second term in Equation 2 p(zt, zt+1|a) is the prior. We use this
prior to incorporate an inductive bias, which is that we are observing a discrete Markov
process. We evaluate two priors for this purpose: a prior based on a Gaussian mixture model
and one based on an action-conditioned Hidden Markov model.
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2.2.1. GMM Prior

We assume K components, each parameterized by a mean µk and a covariance Σk

pgmm(zt) =

K∑
k=1

p(zt|ct = k)p(ct = k) (3)

=
K∑
k=1

N (zt|µk,Σk)ρk. (4)

Here ρk = p(ct = k) denotes the probability that zt was generated by component k and
N (zt|µk,Σk) = p(zt|ct = k) is the Gaussian distribution for the kth component. In this
paper, we constrain Σk to be diagonal. For the GMM prior, we set p(zt, zt+1|a) = pgmm(zt)
and allow µk and Σk to vary; ρk is uniform and fixed. This encodes a desire to find a latent
encoding generated by membership in a finite set of discrete states (the mixture components).
Each mixture component corresponds to a distinct abstract state. The weighting function ρk
is the probability that the continuous encoding zt was generated by the kth abstract state.

2.2.2. HMM Prior

To capture the temporal aspect of a Markov process, we can model the prior as an action
conditioned hidden Markov model (an HMM). Here, the “hidden” state is the unobserved
discrete abstract state ct used to generate “observations” of the latent state zt. As in the
GMM, there are K discrete abstract states, each of which generates latent states according
to a multivariate Normal distribution with mean µk and (diagonal) covariance matrix Σk.
Since we are modelling a Markov process, we include a separate transition matrix T a for
each action a where T ak,l denotes the probability of transitioning from an abstract state k to
an abstract state l under an action a. Using this model, the prior becomes:

phmm(zt, zt+1|a) =

K∑
k=1

K∑
l=1

p(zt|ct = k)p(zt+1|ct+1 = l)p(ct+1 = l|ct = k, a)p(ct = k) (5)

=
K∑
k=1

K∑
l=1

N (zt|µk,Σk)N (zt+1|µl,Σl)T
a
k,lρk (6)

As with the GMM prior, we allow the parameters of this model (µk, Σk, and T a) to vary,
except for ρk, which is uniform and fixed. The transition model T a found during optimization
is a discrete conditional probability table that defines a discrete abstract MDP. Essentially,
this method finds the parameters of a hidden discrete abstract MDP that fits the observed
data over which the loss of Equation 2 is evaluated.

2.3. Deep encoder and end-to-end training

The lower bound LIB (Equation 2) is defined in terms of three distributions that we need
to parameterize: the encoder q(z|s), the Q-predictor p(y|zt, a) and the prior p(zt, zt+1|a).
The encoder q(z|s) is a convolutional network that predicts the mean µCNN (st) and the
diagonal covariance ΣCNN (st) of a multivariate normal distribution. We used a modified
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version of the encoder architecture from (Ha and Schmidhuber, 2018)1: five convolutional
layers followed by one fully-connected hidden layers and two fully-connected heads for µCNN

and ΣCNN , respectively. The Q-predictor p(y|zt, a) is a single fully-connected layer (i.e. a
linear transform). We chose this parameterization to impose another constraint on the latent
space: the encodings z not only need to form clearly separable clusters to adhere to the
prior, but also linearly dependent on their state-action values for each action. When we train
on state-action values for multiple tasks, we predict a vector y instead of a scalar. Using the
reparameterization trick to sample from q(z|s), we can compute the gradient of the objective
with respect to the encoder weights, Q-predictor weights and the prior parameters. The
prior parameters include the component means and variance, together with the transition
function for hidden states in the HMM.

2.4. Planning in the Abstract MDP

A key aspect of our approach is that we can solve new tasks in the original problem domain
by solving a compact discrete MDP for new policies. This is one of the critical motivations
for using bisimulations: optimal policies in the abstract MDP induce optimal policies in
the original MDP (Givan et al., 2003). We define the abstract MDP M̄ = 〈S̄, A, T̄ , R̄, γ〉
with the discrete transition table learned by the HMM prior. The abstract reward function
can encode any reward function in the ground MDP by projecting ground rewards into the
abstract space using the encoder. Now, we can use standard discrete value iteration to find
new policies. These policies can be immediately applied in the ground MDP: observations
of state in the ground MDP can be projected into the discrete abstract MDP and the new
policy can be used to calculate an action.

3. From VIB abstraction to bisimulation

The HMM embedded in our model learns parameters of a compact discrete MDP (Subsection
2.2), but it is not a priori clear that this abstraction is also a bisimulation. We show that
under idealized conditions, every optimal solution to the objective LIB is a bisimulation.
Under assumptions state in Appendix C, the following theorem holds.

Theorem 5
There exist model parameters θ that reach the global maximum of LIB(θ) = −β logK with β >
0. The abstraction mapping φ induced by any such model parameters is a bisimulation.

4. Shapes World Experiment

We use a modified version of the Pucks World from Biza and Platt (2019). The world is
divided into a 4×4 grid and objects of various shapes and sizes can be placed or stacked in
each cell. States are represented as simulated 64×64 depth images. The agent can execute
a PICK or PLACE action in each of the cells to pick up and place objects. The goal of
abstraction is to recognize that the shapes and sizes of objects do not influence the PICK
and PLACE actions. We instantiate eight different tasks described in Figure 4.

1. Appendix A.1. in version 4 of their arXiv submission.
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Source tasks 2S 3S 2R 3R 2&2S 3ST 2D 3D

2S 99.9 ±0.1 - 98.6 ±0.5 - - - 98 ±0.7 -
2S, 2R 99.2 ±0.9 - 99.9 ±0.1 - - - 81.5 ±3.1 -

3S 90 ±2.6 98.2 ±0.8 75.7 ±2.7 40.8 ±14.7 - 61.9 ±7.5 67 ±3.6 24.9 ±7.7

3ST 74.4 ±3.5 21.8 ±6.4 98.8 ±0.2 73.9 ±4.4 - 98.8 ±0.4 83.6 ±2.7 39.3 ±4.2

3S, 3R 93.8 ±2.2 88.8 ±3.3 91.5 ±1.5 88.4 ±2.7 - 74.8 ±6.1 86 ±3.4 65.2 ±6.6

3S, 3ST 98.1 ±1.2 97.8 ±1.2 98.1 ±1.7 75.2 ±4.2 - 92.2 ±1.8 84.1 ±4.3 51.3 ±6.9

2&2S 76.9 ±8.2 16.2 ±2.5 65.8 ±3.6 24.9 ±4 46.2 ±7.1 4.7 ±2.4 46.6 ±5.5 12.2 ±2.8

2&2S, 3S 92.8 ±2.7 33.9 ±3.7 67.6 ±4.4 30.8 ±3.2 38 ±1.7 9.6 ±2.6 51.5 ±5.1 16.8 ±3.4

2&2S, 3R 61.8 ±5.4 18.4 ±3.1 71.6 ±3.1 70.7 ±4.8 33.9 ±7.6 10.3 ±4.2 50.4 ±3 10.1 ±1.1

2&2S, 3ST 71.5 ±7.6 24.4 ±3.6 75.6 ±4.4 29.6 ±2.1 36.1 ±4.4 33.7 ±4.5 53.4 ±4.9 15 ±2.4

Random Policy 9.9 0.5 19.4 1.9 1.2 3.6 15.4 1.5

Table 1: Transfer experiments in the Shapes World environment. In the same order as the
examples in Figure 4, the tasks are stacking two/three objects (2S/3S), two/three objects
in a row (2R/3R), two/three objects diagonal (2D/3D), two and two stacks (2&2S) and
stairs from three objects (3ST). We train our model with the HMM prior on one or more
source tasks and then use the abstract MDP induced by the HMM prior to plan for every
task. We report the success rate of reaching each goal (%) with a budget of 20 time steps;
we calculate means and standard deviations over 10 runs. If a model is trained on tasks
involving two objects, we do not test it on tasks with three objects and so on.

We test the ability of the learned abstract models to plan for new goals. We are able to
reach a goal only if it is represented as a distinct abstract state in our model–such abstract
states can only exist if the training dataset contains examples of the goal. Therefore, we
can generalize to unseen goals in the sense that our model does not know about these goals
during training, but they are represented in the dataset. During planning for a particular
goal, we create a new reward function for the abstract model and assign a reward 1 to
all transitions in the dataset that reach that goal. Then, we run Value Iteration in the
abstract model and use the found state-action values to create a stochastic softmax policy.
See Appendix B.3 for more details.

Our model is trained on one or two tasks and we report its ability to plan for every single
task (Table 1). For tasks with a moderate number of abstract states (e.g. 2 objects stacking
in a 4×4 grid world has 136 abstract states in the coarsest bisimulation), our method can
successfully transfer to new tasks of similar complexity without additional training. For
instance, the abstract model learned from two pucks stacking can plan for placing two and
three pucks in a row with a 90%+ success rate. The middle section of Table 1 shows tasks
with coarsest abstractions at the limit of what our abstract model can represent. We can
still transfer to similar tasks with a success rate higher than 75%.

The bottom section of Table 1 demonstrates that our algorithm can find partial solutions
even if the number of abstract states in the coarsest bisimulation exceeds the capacity of
the HMM prior. See Appendix B for additional experiments.
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Appendix A. Related Work

Li et al. (2006) analyzed the topology of the space of abstractions, including bisimulations.
Further analysis by Abel et al. (2016) proved bounds on the regret of planning an optimal
policy in an abstracted MDP compared to the ground MDP. A work more closely related to
ours uses a deep neural net to learn the bisimulation metric between states represented by
images (Castro, 2019). The main difference between this line of work and ours is that we
aim to learn an abstract MDP with discrete states, in which we can plan efficiently, whereas
bisimulation metric is more commonly used to find similar states for the purpose of transfer
of policies (Castro and Precup, 2010, 2011) or as an auxiliary loss (Gelada et al., 2019).

Several recent neural-net-based methods use discrete representation for planning. Serban
et al. (2018) trained a factored transition given a predefined discrete state abstraction.
They focused their empirical evaluation on Natural language processing tasks. Kurutach
et al. (2018) proposed a Generative adversarial network for learning a forward model with
either continuous or discrete latent states. While they show superior performance on a rope
manipulation task with continuous latent states, the discrete state representation learning
and planning was only evaluated on a toy 2D navigation task.

Corneil et al. (2018) and van der Pol et al. (2020) both learn an abstract MDP with discrete
states based on ground states represented as images. Corneil et al. (2018) used variational
inference (Kingma and Welling, 2014) and the Concrete distribution reparameterization
trick (Maddison et al., 2017; Jang et al., 2017) to learn a state representation with binary
latent vectors. Their method is superior to model-free and other model-based approaches
on the VizDoom 3D navigation task. Unlike our work, they do not focus on the multi-goal
planning setting. But, their method is able to adapt to changes in the dynamics of the
environment quickly. Recent work by van der Pol et al. (2020) involves learning a forward
model with a continuous state representation using a loss function based on the theory of
MDP homomorphisms (a generalization of bisimulation). This work differs from our work in
that the discrete model is not learned directly–it is obtained using a heuristic that samples
a large number of discrete states from encodings of observed states and then prunes them.
Other works consider action abstractions, included in the MDP homomorphisms framework,
for the purpose of generalizing plans across problem instances (Bonet et al., 2019) and
performing policy search in large action spaces (Biza and Platt, 2019).

In the context of optimal control, Watter et al. (2015) used variational inference to
learn a locally linear model of non-linear dynamics, and Matsubara et al. (2014) encoded
a continuous state space into discrete clusters with both a flat and a factored Hidden
Markov Model in order to reduce the computational costs of solving Kullback-Leibler control
problems (Kappen et al., 2013).

Appendix B. Additional Experiments

B.1. Column World

The purpose of this experiment is to compare our method to a model-based approximate
bisimulation baseline in a simple discrete environment. Column World is a grid world with
30 rows and 3 columns (Lehnert and Littman, 2018). The agent can move left, right, top
and down, and it receives a reward 1 for any action executed in the right column; otherwise,
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it gets 0 reward. Hence, the agent only needs to know if it is in the left, middle or right
column, as illustrated in Figure 1.

First, we train a deep Q-network on this task and use it to generate a dataset of transitions.
As a baseline, we train a neural network model to predict rt and st+1 given (st, at). We then
find a coarse approximate bisimulation for this model using a greedy algorithm from (Dean
et al., 1997) with the approximation constant ε set to 0.5. We compare it with our method
trained with an HMM prior on Qπ(st, at) predicted by the deep Q-network. We represent
each state as a discrete symbol and use fully-connected neural networks for all of our models.
See Appendix B.2 for details.

Figure 3 shows the purity and the size of the abstractions found by our method and
the baseline as a function of dataset size. We need a ground-truth abstraction to calculate
the abstraction purity–in this case, it is the three-state abstraction shown in Figure 1 right.
We assign each ground state to an abstract state (Figure 2) and find the most common
ground-truth label for each abstract state. The abstraction purity is the weighted average of
the fraction of members of an abstract states that share its label. We include a snippet of
code that computes purity in Appendix B.1.

Both methods can find an abstraction with high purity. However, approximate bisim-
ulation does not reduce the state space (there are 90 ground states) until the model of
the environment is nearly perfect, which requires more than 11000 training examples. Our
method always finds an abstraction with six states (the number of abstract states is a
hyper-parameter), but our method finds a compact high-purity abstraction much faster than
the baseline. Notice that we parameterize our method with more abstract states than the
size of the coarsest bisimulation. In practice, this over-parameterization aids convergence.

B.2. Shapes World GMM and HMM comparison

We test the ability of our algorithm to find accurate bisimulation partitions. Table 2 shows
the results for our method for both the GMM and the HMM prior. Both models reach a high
abstraction purity (described in Section B.1) in all cases except for the three objects stacking
task in a 4×4 grid world. The smallest MDP for which a bisimulation exists contains 936
abstract states; our algorithm has 1000 possible abstract states available. Our experiment
shows that the HMM prior can leverage the temporal information, which is missing from
the GMM, to allocate abstract states better.
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Setting GMM HMM

2 pucks, 2×2 grid 100 ±0 97 ±1

2 pucks, 3×3 grid 100 ±0 98 ±1

2 pucks, 4×4 grid 99 ±1 97 ±0

3 pucks, 2×2 grid 99 ±1 97 ±1

3 pucks, 3×3 grid 99 ±1 96 ±1

3 pucks, 4×4 grid 56 ±15 89 ±1

2 objects, 2×2 grid 100 ±0 97 ±1

2 objects, 3×3 grid 100 ±0 97 ±0

2 objects, 4×4 grid 100 ±0 97 ±0

3 objects, 2×2 grid 100 ±0 97 ±1

3 objects, 3×3 grid 98 ±1 96 ±1

3 objects, 4×4 grid 67 ±3 91 ±1

Table 2: Results for learning abstractions
for stacking objects. The top section in-
volves manipulating objects of only one type
(pucks), whereas the bottom section involves
four object types (puck, box, square and
plus. GMM and HMM refer to the two
types of priors our model uses (Subsection
2.2) and we report abstraction purities (%).
We report means and standard deviations
over 10 runs.
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Figure 3: Comparison between model-based
approximate bisimulation and our method in
Column World (Lehnert and Littman, 2018).
We vary the dataset sizes used for learning
the bisimulation from 1000 to 20000 sam-
ples. Abstraction size refers to the number
of abstract states.

Appendix C. Theoretical Analysis

We analyze the idealized case where the following assumptions hold:

1. The transitions in the ground MDP are deterministic;

2. The HMM prior has enough components to represent a bisimulation, no two components
share a mean;

3. The prior over hidden states p(ct = k) is fixed;

4. The encoder is deterministic and the prior observation model is an identity function
over component means;

5. The decoder p(y|zt, a) makes a prediction for each component using a table of state-
action values.

Assumptions on the MDP
Let M = 〈S,A, T,R, γ〉 be a ground MDP with finite S and A, an arbitrary R and a
deterministic T . We assume there exists a bisimulation mapping φbisim : S → C with K
abstract states (|C| = K). φbisim does not have to be the coarsest bisimulation (i.e. the one
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using the lowest possible number of abstract states).

Assumptions on the model
Let f : S → RD be a deterministic encoder. For simplicity, we use a Hidden Markov
Model with a Kronecker delta observation model parameterized by K component means
C = {c1, c2, ..., cK} with probability density function

p(z|c = k) = I [µk = z] . (7)

The encoder and the Hidden Markov Model induce an abstraction mapping φ : S → C

φ(s) = arg max
c∈C

p(c|f(s)). (8)

We assume ∀c,c′∈Cµc 6= µc′ (i.e. no two components share their means) and ∀s∈S∃c∈Cf(s) =
µc (i.e. each encoding equals to some cluster mean). The component prior p(c) assign a
uniform probability to each cluster to match our experimental setting.

Finally, we assume the decoder p(y|z, a) is tied to the cluster assignment φ. That is, each
components has a parameter qc ∈ R|A|, which stores the state-action value of this component
for each action. The decoder probability density is a normal distribution with a mean of qc,a
given an action a and a fixed standard deviation σ

p(y|z, a) = N (y|qφ(z),a, σ2). (9)

We can decompose the objective into a Q-value loss LQ and a prior loss LP

LQ(θ) =
1

σ|S||A|
∑

s∈S,a∈A

(
Q∗(s, a)− qφ(f(s)),a

)2
, (10)

LP (θ) = − 1

|S||A|
∑

st,st+1∈S,a∈A
T (st, a, st+1) log

(
∑

ct,ct+1∈C
p(f(st)|ct)p(f(st+1)|ct+1)p(ct)p(ct+1|ct, a)

)
, (11)

LIB(θ) = −LQ(θ)− βLP (θ). (12)

Definition 1 An abstraction mapping φ is homogeneous if for each s, s′ ∈ S, a ∈ A, ĉ ∈ C
φ(s) = φ(s′) implies

∑
ŝ∈φ−1(ĉ) T (s, a, ŝ) =

∑
ŝ∈φ−1(ĉ) T (s′, a, ŝ).

Lemma 2 Let φ be an abstraction mapping that is a Q∗-irrelevance abstraction and is also
homogeneous. Then φ is a bisimulation.

Proof Fix an abstract state c and an action a. For each s, s′ ∈ φ−1(c) we have thatQ∗(s, a) =
Q∗(s′, a) (by Q∗-irrelevance) and ∀ĉ ∈ C

∑
ŝ∈φ−1(ĉ) T (s, a, ŝ) =

∑
ŝ∈φ−1(ĉ) T (s′, a, ŝ) (by φ

13
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being homogeneous). Let us expand the state-action values of (s, a) using the Bellman
equation

Q∗(s, a) = R(s, a) + γ
∑
ŝ∈S

T (s, a, ŝ)V ∗(s) (13)

= R(s, a) + γ
∑
ĉ∈C

T (s, a, ĉ)V ∗(ĉ) (14)

= R(s, a) + γx. (15)

We can perform a similar expansion for (s′, a)

Q∗(s′, a) = R(s′, a) + γ
∑
ĉ∈C

T (s′, a, ĉ)V ∗(ĉ) (16)

= R(s′, a) + γ
∑
ĉ∈C

T (s, a, ĉ)V ∗(ĉ) (17)

= R(s′, a) + γx (18)

We write T (s, a, ĉ) as a shorthand for
∑

ŝ∈φ−1(ĉ) T (s, a, ŝ). T (s′, a, ĉ) = T (s, a, ĉ) holds

for all abstract states if φ(s) = φ(s′) because φ is homogeneous. All states mapped to a
particular abstract state have the same value (for an optimal policy) due to Q∗-irrelevance;
hence, we can write V ∗(ĉ).

Since Q∗(s, a) = Q∗(s′, a) and x = x it follows that R(s, a) = R(s′, a) (i.e. φ is
reward-respecting). A reward-respecting homogeneous state abstraction is a bisimulation by
definition.

Lemma 3 There exist model parameters θ such that LQ(θ) = 0.

Proof Strategy: we can achieve zero LQ by assigning states into components such that
states in each component have equal state-action values for all actions. We need to show
that there are enough components to perform this assignment.

Parameters θ induce an abstraction mapping φ. Assume that LQ(θ) = 0. Then for
each c ∈ C, s, s′ ∈ φ−1(c), a ∈ A we have (Q∗(s, a) − Q∗(s′, a))2 = 0, which implies
|Q∗(s, a) − Q∗(s′, a)| = 0. Hence, φ is a Q∗-irrelevance abstraction (Li et al., 2006). By
Li et al. (2006), for each bisimulation abstraction there exists a Q∗-irrelevance abstraction
that is equal in size or coarser (i.e. it uses fewer abstract states). By our assumption that
we have enough components to represent a bisimulation abstraction, there are also enough
components to represent a Q∗-irrelevance abstraction.

Lemma 4 There exist model parameters θ such that LP (θ) = logK. LP (θ) = logK is the
global minimum.

14



Learning Discrete State Abstractions With Deep Variational Inference

Figure 4: Goal states for tasks in Shapes World. There are four types of objects–pucks,
boxes, squares and pluses–placed in a grid world. From left to right we have examples of goal
states for two objects stacking, three objects stacking, two objects in a row, three objects in
a row, two objects diagonal, three objects diagonal, two and two objects stacking, stairs
from three objects.

Proof Under our assumptions, we can reduce the prior loss function to

LP (θ) = − 1

|S||A|
∑

st∈S,a∈A,st+1∈S
T (st, a, st+1) log

p(φ(f(st+1))|φ(f(st)), a)

K
. (19)

The minimum of this loss function is achieved when the term p(φ(f(st+1))|φ(f(st)), a) = 1
for all states and actions. Since we assume the transition dynamics of the ground MDP
are deterministic, this transition model is only possible if the abstraction mapping φ
is homogeneous. Our model can represent such abstraction mapping because, by our
assumption, it can represent a bisimulation, which is homogeneous.

Theorem 5 There exist model parameters θ that reach the global maximum of LIB(θ) =
−β logK with β > 0. The abstraction mapping φ induced by any such model parameters is
a bisimulation.

Proof Since we assume we have enough components to represent a bisimulation, we can
represent a Q∗-irrelevance abstraction (by Lemma 2) that is also homogeneous (by Lemma
3). Any such abstraction is a bisimulation by Lemma 1.

Appendix D. Experimental Details

D.1. Columns World

The deep Q-network that is used to collect the dataset has two hidden layers of 256 neurons
followed by ReLU activation functions. We train it for 40000 time steps with an ε-greedy
policy; ε linearly decays from 1 to 0.1 over 20000 time steps. We use a learning rate of
0.0001, 32 mini-batch size, the target network is updated every 100 time steps and we use
prioritized replay with the default settings (Schaul et al., 2016). The optimizer used for
training is mini-batch gradient descent with momentum set to 0.9. The dataset for training
the abstract and direct models is collected after training with ε set to 0.5. We compute the
abstraction purity over every possible ground state.
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Each state is represented as a 90-dimensional one-hot encoded vector. As a baseline, we
train a model with two fully-connected layers of 128 neurons followed by ReLU activations
and two heads, one for predicting the reward and the other for the next state. We use a
mean squared error loss for the reward prediction and cross-entropy loss for the next state
(we treat each dimension of the predicted 90-dimensional vector as a probability of being in
that particular state). Finally, we run an approximate partition iteration algorithm following
Dean et al. (1997).

Our model with an HMM prior uses the same architecture as the above model, except it
makes only one prediction: the state-action value associated with a given state-action pair.
We set the number of hidden states to 6, the observation model of the HMM is 32-dimensional,
encoder and model learning rates are 0.01, β is 0.0001, the means of the HMM observations
are initialized with 0 mean and 0.01 standard deviation and the diagonal covariances are
initialized with -1 mean and 0.1 standard deviation before being exponentiated. We train
the models using the Adam optimizer (Kingma and Ba, 2015).

D.2. Shapes World

For dataset collection, the input image is resized to 64×64 before being fed into a deep
Q-network. We use four convolutional layers with 32, 64, 128, and 256 filters; the filter size
is four and the stride is set to two (each convolutional downsamples the input by a factor
of two); we use ”same” padding. The convolutions are followed by a single fully-connected
layer with 512 neurons and a head for predicting the state-action values. The learning rate
is set to 0.00005, the batch size is 32, the buffer size is 100000 and we train for 100000 steps.
Actions are selected with an ε-greedy policy–ε is linearly decayed from 1.0 to 0.1 over 50000
time steps. We collect a dataset of 100000 transitions after training the model with ε set to
0.1. 80% of the dataset is used for training and 20% for computing the abstraction purity.

Our model uses the same neural network, except we insert batch normalization between
each layer and its activation function (we use ReLU) (Ioffe and Szegedy, 2015). The model
predicts a 32-dimensional vector of means and a diagonal covariance, from which we sample
the continuous encoding z. The GMM or HMM uses 1000 components (hidden states), the
initial means of the components are drawn from a Gaussian distribution with 0 mean and
0.1 variance. The variances are drawn from a Gaussian with -1.0 mean and 0.1 before being
exponentiated. We train the model for 50000 steps, then we collect batch normalization
statistics over the whole dataset, and we resume training only the prior with a fixed encoder
and unfrozen component weights p(ct) (previously held uniform fixed) for another 50000
steps. β is set to 10−6, encoder learning rate to 10−3 and prior learning rate to 10−2. We
train the model with Adam optimizer (Kingma and Ba, 2015).

To get a reward function over the abstract MDP induced by the HMM, we find abstract
states with 99% of ground states that are mapped to them being goal states for a given goal.
We plan state-action values for each abstract-state action pair using Value Iteration and run
an agent with a softmax policy with τ set to 10−2 for 100 episodes.

We ran a hyper-parameter search for the learning rates and β on the task of stacking three
pucks and then used the same parameters for all other experiments. We tried the following
learning rates: {0.005, 0.001, 0.0005, 0.0001} and β: {0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}.
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