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Abstract

“As has often been the case with NP-completeness proofs, PPAD-completeness proofs will be even-
tually refined to cover simpler and more realistic looking classes of games. And then researchers will
strive to identify even simpler classes.” –Papadimitriou (chapter 2 of [37])

In a landmark paper [39], Papadimitriou introduced a number of syntactic subclasses of TFNP
based on proof styles, that (unlike TFNP), admit complete problems. A recent series of results [12,
19, 6, 7, 8, 9] has shown that finding Nash equilibria is complete for PPAD, a particularly notable
subclass of TFNP. A major goal of this work is to expand the universe of known PPAD-complete
problems. We resolve the computational complexity of a number of outstanding open problems with
practical applications.

Here is the list of problems we show to be PPAD-complete, along with the domains of practical
significance: Fractional Stable Paths Problem (FSPP) [21] - Internet routing; Core of Balanced Games
[41] - Economics and Game theory; Scarf’s Lemma [41] - Combinatorics; Hypergraph Matching [1]-
Social Choice and Preference Systems; Fractional Bounded Budget Connection Games (FBBC) [30]
- Social networks; and Strong Fractional Kernel [2]- Graph Theory. In fact, we show that no fully
polynomial-time approximation schemes exist (unless PPAD is in FP).

This paper is entirely a series of reductions that build in nontrivial ways on the framework established
in previous work. In the course of deriving these reductions, we created two new concepts - preference
games and personalized equilibria. The entire set of new reductions can be presented as a lattice with the
above problems sandwiched between preference games (at the “easy” end) and personalized equilibria
(at the “hard” end). Our completeness results extend to natural approximate versions of most of these
problems. On a technical note, we wish to highlight our novel “continuous-to-discrete” reduction from
exact personalized equilibria to approximate personalized equilibria using a linear program augmented
with an exponential number of “min” constraints of a specific form. In addition to enhancing our reper-
toire of PPAD-complete problems, we expect the concepts and techniques in this paper to find future
use in algorithmic game theory.
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1 Introduction

Intuitively, the notion of stability implies the absence of oscillations over time and encompasses the
concepts of fixed points and equilibria. Stability is important in a variety of fields ranging from the practical
- the Internet - to the theoretical - combinatorics and game theory. For important practical systems (e.g.
Internet), the existence and computational feasibility of stable operating modes is of profound real-world
significance. On the more abstract front, the study of stable solutions to combinatorial problems has a
distinguished tradition dating back to, at least, the Gale-Shapley algorithm [17]. It is often the case, as
with Nash’s celebrated theorem [36], that fractional stable points are guaranteed to exist even when integral
points don’t. In this paper, we focus on fractional stability and resolve the computational complexity of a set
of eight problems with applications to a variety of different domains. Six of these are pre-existing problems.
Below we provide elaborate motivation for two of the pre-existing problems - Fractional Stable Paths
Problem (FSPP) and Core of Balanced Games. The remaining four are: Scarf’s lemma, a fundamental
result in combinatorics with several applications [41], Fractional Hypergraph Matching [1], useful for
modeling preferences in social-choice and economic systems, FBBC, the fractional version of the Bounded
Budget Connection (BBC) game [30], which models decentralized overlay network creation and social
networks, and Strong Fractional Kernel [2], of relevance to structural graph theory. In addition, we define
two new concepts — personalized equilibria for matrix games and preference games — which are not only
useful tools for carrying out reductions but also of independent interest.

Fractional Stable Paths Problem. Griffin, Shepherd and Wilfong [20] showed how BGP (Border
Gateway Protocol, the routing mechanism of the Internet) can be viewed as a distributed mechanism for
solving the Stable Paths Problem (SPP). They showed that there exist SPP instances with no integral stable
solutions, a phenomenon that would explain why oscillation has been observed in Internet routes. Route
oscillation is viewed as a negative, since it imposes higher system overheads, reorders packets, and creates
difficulties for tracing and debugging. Subsequently, Haxell and Wilfong [21] introduced FSPP: a natural
fractional relaxation of SPP with the property that a (fractional) stable solution always exists. Intuitively,
FSPP can be viewed as a game played between Autonomous Systems that each assign fractional capacities
to the different paths leading to a destination in such a way that they maximize their utility without violating
the capacity constraints of downstream nodes. Understanding the computational feasibility of finding the
equilibria of this game could help to develop techniques for stable routing in the Internet.

Core of balanced games. The notion of core in cooperative games is analogous to that of Nash equi-
librium in non-cooperative games. Informally, a core is the set of all outcomes in which no coalition of
players has an incentive to secede and obtain a better payoff, either viewed as a set (transferable utilities)
or individually (non-transferable utilities). Necessary and sufficient conditions for the nonemptiness of the
core in games with transferable utilities is given by the classic Bondareva-Shapley theorem [5, 43], which
also yields a polynomial-time algorithm for finding an element in a nonempty core. Subsequently, in a
celebrated paper, Scarf [41] generalized their result, developed certain sufficient balance conditions for the
nonemptiness of the core in games with non-transferable utilities, and presented an algorithm for finding a
point in the core. As noted by Jain and Mahdian in Chapter 15 of [37], “However, the worst case running
time of this algorithm (like the Lemke-Howson algorithm) is exponential.” Resolving the computational
feasibility of finding the core in balanced games is of considerable significance in the theory of cooperative
games.

Personalized equilibria for matrix games - a generalization. Imagine a business manufacturing and
selling outfits consisting of a pant (solid or striped) and a shirt (cotton or wool). The manager of the location
producing pants decides on the ratio of striped pants produced to solid pants while the manager at the
location producing shirts decides on the ratio of cotton shirts produced to wool shirts. Each manager is
then given half the total number of shirts and pants (in the proportions decided) and has to match them into
outfits and sell them at her own location in such a way as to maximize her individual profits. Personalized
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equilibria for matrix games capture exactly this situation: each player chooses a distribution over her own
actions, but then each player independently customizes the matching of her own actions to the actions of
other players in such a way as to maximize individual payoff. The concept of personalized equilibria for
matrix games generalizes a number of games and problems, including FSPP and FBBC.

Preference games - a specialization. Consider a world of bloggers where each blogger has a choice of
actions. They can fill their blogs with original content or they can copy from the original content on others’
blogs. Naturally, each blogger has a preference order over the content of the different bloggers (as well as
their own). Also, of course, more cannot be copied from another blog than the amount that other blogger
has written. The preference game models each blogger’s choice of what percentage of his blog is original
and what percentages are copied from which other blogs. Such preference games arise whenever each
player has a preference among her actions, and her distribution over her actions is constrained by others’
distributions. The definition of a preference game is surprisingly simple, making this a great candidate
problem for reductions. In fact, preference games are reducible in polynomial-time to all the problems
considered in this paper.

1.1 Our Contributions

Hewing to the dictum that a picture is worth a thousand words, we present a diagram (Figure 2) showing
the different reductions. The takeaway is that all the eight problems of interest are PPAD-complete. To be
precise, we show that for all these problems, the exact versions are in PPAD, and our reductions extend
to natural approximation versions to show that there are no fully polynomial-time approximation schemes
(unless PPAD is in FP). Our reductions build on prior work in intricate and involved fashion.

From a conceptual standpoint, we believe there is merit in the definitions of preference games and
personalized equilibria. Preference games are very simple to describe and model a number of real-world
situations, such as the blogger example mentioned earlier. Yet we can show that the set of equilibria of
preference games can be nonconvex and in fact, are hard even to approximate. As a counterbalance we
show that finding equilibria in the subclass of symmetric (for a natural notion of “symmetric”) preference
games is in FP. Personalized equilibria of matrix games are, we believe, a fascinating solution concept
worthy of independent study. Not only do they model real-world situations as motivated earlier by the
example of the apparel company, but they also constitute a natural generalization of a variety of predefined
games, such as FSPP and FBBC. Our results on the hardness of approximating personalized equilibria for
k-player games apply for k ≥ 4. We show that finding personalized equilibria of 2-player games is in FP.
The k = 3 case is open.

From a technical standpoint, we particularly wish to highlight our reduction from finding exact personal-
ized equilibria to finding approximate personalized equilibria. To capture exact personalized equilibria, we
write a linear program plus an exponential number of single-variable min constraints. These are constraints
specifying that the minimum of a subset of variables is 0. Using this specification, we prove the existence
of rational equilibria. Furthermore, we reduce to approximate personalized equilibria by showing that an
ε-approximate equilibrium for sufficiently small ε points us to a subset of the variables that can be set to
0 to simultaneously satisfy all of the min constraints, leaving us with a polynomially-sized feasible linear
program for an exact equilibrium. With this reduction in hand and an additional technical bound on the size
of short feasible vectors, we are then able to carry through the reduction to End-of-the-Line to show that
personalized equilibria is in PPAD.

1.2 Related Work

Nash profoundly changed game theory by demonstrating the existence of mixed equilibria [35, 36].
Decades later, on the computational front [37], the complexity class TFNP was introduced by Megiddo and
Papadimitriou [34]. Papadimitriou’s seminal work [39] not only defined a number of syntactic subclasses
of TFNP (including PPAD), but also proved that a variety of problems, including discrete versions
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of Brouwer’s fixed point theorem and Sperner’s lemma, are PPAD-complete. The problem of finding
Nash equilibria was left open. Recently, a series of papers comprising different author combinations of the
two teams, Daskalaikis-Goldberg-Papadimitriou [12, 19] and Chen-Deng-Teng [6, 7, 8, 9] culminated in
establishing that approximating Nash equilibria with two players, 2-NASH, is hard. The reductions in our
work build on the framework established in these papers.

BGP has been the focus of much attention since its inception [40, 45]. As mentioned earlier SPP was
introduced by Griffin, Shepherd and Wilfong [20] to explain the nonconvergence of BGP [47]. Haxell
and Wilfong [21] defined FSPP and proved the existence of an equilibrium using Scarf’s lemma and a
compactness-type argument. They left open the complexity of finding an equilibrium. Our reduction from
personalized equilibria to End-of-the-Line is a different approach that generalizes the Haxell-Wilfong exis-
tence result while preserving computational tractability. Kintali [27] presented a distributed algorithm for
finding an ε-approximation for FSPP that is guaranteed to converge, although no bounds are given on the
time-to-convergence (our results imply a polynomial time bound is unlikely).

Cooperative games, the study of mechanisms to sustain and enforce cooperation among willing agents,
has a rich and extensive literature [10, 18, 11, 16, 29]. As mentioned earlier, in a celebrated paper Scarf [41]
generalized the classical Bondareva-Shapley theorem [5, 43] result and developed an algorithm for finding
a point in the core of balanced games with non-transferable utilities. More recently, Markakis and Saberi
[33], Immorlica, Jain and Mahdian [23] studied certain classes of games with non-transferable utilities in
the context of the Internet; however, it is unclear that their problems are even in TFNP. Scarf’s paper [41]
also contains Scarf’s lemma, an important result in combinatorics which played a part in the FSPP existence
proof of Haxell and Wilfong [21]. Aharoni and Holzman [2] proved that every clique-acyclic digraph has a
strong fractional kernel, and Aharoni and Fleiner [1] proved that every hypergraphic preference system has a
fractional stable matching. Both of these proofs are based on Scarf’s lemma. The computational complexity
of these problems was left unresolved.

The BBC game, introduced in [30, 31], builds on a large body of work in network formation games
[24, 4]. A direct precursor to BBC games was introduced by Fabrikant et al. [15]. Fractional BBC games
were introduced in [31], but the problem of finding an equilibrium was left open.

2 The Class PPAD

A major contribution of this paper is to expand the set of problems known to be PPAD-complete. The
class PPAD (Polynomial Parity Argument in a Directed graph) was introduced by Papadimitriou in [39],
which defined a number of syntactic classes in the semantic class TFNP, or the set of all total search
problems. A search problem S consists of a set of inputs IS ⊆ Σ∗ such that for each x ∈ IS there is an
associated set of solutions Sx ⊆ Σ|x|k for some integer k. For each x ∈ IS and y ∈ Σ|x|k , it is decidable in
polynomial time whether or not y is in Sx. A search problem is total if Sx 6= ∅ for all x ∈ IS . TFNP is
the set of all total search problems [34]. Since every member of TFNP is equipped with a mathematical
proof that it belongs to TFNP, a number of syntactic classes can be defined based on their proof styles.
The complexity class PPAD is the class of all search problems whose totality is proved using a directed
parity argument.

Problems in PPAD are reducible to the END OF THE LINE problem. In END OF THE LINE, we are
given a finite directed graph in which each node has at most one outgoing edge and at most one incoming
edge. The input to the problem is not a complete list of the nodes and edges; such a list may be exponentially
large in the size of the input. Instead, we are given an initial source node and a circuit. The circuit takes a
node name as input and in polynomial time returns the next node (the other end of the outgoing edge from
the input node) and the previous node (the other end of the incoming edge into the input node). If the input
node is a source (or sink), null is returned as the previous (or next) node. The problem for END OF THE

LINE is to find a sink or a source other than the initial source.
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Throughout this paper, we use PROBLEM A ≤P PROBLEM B to mean “There exists a polynomial time
reduction from finding a stable point in PROBLEM A to finding a stable point in problem PROBLEM B.”

3 Preference Games

In this section, we define a very simple game, the preference game. Each player has a preference list
across the set of players and must assign weight to each player. No player may put more weight on another
player than that player puts on itself. A best response for a player occurs when that player cannot move
weight from a lower preference player to a higher preference player. We show in Section 3.2 that when
preferences are symmetric, it is very easy to find an equilibrium in which all weights are either 0 or 1.
However, in Section 3.3 we show that the set of equilibria in general preference games may not be convex,
implying that we cannot hope to find an equilibrium using convex programming, and in Section 3.4, we
show that finding an equilibrium in general preference games is PPAD-hard. In Section 3.5, we define an
ε-approximate equilibrium for the preference game and extend our PPAD-hardness result to approximate
equilibria. Our notion of approximation carries though all of the reductions in later sections, so we prove
that there are no fully polynomial-time approximation schemes (unless PPAD is in FP) for computing
stable points in any of the problems discussed in this paper. Finally, in section 3.6, we define the degree of
a preference game, and show that any preference game can be reduced to a preference game with constant
degree.

3.1 Preference Games

In a preference game with a set S of players, each player’s strategy set is S. Each player i ∈ S has a
preference relation �i among the strategies. 1 For strategies j and k, j �i k indicates that player i prefers
j at least as much as k. When it is clear from context that we are talking about the preferences for player
i, we write j � k instead of j �i k. Each player i chooses a weight distribution, which is an assignment
wi : S → [0, 1] satisfying two conditions: (a) the weights add up to 1:

∑
j∈S wi(j) = 1; and (b) the weight

placed by i on j is no more than the weight placed by j on j: wi(j) ≤ wj(j) for all i, j ∈ S.
Given weight assignments wi, w′

i, and w−i such that (wi, w−i) and (w′
i, w−i) are both feasible, we say

wi is lexicographically at least w′
i (with respect to w−i) if for all j ∈ S,

∑
k�ij

wi(k) ≥
∑

k�ij
w′

i(k). We
say that wi is lexicographically maximal (implied: with respect to w−i) if (wi, w−i) is feasible and wi is
lexicographically at least every assignment w′

i such that (w′
i, w−i) is feasible. An equilibrium in a preference

game is an assignment w = {wi : i ∈ S} such that wi is lexicographically maximal with respect to w−i for
all i ∈ S.

Every preference game has an equilibrium, a fact which can be shown using standard fixed-point the-
orems; we defer the proof to Section 4, where we show the existence and PPAD-membership of a more
general class of equilibria.

PREFERENCE GAME: Given a set of players [n], each with strategy set [n], and a preference relation
�i among the strategies for each player i. Find a feasible weight assignment w such that for all i, wi is
lexicographically maximal with respect to w−i.

3.2 Symmetric Preference Games

In a symmetric preference game, the players are ordered {1, . . . , n}. Given the order of the players, we
have the following symmetry in the preferences: if i ≤ j, and if i �j j, then j �i i. In other words, if a
player j is later in the order than i, and if j prefers i over itself, than the earlier player i also prefers j over
itself.

1A preference relation is a binary relation that is transitive and complete.
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Theorem 3.1. In any symmetric preference game, an equilibrium in which all weights are 0 or 1 can be
found in polynomial time.

Proof. If our preference rules obey this style of symmetry, we can use Algorithm 1 to find an equilibrium.

Algorithm 1 Finding an equilibrium in a symmetric preference game
1: Sort the players into their symmetry order.
2: Set all weights to −1.
3: for i = 1 . . . n do
4: if wi(i) = −1 then
5: Assign wi(i) = 1.
6: for j = i + 1 . . . n do
7: Assign wi(j) = 0.
8: if j �i i then
9: Assign wj(j) = 0.

10: for i = 1 . . . n do
11: if wi(i) = 0 then
12: Find the player j with wj(j) = 1 that is highest in i’s preference list.
13: Assign wi(j) = 1.
14: Assign wi(k) = 0 for all other k 6= j.

Since each player has weight 1 assigned to exactly one strategy, Algorithm 1 assigns a feasible set of
weights. To show that Algorithm 1 finds an equilibrium, we must show that the results of the algorithm obey
the following. (a) If wi(i) = 1, then there is no j such that j �i i with wj(j) = 1, and (b) if wi(i) = 0, then
there is some j such that j �i i with wj(j) = 1.

To show (a): consider the point in the algorithm at which wi(i) is set to 1. By this point, we have already
looked through all j ahead of i in the ordering. Since wi(i) is still −1, for each j for which we assigned
wj(j) = 1, none had i �j j. By symmetry, this means that no j ahead of i in the ordering has wj(j) = 1
and j �i i. Now, for all j following i in the ordering, if j �i i, then we assign wj(j) = 0 immediately after
we assign wi(i) = 1.

To show (b): Consider the point at which we assigned wi(i) = 0. We had just assigned wj(j) = 1
for some j ahead of i in the order. We found that i �j j, which by symmetry implies that j �i i, as
required.

3.3 Non-Convexity

Although symmetric preference games have a simple equilibrium which can be found in polynomial
time, general preference games are more complex. In this section, we show that the set of equilibrium for a
preference game may not be convex.

Theorem 3.2. There exists an instance of the preference game for which the set of equilibria is not convex.

Proof. Consider the following instance of the preference game. We have 3 sets of 2 players each, a1, a2,
b1, b2, c1, c2, and one additional player, x. The preference lists for these nodes are: a1: (a2, a1); a2:
(a1, a2); b1: (b2, b1); b2: (b1, b2); c1: (c2, c1); c2: (c1, c2); x: (a1, b1, c1, x). (Each list gives strategies in
order from most preferred to least preferred.) We now show two equilibria whose linear combination is not
an equilibrium. In equilibrium w (figure 1(a)): wa1(a1) = 1

2 , wa1(a2) = 1
2 , wa2(a2) = 1

2 , wa2(a1) = 1
2 ,

wb1(b1) = 1, wb2(b1) = 1, wc1(c2) = 1, wc2(c2) = 1, wx(a1) = 1
2 , wx(b1) = 1

2 . In equilibrium w′ (figure
1(b)): w′

a1
(a1) = 1

2 , w′
a1

(a2) = 1
2 , w′

a2
(a2) = 1

2 , w′
a2

(a1) = 1
2 , w′

b1
(b2) = 1, w′

b2
(b2) = 1, w′

c1(c1) = 1,
w′

c2(c1) = 1, w′
x(a1) = 1

2 , w′
x(c1) = 1

2 . It is easy to verify that w and w′ are both equilibria, and in a
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(a) The a players assign weights
1/2, 1/2, the b players both use b1, the c
players both use c2.

(b) The a players assign weights 1/2 −
1/2, the b players both use b2, the c play-
ers both use c1.

(c) Combining half of each equilibrium,
x will assign 1/2 to a1, 1/4 to each of
b1 and c1. x could improve by assigning
weight only to a1 and b1.

Figure 1: Example of an instance of the preference game for which the equilibrium set is not convex.

solution λ ·w +(1−λ) ·w′ (for any λ > 1
4 ) (figure 1(c) shows λ = 1

2 ), player x would do better by moving
more weight to its second preference. Therefore, the convex combination of w and w′ is not an equilibrium.

3.4 PPAD Hardness

We show that finding an equilibrium in preference games is PPAD-hard. We will follow the framework
of [12], which shows that finding a Nash equilibrium in a degree-3 graphical game is PPAD-hard, using
a reduction from the PPAD-complete problem 3-D BROUWER. In this problem, we are given a 3-D cube
in which each dimension is broken down into 2−n segments – thereby dividing the cube into 23n cubelets.
We are also given a circuit that takes as input the 3 coordinates of the center of a cubelet (each as an n-
bit number) and returns a 2-bit number that represents one of four 3-D vectors: either (1, 0, 0), (0, 1, 0),
(0, 0, 1), or (−1,−1,−1). A solution to the 3-D BROUWER instance is a cubelet vertex such that the set of
8 results obtained by running the circuit on each of the 8 cubelets surrounding the vertex contains each of
the four vectors at least once.

As in [12], we will construct a set of gadgets to simulate various arithmetic operators, logical operators,
arithmetic comparisons and other operators. We then follow their framework to systematically combine
these gadgets to simulate the input boolean circuit and to encode the geometric condition of discrete fixed
points in the 3-D BROUWER instance. In the preference game we construct, we specify the preference
relation of any player P by an ordered list of a subset of the players, with the last element being P , also
referred to as the “self” strategy. When we say that a player P plays itself with weight v, we mean that P
assigns a weight of v to strategy P . We’ll engineer the payoffs such that the game is only in equilibrium if
the weights assigned by certain players to themselves successfully echo the inputs and outputs of 8 copies
of the circuit that surround a solution vertex of the 3-D BROUWER instance.

For this reduction, we require the following sets of players.

1. One player for each of the 3 dimensions (the coordinate players). If the graph is an equilibrium,
each coordinate player plays itself with weight equal to its coordinate of the 3-D BROUWER solution
vertex.

2. One player for each of the bits of each of the 3 coordinates (the bit players). In order to force these
players to correctly represent the bits, we need some additional players. Assuming we’ve correctly
calculated the first i − 1 bits of coordinate x (call them x0, . . . , xi−1), we can create the ith bit as
follows. One player will play itself with weight pi = x−

∑i−1
j=0

xj

2j . The bit player will play itself with
weight equal to the ith bit. If pi ≥ 1

2i , then this bit should be 1. Otherwise, it should be 0. Therefore,
in order to properly extract the bits, we create the following four types of players.

(a) HALF player: In any equilibrium in which a given player plays itself with weight a, the HALF
player will play itself with weight a

2 .
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(b) DIFF player: In any equilibrium in which two given players play themselves with weights a and
b, the DIFF player will play itself with weight a− b.

(c) VALUE player: In any equilibrium, the VALUE player plays itself with weight 1
2 . This can be

easily created by combining a player whose first preference is itself with a HALF player.

(d) LESS player: In any equilibrium in which two given players play themselves with weights a and
b, respectively, the LESS player plays itself with weight 1 iff a ≥ b, and plays itself with weight
0 otherwise. (Actually, the LESS player we create will be inaccurate if a and b are very close,
which we discuss more below.)

3. One player simulates each type of gate used in the circuit of the 3-D BROUWER instance. For this,
we create 3 more types of players.

(e) AND player: In any equilibrium in which two given players play themselves with weights a and
b ∈ {0, 1}, the AND player will play itself with weight a ∧ b.

(f) OR player: In any equilibrium in which two given players play themselves with weights a and b
∈ {0, 1}, the OR player will play itself with weight a ∨ b.

(g) NOT player: In any equilibrium in which a given player plays itself with weight a ∈ {0, 1}, the
NOT player will play itself with weight ¬a.

4. Finally, we need to ensure that the graph is in equilibrium if and only if all four vectors are represented
in the results of the 8 circuits. As in [12], we will represent the output of each circuit using 6-bits,
one each for +x,−x,+y,−y, +z,−z. Now, the 4 possible result vectors are represented as 100000,
001000, 000010, and 010101. We can use these circuit results with only two additional types of
players to feed back into the original coordinate players. First, we will create an OR player for each
of the 6 bits (over the 8 vertices), which yields a result of six 1’s if and only if this is a solution vertex.
Therefore, an AND player for each coordinate will all return 1 if and only if this is a solution vertex;
at least one of the coordinates will be 0 otherwise. We can turn this around using a NOT player for
each coordinate, so that we get all 0’s if and only if this is a solution vertex. Finally, we need the last
two new player types, which we’ll use to add these results back to a copy of the original coordinates
(the result will be the original coordinate player).

(h) COPY player: In any equilibrium in which a given player plays itself with weight a, the COPY
player will also play itself with weight a.

(i) SUM player: In any equilibrium in which two given players play themselves with weights a and
b, the SUM player will play itself with weight min(a + b, 1).

If the coordinates represented a solution vertex to the 3-D BROUWER instance, then all the values
we’ve added back in will be zero; so the coordinate players cannot do better by changing their strate-
gies. On the other hand, if the coordinates do not form a solution vertex, then at least one of the values
is 1, so that the coordinate player will have incentive to change strategies and play more weight on
itself.

We now describe how to create the new types of players (gadgets) required for the reduction. For each of
these gadget definitions, we assume we are given a preference game such that in any equilibrium, player X
plays itself with weight v1 and player Y plays itself with weight v2. For the first three gadgets, we assume
v1, v2 ∈ {0, 1}. For the rest of the gadgets, we assume v1, v2 ∈ [0, 1].
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OR(X, Y )
We can add a new node R = OR(X, Y ) that will play itself with weight v1 ∨ v2 in any equilibrium. Create
a node R1 with preference list (X, Y,R1). Let node R’s preference list be (R1, R). Now, if v1 and/or v2 is
1, then R1 will play R1 with weight 0, so R will play itself with weight 1. If both v1 and v2 is 0, then R1

will play itself with weight 1, so R will play R1 with weight 1 and R with weight 0.

NOT(X)
We can add a new node N = NOT(X) that will play itself with weight ¬v1 in any equilibrium. Let node
N ’s preference list be (X, N). Clearly, N will play X as much as v1 and will play N with the remainder.

AND(X, Y )
We can add a new node A = AND(X, Y ) that will play itself with weight v1 ∧ v2 in any equilibrium.
Assemble the OR and NOT gadgets NOT(OR(NOT(X), NOT(Y ))).

SUM(X, Y )
We can add a new node S = SUM(X, Y ) that will play itself with weight max(1, v1 + v2) in any equilib-
rium. Create a node S1 with preference list (X, Y, S1). Let node S’s preference list be (S1, S). Now, clearly
node S1 will play S1 with weight max(0, 1− v1− v2), and node S will play S1 that same amount. So node
S will play itself with weight 1 − max(0, 1 − v1 − v2). In other words, if v1 + v2 ≥ 1, then S will play
itself with weight 1. Otherwise, S will play itself with weight 1− 1 + v1 + v2 = v1 + v2, as desired.

DIFF(X, Y )
We can add a new node D = DIFF(X, Y ) that will play itself with weight v1−v2 if v1 > v2, or 0 otherwise
in any equilibrium. Create a node D1 with preference list (X, D1). D1 will play itself with weight 1 − v1.
Now set the preference list for D to (D1, Y,D). D will play itself with weight min(0, 1− (1− v1)− v2) =
min(0, v1 − v2), as desired.

COPY(X)
We can add a new node C = COPY(X) that will play itself with weight v1 in any equilibrium. Create a
node C1 with preference list (X, C1). C1 will play itself with weight 1− v1. Set the preference list for node
C to (C1, C). C will play C1 with weight 1− v1, leaving weight v1 on C.

DOUBLE(X)
We can add a new node M = DOUBLE(X) that will play itself with weight min(1, v1 ∗ 2) in any equilib-
rium. Create player M1 = COPY(X) and set M as SUM(X, M1).

LESS(X, Y )
Given εl (0 < εl ≤ 1

2 ), We can add a new node L = LESS(X, Y ) to the game that in any equilibrium
will play only itself if v1 − v2 ≥ εl, and will play L1 (for a new node L1) if v1 ≤ v2. First create
D = DIFF(X, Y ). Then create M1 = DOUBLE(D). For i = 1 to − log εl, create player Mi+1 =
DOUBLE(Mi). Call the last DOUBLE player node L and the extra player for the sum player of the last
DOUBLE player node L1. If v1 ≤ v2, the DIFF player will return 0, so player L will play the result of
multiplying 0 by 2 many times, or 0. If v1−v2 ≥ εl, player L will play the max of 1 and (v1−v2)∗2− log εl =
(v1 − v2) ∗ 1

εl
≥ εl

εl
= 1.
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HALF(X)
We can add a new node H = HALF(X) that will play itself with weight v1/2 in any equilibrium. Create a
node H1 with preference list (X, H1). H1 will play itself with weight 1− v1. Then create two more nodes:
H2 and H3. Node H2 has preference list (H1,H3,H2). Node H3 has preference list (H1,H, H3). Set the
preference list for node H to be (H1,H2,H). Each of H , H2, and H3 will use its first choice with weight 1−
v1, leaving v1 for its other two choices. Then, we have wH(H)+wH(H2) = v1, wH2(H2)+wH2(H3) = v1,
and wH3(H3) + wH3(H) = v1. In any equilibrium, it must be true that wH(H2) = wH2(H2), wH2(H3) =
wH3(H3), and wH3(H) = wH(H). Solving this gives wH(H) = wH(H2) = wH2(H2) = wH2(H3) =
wH3(H3) = wH3(H) = v1

2 .

As in [12], our LESS player plays the specified action (itself, in our case) with weight 1 if v1 ≥ v2 + εl,
and plays itself with weight 0 if v1 ≤ v2, but will play some unspecified fraction on itself if v2 < v1 <
v2 + εl. We use the LESS player to extract the bits representing the coordinates of a cubelet to be passed
into the circuit. This procedure is identical to that of [12]. Let X denote the x-coordinate player, and
let X1 = COPY(X). For i from 1 through n, we create players Bi = LESS(2−i, Xi) and Xi+1 =
DIFF(Xi, HALFi(Bi)), where HALFi indicates applying the HALF gadget i times. It can be shown that as
long as x is not too close to a multiple of 2−n, we will extract its n bits correctly. If this is not the case,
however, we will not properly extract the bits, and our circuit simulation may return an arbitrary value. We
resolve this problem using the same technique as in [12]: we compute the circuit for a large constant number
of points surrounding the vertex and take the average of the resulting vectors. Since these details are almost
identical to that of [12, Lemma 4], we omit them.

Based on the above gadgets and the framework from [12], we get the following.

Theorem 3.3. 3-D BROUWER ≤P PREFERENCE GAME.

3.5 Approximate equilibria

Given the hardness of finding exact equilibria in preference games, a natural next question is whether it
is easier to find approximate equilibria. We define an ε-equilibrium of a k-player preference game to be a set
of weight distributions w1, . . . , wk that satisfy the following conditions for every player i: (a)

∑
j wi(j) = 1;

(b) for each j, wi(j) ≤ wj(j) + ε; and (c) for each j, either
∑

`:`�j wi(`) ≥ 1− ε or |wi(j)− wj(j)| ≤ ε.
The problem of finding an ε-equilibrium is ε-APPROXIMATE PREFERENCE GAME.

Theorem 3.4. BROUWER ≤P ε-APPROXIMATE PREFERENCE GAME. Thus, it is PPAD-hard to find an
ε-equilibrium for preference games for ε inverse polynomial in n.

Proof. Our proof follows the framework of [8, 9] for proving the hardness of approximating Nash equilibria
in 2-player games. This framework starts with a high-dimensional discrete fixed point problem, BROUWER,
which is also PPAD-complete. The input to BROUWER is a Boolean circuit that assigns a color from
{1, ..., n, n + 1} to each interior node of an n-dimensional grid {0, 1, ..., 8}n. This grid has about 23n cells,
each of which is an n-dimensional hypercube. The discrete fixed point is defined to be a panchromatic
simplex inside a hypercube. This framework of [8, 9] uses a new geometric condition for discrete fixed
points, which requires that the average of n3 sampled points in the interior of the targeted panchromatic
simplex is inverse-polynomially close to the zero vector. The rest of the proof follows the framework
of [12].

Our broad definition of an ε-equilibrium poses additional technical challenges which did not occur in
the reductions of [8, 9]. In particular, in the presence of errors, our Boolean gadgets only approximately
simulate the Boolean operations, while in previous reductions, the Boolean gadgets are precise. We prevent
magnification of errors in the Boolean simulation by strategically adding a LESS gadget to correct errors
after each logic step.
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We focus on bounding the errors for the gadgets of Theorem 3.3 and the addition of the extra LESS
gadgets. Other details closely match those of [8, 9, 12].

Let εl (the measure of the fragility of our LESS gadget) be a real number such that ε ≤ ε3l . Then, we
have the following error bounds.

Lemma 3.5. Assuming node X plays itself with weight v′1, v1 − εl ≤ v′1 ≤ v1 + εl, and node Y plays itself
with weight v′2, v2 − εl ≤ v′2 ≤ v2 + εl, each of the boolean gadgets plays itself within ±(2εl + 6ε) of the
correct value for the correct v1 and v2 inputs.

Proof. OR
If v1 and/or v2 is 1, then v′1 and/or v′2 is at least 1− εl, and node R1 will play R1 with weight at most εl + ε,
so R will play R with weight at least 1− εl − 2ε. If both v1 and v2 are 0, then v′1 and v′2 are at most εl, and
node R1 will play R1 with weight at least 1− 2εl − 2ε, so R will play R with weight at most 2εl + 3ε.

NOT
If v1 = 1, v′1 is at least 1− εl, and node N will play itself with weight at most εl + ε. If v1 = 0, v′1 is at most
εl, and node N will play N with weight at least 1− εl − ε.

AND
The AND gadget concatenates other new players to get ¬(¬v1 ∨ ¬v2). Each NOT may add at most one
additional ε error to the given value, and the OR may add up to 3ε error (on top of the sum of the errors
from both inputs). So the AND player will return a value within an additive 2εl + 6ε of the correct 0 or 1
answer.

Lemma 3.6. Each of the arithmetic gadgets plays itself within ±5ε of the correct value for the input it is
given.

Proof. SUM
Node S1 will play S1 with weight w(S1T ) ∈ [max(0, 1 − v′1 − v′2 − 2ε),max(0, 1 − v′1 − v′2 + 2ε)]. So
node S will play S with weight wS(S) ∈ [v′1 + v′2 − 3ε, v′1 + v′2 + 3ε], unless wS1(S1) = 0, which means
v′1 + v′2 ≥ 1− 2ε. In this case, node S will play S with weight at least 1− ε.

DIFF
Node D1 will play D1T with weight wD1(D1) ∈ max(0, 1 − v′1 − ε),max(0, 1 − v′1 + ε)]. Node D will
play D with weight wD(D) ∈ [max(0, v′1 − v′2 − 3ε),max(0, v′1 − v′2 + 3ε)], unless wD1(D1) = 0 which
means v′1 ≥ 1− ε. In this case, node D will play D with weight at least 1− v′2 − 2ε and at most 1− v′2 + ε
(not 2ε because we cannot underfill the strategy with weight 0).

COPY
Node C1 will play C1 with weight at least 1 − v′1 − ε and at most 1 − v′1 + ε. Node C will play C with
weight at least v′1 − 2ε and at most v′1 + 2ε.

HALF
Node H1 will play H1 with weight wH1(H1) ∈ [1− v′1 − ε, 1− v′1 + ε], and each other player will play its
second and third preferences with total weight between 1−wH1(H1)− ε and 1−wH1(H1) + ε. Each other
player will play itself half of this amount plus or minus 3ε (this is easy to verify by writing the system of
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inequalities and checking the extreme points). Therefore, node H plays H with weight at least v′1
2 − 4ε and

at most v′1
2 + 4ε.

DOUBLE
The DOUBLE gadget consists of a copy player, which adds at most 2ε error, and a sum player, which adds
at most 3ε error on top of the sum of the errors in the two inputs. Therefore, node M plays M with weight
at least 2v′1 − 5ε and at most 2v′1 + 5ε.

Lemma 3.7. The LESS player will play itself with weight < εl if it is given v′1, v
′
2 such that v′1 ≤ v′2, and

with weight > 1− εl if v′1 − v′2 ≥ εl.

Proof. LESS
The LESS gadget inherits its susceptibility to error from its initial DIFF player (which was, in the exact
equilibrium case, non-zero if and only if v1 < v2). For the case where v1 < v2, we can account for the
errors of the DOUBLE players (used to repeatedly amplify the difference) simply by adding extra iterations
of DOUBLE. Since we stipulated that ε ≤ ε3l , a value that started≤ 5ε will remain < εl, even after doubling
enough times to push a value ≥ εl to a value over 1 (including extra multiplications to account for the
DOUBLE errors). Therefore, the LESS player will play itself with weight less than εl if v′1 ≤ v′2 and with
weight greater than 1− εl if v′1 − v′2 ≥ εl.

Lemma 3.8. By using a LESS gadget after each boolean logic gadget, we can ensure that the output from
each gate is at most εl away from the correct output.

Proof. After a single gate (if the inputs are within additive εl of the correct 0 or 1 inputs), a player will play
itself at least 1− 2εl − 6ε if the correct answer is 1, and at most 2εl + 6ε if the correct answer is 0 (based on
the analysis in the proof of Lemma 3.5). Call this player OUTPUT and the value it plays itself v. Then, we
only need to add a player CONSTANT-HALF who plays itself with weight close to 1

2 , and a LESS player,
CORRECTION = LESS(OUTPUT, CONSTANT-HALF).

CONSTANT-HALF can be made up of a player who plays itself with weight at least 1− ε and at most 1
(its first preference is for itself) and a HALF player, who by Lemma 3.6 will play itself with weight at least
1−ε
2 − 5ε and at most 1

2 + 5ε.
We know that if the correct answer was 0, then v ≤ 2εl + 6ε < 1−ε

2 − 5ε, so CORRECTION will play
itself with weight < εl (by Lemma 3.7), and if the correct answer was 1, then v ≥ 1−2εl−6ε > 1

2 +5ε+εl,
so CORRECTION will play itself with weight > 1− εl (again by Lemma 3.7).

After the corrections, we’re left with the following possible errors due to the ε-approximation. We have
small errors in the bit extraction, which are no larger than the parallel errors in [12] (they verify that these
small error values will not affect the final result). We also have small errors (at most εl) coming out of the
circuit. As in [8, 9], we will repeat the circuit a polynomial number of times and take the average in order
to override any errors from the LESS gadgets in the bit extraction.

Taking an average of two results requires 3 steps: first we divide each “bit” in half (we cannot take the
average of the entire values because we have a max value of 1 for any player, so the average of two 1’s
would come out to 1

2 ). Here, we may pick up 4ε of error for each of the two results. Then, we sum the two.
The total error so far is at most 11ε. Finally, we take half of the sum, which also divides the error in half, but
may add up to an additional 4ε of error, for a total additional error of at most 9.5ε from taking the average
of 2 results.

We can add LESS gadgets periodically during the averaging and during the final OR, AND and NOT of
the results to keep our total errors under εl. In other words, if this is a solution vertex for BROUWER, then
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we will have 6 players, each playing at most εl. If this is not a solution vertex, then at least one of the 6
players will play at least 1− εl.

Suppose we have an ε-equilibrium in this game, and the x-coordinate player is playing value x. This is
a SUM player, and the extra player from the SUM gadget must be playing between 1− x− ε and 1− x + ε.
Therefore, the sum of the two values it is adding (a copy of the coordinate player and the feedback NOT
player) must be between x−3ε (if this player overfills each of its top strategies by ε) and x+3ε (if this player
underfills each of its top strategies by ε). We know that the copy player must be playing the same value as
the coordinate player to within 2ε (between x − 2ε and x + 2ε). Adding this range to a number ≥ 1 − εl

cannot possibly give something in the range [x− 3ε, x+3ε], so the feedback player must be playing a value
at most εl on itself (since we know the feedback player will play either a value ≤ εl or a value ≥ 1 − εl),
and the correct feedback must be 0, so this is a valid fixed point.

3.6 Constant degree preference games

For a given preference game, define in(v) (resp., out(v)) of a player v to be the set {u : v �u u} (resp.,
{u : v ≺v u}). We define the in-degree (resp., out-degree) of a player v to be |in(v)| (resp., |out(v)|). The
degree of the player is defined to be the sum of the in-degree and the out-degree of the player. The in-degree
(resp., out-degree, degree) of the preference game is defined to be the maximum, over all nodes, of the
in-degree (resp., out-degree, degree) of the node. Notice that this is the same as the degree in a directed
graph in which each player is represented by a node, and an edge from u to v means that u prefers v over
itself. DEGREE d PREFERENCE GAME is the problem of finding an equilibrium in a preference game with
constant degree d.

Notice that the players defined in Section 3.4 all have out-degree at most 2. There is no implicit constant
bound on the in-degree, but by adding COPY gadgets (which have out-degree 1) we can guarantee in-degree
at most 2. Furthermore, since COPY gadgets have out-degree 1, we can make sure that the overall degree of
the preference game is at most 3. This automatically implies that it is PPAD-hard to find an equilibrium
even in a preference game with degree 3. We will use this fact in later sections, where we show PPAD-
hardness of several other problems via reductions from constant degree preference games.

In addition, we have the following reduction, for which the proof may be found in Appendix ??.

Theorem 3.9. PREFERENCE GAME ≤P DEGREE d PREFERENCE GAME

Proof. Given a preference game over player set [n] = {1, . . . , n}, with the sum of the lengths of the prefer-
ence lists equal to m. Assume that each player exists in the preference list (ahead of “self”) for at most m′

other players.

Reducing to a preference game with constant out-degree (at most c + 1), with O(m + n) players.
Suppose player i in the original game has preference list j1, j2, . . . , jk. Let d = dk

c e. Create 2d new players,
split into two sets: I = {i1, . . . , id}, I ′ = {i′1, . . . , i′d}. For ease of notation, we will also refer to player id
as i∗, since this is the player that will play itself the same amount that the original player i should play itself.

Set the preference list for the new player i1 to j∗1 , j∗2 , . . . j∗c , i1. For new player ih (h > 1), set the
preference list to i′h−1, j

∗
(h−1)c+1, j

∗
(h−1)c+2, . . . , j

∗
hc, ih. For each new player i′h (h ≥ 1), set the preference

list to ih, i′h.

Equilibrium in the original preference game maps to an equilibrium in the new preference game.
The map will be as follows: Suppose we are given weights w(i, j) for the original game, where w(i, j) is
the weight player i puts on player j. We will set the weights w∗ in the new preference game as follows.
Again, assume the preference list for player i in the original game is j1, j2, . . . , jk.
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• w∗(ih, j∗) = w(i, j) for all j∗ in the preference list of ih.

• w∗(ih, i′h−1) =
∑(h−1)c

l=1 w(i, jl)

• w∗(ih, ih) = 1−
∑hc

l=1 w(i, jl)

• w∗(i′h, ih) = 1−
∑hc

l=1 w(i, jl)

• w∗(i′h, i′h) =
∑hc

l=1 w(i, jl)

Notice,

w∗(i∗, i∗) = w∗(id, id) (by definition of i∗)

= 1−
dc∑

l=1

w(i, jl) (from map above)

= 1−
d k

c
ec∑

l=1

w(i, jl) (by definition of d)

= 1−
k∑

l=1

w(i, jl) (we can ignore the de since the pref list stops after k items)

= w(i, i)

In order to verify that this is an equilibrium in the new game, we must check the following

1. w∗(i, j) ≤ w∗(j, j) for all i, j.

2. w∗(i, i) +
∑

j 6=i w
∗(i, j) = 1 for all i.

3. If w∗(i, j) > 0, and if i prefers a over j, then w∗(i, a) = w∗(a, a).

All three of these are trivial for players in I ′, so we will verify the conditions for players in I . First
consider condition 1 for each weight placed by a player in set I .

• w∗(ih, a∗) = 0 unless a∗ is in the preference list for ih. If a∗ is in the preference list, then a∗ = a′p for
some player a from the original game with p = d length of a’s preference list /ce, and w∗(a∗, a∗) =
w(a, a). By the map above, w∗(ih, a∗) = w(i, a). Since w(i, a) ≤ w(a, a), w∗(ih, a∗) obeys condi-
tion 1.

• w∗(ih, i′h−1) =
∑(h−1)c

l=1 w(i, jl). But we know from the map that w∗(i′h−1, i
′
h−1) =

∑(h−1)c
l=1 w(i, jl),

so w∗(ih, i′h−1) also obeys condition 1.

Next, check condition 2 for each player in set I . The total weight placed by player ih is

w∗(ih, ih) + w∗(ih, i′h−1) +
∑

j∗ in the pref list of ih

w∗(ih, j∗)

= 1−
hc∑
l=1

w(i, jl) +
(h−1)c∑

l=1

w(i, jl) +
∑

j∗ in the pref list of ih

w(i, j)

= 1−
hc∑

l=(h−1)c+1

w(i, jl) +
hc∑

l=(h−1)c+1

w(i, jl)

= 1
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Finally, check condition 3. From above, we know that w∗(ih, i′h−1) = w∗(i′h−1, i
′
h−1), so the first

element in each preference list in the new game (the first preference of ih is for i′h−1) will always obey
w∗(i, a) = w∗(a, a). Also from above, w∗(j∗, j∗) = w(j, j) and w∗(ih, j∗) = w(i, j). Therefore, if any
lower preference disobeys w∗(i, a) = w∗(a, a), then it must also be true that w(i, a) 6= w(a, a). Since we
assumed the w values were an equilibrium in the original game, this must mean that there is no b preferred
less than a with w(i, b) > 0, so for all b∗ preferred less than a∗, w∗(ih, b∗) = 0.

Equilibrium in the new preference game maps to an equilibrium in the original preference game.
This map is simple. Given weights w∗ in the new preference game, create weights w in the original prefer-
ence game as follows.

• w(i, j) = maxh w∗(ih, j∗)

• w(i, i) = w∗(i∗, i∗)

The max in the first rule is a notational shortcut, since only one of the ih players will have any preference
for j∗, and therefore at most one of the ih players will have w∗(ih, j∗) > 0.

As before, we need to show the following to verify that this is an equilibrium in the original game.

1. w(i, j) ≤ w(j, j) for all i, j.

2. w(i, i) +
∑

j 6=i w(i, j) = 1 for all i.

3. If w(i, j) > 0, and if i prefers a over j, then w(i, a) = w(a, a).

To show condition 1, consider players i and j. Let ih = the player in the new game that has j∗ in its
preference list. Now, w(i, j) = w∗(ih, j∗) and w(j, j) = w∗(j∗, j∗). Since w∗ was feasible, we know that
w∗(ij , j∗) ≤ w∗(j∗, j∗), as desired.

Next, to show condition 2, consider player i. w(i, i)+
∑k

x=1 w(i, jx) = w∗(i∗, i∗)+
∑k

x=1 maxh w∗(ih, j∗x).
Let’s compute w∗(i∗, i∗) in the new preference game. Recall, the preference list for player ih is i′h−1,
j∗(h−1)c+1, j∗(h−1)c+2, . . ., j∗hc, ih, and specifically, the preference list for i∗ (= id) is i′d−1, j∗(d−1)c+1,
j∗(d−1)c+2, . . ., j∗k , id. Thus,

w∗(i∗, i∗) = 1− w∗(id, i′d−1)−
k∑

x=(d−1)c+1

w∗(id, j∗x)

= 1− w∗(i′d−1, i
′
d−1)−

k∑
x=(d−1)c+1

max
h

w∗(ih, j∗x)

= 1− [1− w∗(i′d−1, id−1)]−
k∑

x=(d−1)c+1

max
h

w∗(ih, j∗x)

= w∗(i′d−1, id−1)−
k∑

x=(d−1)c+1

max
h

w∗(ih, j∗x)

= w∗(id−1, id−1)−
k∑

x=(d−1)c+1

max
h

w∗(ih, j∗x)

= 1− [w∗(id−1, i
′
d−2) +

(d−1)c∑
x=(d−2)c+1

w∗(id−1, j
∗
x)]−

k∑
x=(d−1)c+1

max
h

w∗(ih, j∗x)
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= 1− w∗(i′d−2, i
′
d−2)−

(d−1)c∑
x=(d−2)c+1

max
h

w∗(ih, j∗x)−
k∑

x=(d−1)c+1

max
h

w∗(ih, j∗x)

= 1− w∗(i′d−2, i
′
d−2)−

dc∑
x=(d−2)c+1

max
h

w∗(ih, j∗x)

= . . .

= 1− w∗(i′1, i
′
1)−

k∑
x=c+1

max
h

w∗(ih, j∗x)

= 1− [1− w∗(i′1, i1)]−
k∑

x=c+1

max
h

w∗(ih, j∗x)

= w∗(i1, i1)−
k∑

x=c+1

max
h

w∗(ih, j∗x)

= 1−
c∑

x=1

w∗(i1, j∗x)−
k∑

x=c+1

max
h

w∗(ih, j∗x)

= 1−
c∑

x=1

max
h

w∗(ih, j∗x)−
k∑

x=c+1

max
h

w∗(ih, j∗x)

= 1−
k∑

x=1

max
h

w∗(ih, j∗x)

Putting this back into our sum for player i, we get

w(i, i) +
k∑

x=1

w(i, jx) = w∗(i∗, i∗) +
k∑

x=1

max
h

w∗(ih, j∗x)

= 1−
k∑

x=1

max
h

w∗(ih, j∗x) +
k∑

x=1

max
h

w∗(ih, j∗x) = 1.

So 2 holds.
Finally, we need to verify if w(i, j) > 0, and if i prefers a over j, then w(i, a) = w(a, a). If w(i, j) > 0,

then maxh w∗(ih, j∗) > 0. Let h = the h that satisfies maxh w∗(ih, j∗). Now, if i prefers a over j, then
either (Case 1) ih prefers a∗ over j∗ or (Case 2) there is some b < h such that ib has preference for a∗. Start
with Case 1. Since we know that w∗ is an equilibrium for the new preference game, it must be true that
w∗(ih, a∗) = w∗(a∗, a∗), so w(i, a) = w(a, a), as desired.

For Case 2, since w∗(ih, j∗) > 0, we know that for all b < h, w∗(i′b, i
′
b) < 1 (otherwise, for all c > b,

ic would put weight 1 on i′c−1, leaving no weight left for itself, so i′c would also be 1. Therefore, ih would
put weight 1 on ih−1, leaving no weight for j∗.) Therefore, for the b with preference for a∗, w∗(i′b, i

′
b) <

1 ⇒ w∗(i′b, ib) > 0 ⇒ w∗(ib, ib) > 0. Therefore, for all c∗ in the preference list for ib (including a∗),
w∗(ib, c∗) = w∗(c∗, c∗). So w∗(ib, a∗) = w∗(a∗, a∗), so w(i, a) = w∗(ib, a∗) = w∗(a∗, a∗) = w(a, a), as
desired.
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Reducing to a preference game with constant in-degree (at most 2), with O(m′n) players.
Suppose we have a player i who exists in the preference lists of m′ other players: j1, j2, . . . , jm′ . We will
add extra players i′1, i1, i

′
2, i2, . . . , i

′
m′ , im′ . The preference lists for these new players will be: i′1 has list

(i, i′1), for all k > 1: i′k has list (ik−1, i
′
k), for all k, ik has list (i′k, ik). If i plays itself with weight v, then

i′k will play itself with weight 1 − v and ik will play itself with weight v. Each of these new players has
in-degree 1 and out-degree 1. Now, we can replace i with ik in the preference list for jk, so that i now has
in-degree 1 and each ik has in-degree 2. This does not affect the degree of any jk.

4 Personalized Equilibria

In this section, we introduce a new notion of equilibrium for matrix games, in which a player may
individually match her strategies to her opponents strategies without obeying a product distribution. Since
this equilibrium allows different players to simultaneously choose different matchings across the strategies,
we call this a personalized equilibrium. In Section 4.2, we characterize the set of all personalized equilibria
in a k-player game. In Section 4.3, we show that finding a personalized equilibrium is PPAD-complete.

Suppose we are given a k-player matrix game between players 1, . . . , k. Each player i has strategy set
Si. We are also given a utility function for each i specified by ui : E → R, where E =

∏
j Sj . Now, given

probability distributions pj(Sj) for each j 6= i, a best response for player i (when using traditional Nash
payoffs) is defined by the pi(Si) that satisfies the following, where w is a weight function over e ∈ E.

max
∑
e∈E

w(e)ui(e)

w(e) =
∏

s∈e∩Sj

pj(s) for all e ∈ E

w(e) ≥ 0 for all e ∈ E

The correlator in a correlated equilibrium [3] relaxes the requirement that w be a product distribution;
however, w does satisfy, among other conditions, the projection constraint

∑
e:s∈e w(e) = pj(s) for all s ∈

Sj , 1 ≤ j ≤ k. For a personalized equilibrium, we further relax this by allowing each player to define her
own weight function, wi, so that in the best response of player i, pi(s) (and wi(e)) satisfy the following.

max
∑
e∈E

wi(e)ui(e)∑
e:s∈e

wi(e) = pj(s) s ∈ Sj , 1 ≤ j ≤ k

wi(e) ≥ 0 e ∈ E

We can view a matrix game as a hypergraph with nodes V = ∪jSj and edges E =
∏

j Sj . Then, if
we interpret the pj(s) values as capacities on the nodes and the utility function for player i as weights on
the edges from the perspective of player i, a personalized equilibrium is simultaneously a maximum-weight
fractional hypergraph matching for each player.

The description of the game above is exponential in the number of players since we require that every
edge connects one strategy of each player. To allow for more succinct descriptions, we generalize the game
as follows. For each player i, we introduce a hypergraph with nodes V = ∪jSj and edges Ei. The set Ei

is required to satisfy two conditions (that are satisfied by E): (i) for each e in Ei and player j, e contains
at most one element of Sj ; (ii) there do not exist distinct e and e′ in Ei such that e ⊂ e′. In the game,
player i places a weight wi(e) on each edge in Ei. A player must still place a total of weight 1 on all her
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edges, and all weights must be non-negative. Since the edges of Ei may not connect all players, however,
we relax the projection constraint to

∑
e:s∈e wi(e) ≤ pj(s). Thus, the collection of weights wi(e), e ∈ Ei,

and probability distributions pi(s), s ∈ Si, over all players i, form a personalized equilibrium if for each i,
wi(e) and pi(s) maximize

∑
e∈Ei

wi(e)ui(e) subject to the following constraints.

∑
e:s∈e

wi(e) ≤ pj(s) ∀s ∈ Sj ,∀j 6= i (1)∑
e:s∈e

wi(e) = pi(s) ∀s ∈ Si

wi(e) ≥ 0 ∀e ∈ Ei

PERSONALIZED EQUILIBRIUM: Given players 1 . . . k, strategy set Si, edge set Ei, and utility function
ui : Ei → R for each player i. Find a probability distribution pi : Si → R and a weight assignment
wi : Ei → (R) for each player i that obeys the constraints of LP 1 and maximizes

∑
e∈Ei

wi(e)ui(e).

Just as mixed Nash equilibria exist for every matrix game, we show that every game thus defined has a
personalized equilibrium.

Theorem 4.1. For every multi-player matrix game, a personalized equilibrium always exists.

Proof. Given the matrix game G, we construct the k-player game G in which the ith player’s strategy space
is the set of all probability distribution functions over Si and the payoff is given by the personalized payoff
function defined above. We can view the strategy space as the set of probability distribution functions over
Si instead of weight assignments to Ei since a weight assignment uniquely defines a probability distribution
function, and since the payoffs and responses of the other players only depend on the pi(s) values, not on
the wi(e) values. Then a personalized equilibrium of G is equivalent to a Nash equilibrium of G. By [38,
Proposition 20.3], a game has a pure Nash equilibrium if the strategy space of each player is a compact,
non-empty, convex space, and the payoff function of each player is continuous on the strategy space of all
players and quasi-concave in the strategy space of the player. The set of probability distributions over Si is
clearly nonempty, convex, and compact. Furthermore, given probability distributions pi over Si, 1 ≤ i ≤ k,
the payoff for any player i is simply the solution to the following linear program with variables wi(e), over
e ∈ Ei.

max
∑
e∈Ei

wi(e)ui(e)∑
e∈Ei:s∈e

wi(e) ≤ pj(s) s ∈ Sj , 1 ≤ j ≤ k

∑
e∈Ei

wi(e) = 1 wi(e) ≥ 0 e ∈ E

It is easy to see that the payoff function is both continuous in the probability distributions of all players, and
quasi-concave in the strategy space of player i, thus completing the proof of the theorem.

We define PERSONALIZED EQUILIBRIUM as the problem of finding a personalized equilibrium in a
given matrix game. k-PERSONALIZED EQUILIBRIUM is the same problem in a game with k players for
constant k. Note that the traditional definition of a graphical game [26] may be used in this setting with
smaller edges. In d-GRAPHICAL PERSONALIZED EQUILIBRIUM, each player i has a neighborhood Ni of at

17



most d other players, and all edges defined for player i are in
∏

j∈Ni
Sj . Finally, we define ε-APPROXIMATE

PERSONALIZED EQUILIBRIUM as the problem of finding a set of weight assignments (wi(e) ≥ 0 is the
weight assigned by player i to edge e) such that (a) for every player i, 1 − ε ≤

∑
e wi(e) ≤ 1, (b) for

each player pair i and j, and for each strategy s,
∣∣∑

e:s∈e wi(e)−
∑

e:s∈e wj(e)
∣∣ ≤ ε, and (c) for any best

response weight assignment w∗
i for any player i,

∑
e w∗

i (e)ui(e)−
∑

e wi(e)ui(e) ≤ ε.

4.1 Characterizing personalized equilibria in two player games

We can simplify the definition of personalized equilibria when discussing two player games. Consider
a matrix game (R,C) between two players ROW and COLUMN, in which player ROW has strategies
r1, r2, . . . , rm and player COLUMN has strategies c1, c2, . . . , cn. R ∈ Rm×n is the payoff matrix of ROW,
and C ∈ Rm×n is the payoff matrix of COLUMN.

Like a standard bimatrix game, if player ROW selects ri and player COLUMN selects cj , the payoff to
ROW is R[i, j] and the payoff to COLUMN is C[i, j]. Suppose ROW selects a distribution x among the
strategies {r1, r2, . . . , rm}, and COLUMN selects a distribution y among {c1, c2, . . . , cn}. Unlike payoffs
defined for mixed strategies, in which the payoff to ROW is

∑
i,j x[i]y[j]R[i, j] and the payoff to COLUMN

is
∑

i,j x[i]y[j]C[i, j], we define the payoffs using flows. The payoff to ROW is:

Payoff (ROW) = max
ui,j

∑
i,j

ui,jR[i, j] (2)

subject to
∑

j

ui,j = x[i], ∀i and
∑

i

ui,j = y[j], ∀j;

Payoff (COLUMN) = max
vi,j

∑
i,j

vi,jC[i, j] (3)

subject to
∑

j

vi,j = x[i], ∀i and
∑

i

vi,j = y[j], ∀j.

In other words, Payoff (ROW) is the cost of a 1-unit min-cost flow from source r to destination c in the
directed graph GR = (VR, ER), with

VR = {r, c, r1, r2, . . . , rm, c1, c2, . . . , cn}
ER = {(r → ri), ∀i} ∪ {(ri → cj), ∀i, j} ∪ {(cj → c), ∀j},

where the capacity of edge (r → ri) is x[i], the capacity of edge (cj → c) is y[j], and the capacity of all
other edges is +∞. The cost of edge (ri → cj) is −R[i, j], and the cost of all other edges is 0. We note
that for any distributions x and y, a unit-flow from r to c always exists, so the above payoff function is
well-defined.

Similarly, Payoff (COLUMN) is the cost of a 1-unit minimum-cost flow from source c to destination r
in the directed graph GC = (VC , EC), with

VC = {r, c, r1, r2, . . . , rm, c1, c2, . . . , cn}
EC = {(c → cj), ∀j} ∪ {(cj → ri), ∀i, j} ∪ {(ri → r), ∀i},

where the capacity of edge (c → cj) is y[j], the capacity of edge (ri → r) is x[i], and the capacity of all
other edges is +∞. The cost of edge (cj → ri) is −C[i, j], and the cost of all other edges is 0.

It is not hard to show that the set of all two-player personalized equilibria is convex. In fact, we can give
a stronger characterization, which will lead to a polynomial time algorithm.

Theorem 4.2. A 2-player personalized equilibrium can always be found in polynomial time.
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Proof. Let graph G = the union of GR and GC . We will now consider a subgraph G′ = (V ′, E′) ⊂ G, such
that V ′ = VR ∩ VC , (ri → cj) ∈ ER is in E′ if and only if R[i, j] ≥ R[i′, j] for all i′, and (cj → ri) ∈ EC

is in E′ if and only if C[i, j] ≥ C[i, j′] for all j′.

Any directed cycle in G′ corresponds to a personalized equilibria. Consider any cycle
{ri1, cj1, ri2, cj2, . . . , ril, cil} in G′, each node played with weight 1

l . Player ROW can match each of his
strategies rik with player COLUMN’s strategy cjk. Since this is a best response for player ROW, ROW
cannot do better by changing to another strategy. Similarly, player ROW can match each of his strategies
cjk with player ROW’s strategy ri(k+1) for k < l, cjl can be matched with ri1.

Every personalized equilibria is a linear combination of cycles in G′. Starting with any bipartite graph
from G′ in which the in-degree equals the out-degree of each node (a characteristic of any personalized
equilibria), we can remove any cycle (which is a personalized equilibria) and we are still left with a bipartite
graph with the same characteristic.

4.2 Characterizing personalized equilibria in k-player games

We have shown that the set of all personalized equilibria for a two-player game is just the set of all linear
combinations of cycles in an appropriately defined graph, which is easy to compute in polynomial time.
However, for k player games (k > 3), we will give a reduction from finding an equilibrium in a preference
game to finding a personalized equilibrium in a k player game (for k > 3), thereby showing that finding
personalized equilibria is PPAD-hard. Nevertheless, we are able to give a concise characterization of the
set of all personalized equilibria for arbitrary multi-player games.

Theorem 4.3 (Personalized Equilibrium Characterization). The following program represents the set of all
exact personalized equilibria. The variables are wi(e), the weight placed by player i on edge e, ∀e ∈ Ei.∑

e∈Ei:s∈e

wi(e) ≤
∑

e∈Ej :s∈e wj(e) s ∈ Sj , 1 ≤ j, i ≤ k (4)

∑
e∈Ei

wi(e) = 1 1 ≤ i ≤ k

wi(e) ≥ 0 1 ≤ i ≤ k, e ∈ Ei

min
e∈F

wi(e) = 0 for all players i and subsets F ⊆ Ei such that LP (5) is feasible.

The following linear program is defined for each player i and F ⊆ Ei (referred to as an improvement set).
The variables are δ(e) for each edge e ∈ Ei.∑

e∈Ei

δ(e)ui(e) > 0 (5)

∑
e∈Ei:s∈e

δ(e) = 0 s ∈ Sj , 1 ≤ j ≤ k, j 6= i

δ(e) < 0 (e ∈ F )
δ(e) ≥ 0 (e /∈ F )

Before formally proving this theorem, we will start with some intuition about why this characterizes all
equilibria. here we provide some intuition. The first two constraints of program 4 specify a feasible weight
assignment, and the first two constraints of LP 5 specify feasible “weight changes” that would increase the
payoff for player i. How do we know that checking this for all subsets of edges is enough to find any possible
improvement, and how does the last constraint of program 4 ensure that no improvement is possible? We
can think of the δ values found in any solution to LP 5 as an “improvement direction.” This is a vector that
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is orthogonal to the vector of all 1’s and has a positive dot product with the utilities of i. In other words,
if player i were to move weight in this direction, her payoff would improve. Of course, there may be a
continuum of such improvement directions. However, there are most an exponential number of negative
supports, or “improvement sets”. These are exactly the F values for which LP 5 is feasible. Given an
improvement set, the associated player can get a higher payoff by removing weight from all of those edges
and adding them instead to edges with positive δ value. This improvement will be possible unless the player
does not have weight on this entire improvement set; that is, unless mine∈F wi(e) = 0.

Proof. A solution to the program is an exact personalized equilibrium. Assume we have a solution to
Equation 4 that is not a personalized equilibrium. The first two constraints ensure that our solution is a
feasible weight assignment for the game. Therefore, there must be some player i who is not playing a best
response. Take some better response, in which player i plays weights w∗

i (e), and let δ(e) = w∗
i (e)−wi(e).

Let F be the subset of Ei such that δ(e) < 0 (that is, player i puts more weight on each edge in F in the
original response than in the best response). Since w∗

i has a strictly higher total utility for player i than wi, we
know that

∑
e∈Ei

w∗
i (e)ui(e) >

∑
e∈Ei

wi(e)ui(e), which implies that
∑

e∈Ei
δ(e)ui(e) > 0. Since both

wi and w∗
i were feasible weights, it must be true for any strategy s that

∑
e:s∈e wi(e) =

∑
e:s∈e w∗

i (e) ⇒∑
e:s∈e δ(e) = 0.
By our definition of F , δ(e) < 0 for all e ∈ F and δ(e) ≥ 0 for all e /∈ F . Therefore, F and i obey

all the constraints of linear program 5, so since wi(e) obeyed program 4, we know that mine∈F wi(e) = 0.
Thus, there exists some edge f ∈ F such that wi(f) = 0. But then 0 > δ(f) = w∗

i (f) − wi(f) = w∗
i (f),

contradicting the fact that w∗
i was a feasible best response for player i.

Any personalized equilibrium is a solution to the program. Assume we have a personalized equilibrium
that does not satisfy some constraint of the program. Let wi(e) be the weight placed by player i on edge e
in this equilibrium. The first three constraints are the definition of a feasible weight assignment. Therefore,
assume this equilibrium does not satisfy the min constraint for some player i and some subset F ⊆ Ei for
which LP 5 is feasible.

Consider a solution δ for LP 5 for this i and F . Let M = mine∈F |wi(e)|
maxe∈F |δ(e)| , and let δ′(e) = δ(e) · M . M

is a well-defined positive number since (1) the min constraint was not satisfied, and (2) LP 5 specifies that
δ(e) < 0 for all e ∈ F . We know that F is non-empty because the first constraint implies there is some
δ > 0, and combining this with the second constraint implies there is also some δ < 0. Furthermore, for all
e with δ(e) < 0 (i.e., for all e ∈ F ), |δ′(e)| ≤ wi(e). Now, consider the alternate assignment for player i
specified by w∗

i (e) = wi(e) + δ′(e). By the second constraint of LP 5 and the fact that |δ′(e)| ≤ wi(e) for
all e with δ(e) < 0, this is still a valid weight assignment. By the first constraint of LP 5, this gives a strictly
higher total utility for player i. Therefore, weights wi(e) did not give a best response for player i, so we did
not have a personalized equilibrium, contradicting our assumption and completing the proof.

Corollary 4.4. For any matrix game with all rational payoffs, there exists a personalized equilibrium in
which the probability assigned by each player to each strategy is a rational number.

Proof. In Theorem 4.3, we showed that any personalized equilibrium is a solution to a linear program plus
additional min constraints, in which all coefficients are rational. By Theorem 4.1, this program has at least
one solution. Now, we can rewrite this as a union of many linear programs as follows. Let F1, . . . , Fα be
the set of all improvement sets. We can write

∏α
i=1 |Fi| linear programs, each consisting of the first three

constraints from program 4 as well as the α constraints [e1 = 0 for some e1 ∈ F1], [e2 = 0 for some
e2 ∈ F2], . . ., [eα = 0 for some eα in Fα]. We can create one LP for each such combination of one edge
from each improvement set, or

∏α
i=1 |Fi| LPs. Since the union of these linear programs is exactly the same

as the program in Theorem 4.3, and since (by Theorem 4.1) the program in Theorem 4.3 has at least one
solution, we know that at least one of these linear programs has a solution. Any feasible LP with rational
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coefficients will have a rational solution. Therefore, there will be a personalized equilibrium with all rational
weights.

4.3 Finding personalized equilibria is PPAD-complete

This section contains four reductions. First, we reduce DEGREE d PREFERENCE GAME to d-GRAPHICAL

PERSONALIZED EQUILIBRIUM. We next reduce 3-GRAPHICAL PERSONALIZED EQUILIBRIUM to 4-
PERSONALIZED EQUILIBRIUM. Both these results are in Theorem ??, whose proof is deferred to Appendix
??. It can be easily verified that the same reductions can be used to show ε-APPROXIMATE PREFERENCE

GAME ≤P ε-APPROXIMATE PERSONALIZED EQUILIBRIUM. These reductions together show that finding
an ε-approximate personalized equilibrium in both graphical games and 4-player games is PPAD-hard.

Theorem 4.5. PREFERENCE GAME ≤P PERSONALIZED EQUILIBRIUM

Proof. Given a preference game over player set [n], with the preference lists specified as a set of values Qij

for all i, j ∈ [n]: Qij = the number of players k such that j �i k �i i.
Define a game as follows, in which we will find a personalized equilibrium.

• The set of players = {p1, . . . , pn}

• Si (the set of strategies for player pi) = {sij : Qij > 0}

• Hi = the set of hyperedges for player pi = {{sij , sjj}∀sij ∈ Si, j 6= i} ∪ {sii}

• ui({sij , sjj}) (the payoff to player i for this hyperedge) = Qij

• ui({sii}) = Qii ≥ 1

Notice that the degree of the game is preserved, and the number of edges defined is at most n times the
degree.

A personalized equilibrium maps to an equilibrium in the preference game.
The map will be as follows: Suppose we are given weights xij for each player i and edge {sij , sjj}, and
xii for player i and hyperedge {sii}. These weights form a personalized equilibrium. We will set weights
wij = xij in the preference game.

To show this is an equilibrium in the preference game, we must show the following.

• For all i,
∑

j wij = 1.∑
j wij =

∑
j xij = 1, since this is a valid solution to the personalized game.

• For all i, j, wij ≤ wjj .

wij = xij ≤ xjj (by the projection constraint for personalized equilibria), xjj = wjj .

• w is a lexicographically maximal weight assignment.

Suppose this is not true. Then, there exists another weight assignment w′ that is lexicographically
larger than w. Let w′ be the lexicographically maximal such assignment. Thus, there exist i, j such
that

∑
k:Qik≥Qij

w′
ij >

∑
k:Qik≥Qij

wij . For this i, take a j with the largest Qij that meets this condi-
tion. By our definition of j and the fact that w′ is lexicographically maximal, we know that for all j′

with Qij′ > Qij ,
∑

k:Qik≥Qij′
w′

ij =
∑

k:Qik≥Qij′
wij . Let δ =

∑
k:Qik≥Qij

w′
ij −

∑
k:Qik≥Qij

wij >

0. Now consider the payoff to player i in the personalized game.

Payoff to i =
∑

l

xilQil
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=
∑

l:Qil>Qij

xilQil +
∑

l:Qil=Qij

xilQil +
∑

l:Qil<Qij

xilQil

=
∑

l:Qil>Qij

wilQil + Qij

∑
l:Qil=Qij

wil +
∑

l:Qil<Qij

wilQil

=
∑

l:Qil>Qij

w′
ilQil + Qij

∑
l:Qil=Qij

wil +
∑

l:Qil<Qij

wilQil

=
∑

l:Qil>Qij

w′
ilQil + Qij((

∑
l:Qil=Qij

w′
il)− δ) +

∑
l:Qil<Qij

wilQil

≤
∑

l:Qil>Qij

w′
ilQil + Qij

∑
l:Qil=Qij

w′
il − δQij +

∑
l:Qil<Qij

w′
ilQil + δ(Qij − 1)

<
∑

l:Qil>Qij

w′
ilQil + Qij

∑
l:Qil=Qij

w′
il − δ(Qij − 1) +

∑
l:Qil<Qij

w′
ilQil + δ(Qij − 1)

=
∑

l:Qil>Qij

w′
ilQil + Qij

∑
l:Qil=Qij

w′
il +

∑
l:Qil<Qij

w′
ilQil

=
∑

l

w′
ilQil

So player i would do strictly better by playing x = w′, leading to a contradiction.

An equilibrium in the preference game maps to a personalized equilibrium.
Suppose we are given weights wij forming an equilibrium in the preference game. We will set weights in
the personalized game as follows. xih = wij for player i and edge h = {sij , sjj}. xih = wii for player i
and edge h = {sii}.

To show this is a personalized equilibrium, we must show the following.

• For all i,
∑

h xih = 1.∑
h xih =

∑
j wij = 1, since this is a valid weight assignment in the preference game.

• For all i, sjk ∈ Sj ,
∑

h:sjk∈h xih ≤
∑

h:sjk∈h xjh.

If j 6= k,
∑

h:sjk∈h xih = 0 ≤
∑

h:sjk∈h xij . If j = k,
∑

h:sjj∈h xih = xih′ where h′ = {sij , sjj}
= wij ≤ wjj = xjh′′ where h′′ = {sjj} =

∑
h:sjj∈h xjh.

• x is a best response in the personalized game for all players i.

Consider any other weight function x′ for the personalized game. Since there is a one-to-one mapping
from defined edges to i, j pairs in the preference game (including i = j), we can define a new weight
function w′ in the preference game using the same rules as defined in the first half of this proof
(w′

ij = x′ij). We know that w is lexicographically maximal for the preference game. Using the same
reasoning as above, we get:
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Payoff to i playing x′ =
∑

l

x′ilQil

=
∑

l:Qil>Qij

x′ilQil +
∑

l:Qil=Qij

x′ilQil +
∑

l:Qil<Qij

x′ilQil

=
∑

l:Qil>Qij

w′
ilQil + Qij

∑
l:Qil=Qij

w′
il +

∑
l:Qil<Qij

w′
ilQil

<
∑

l:Qil>Qij

wilQil + Qij

∑
l:Qil=Qij

wil +
∑

l:Qil<Qij

wilQil

=
∑

l

wilQil

= Payoff to i playing x

Corollary 4.6. It is PPAD-hard to find a personalized equilibrium, even in a graphical game with degree
3.

Proof. The reduction in the proof to Lemma ?? preserves the number of players. For player i, it creates one
hyperedge of size at most 2 for each player in out(i) in the preference game. Therefore, the degree in the
game is preserved.

Theorem 4.7. 3-GRAPHICAL PERSONALIZED EQUILIBRIUM ≤P 4-PERSONALIZED EQUILIBRIUM

Proof. Suppose we are given a graphical game with degree 3 for which we want to find a personalized
equilibrium. We first convert this graph so that it still has degree 3 but also obeys the following property:
For each node u with at least two outgoing edges, one to node v1 and the other to node v2, there exists either
an edge from v1 to v2 or an edge from v2 to v1.

Given a graph with maximum degree 3, we make the following modifications to satisfy the above prop-
erty. Suppose we have a node u with an edge to v1 and an edge to v2, and suppose v1 already has degree 3.
To fix this, we will create an extra node v′1 with the same strategies as v1 which will play exactly the same
weights as v1 in an equilibrium. We can do this by setting the payoff to v′1 for agreeing with v1 to 1, and the
payoffs for disagreeing with v1 to 0. v′1 has out-degree 1, since it only depends on v1. We have added one to
the in-degree of v1. However, now we can replace edge (u, v1) with edge (u, v′1), so v1 now has degree 3,
as originally, and v′1 has degree 2, so we can add an edge between v′1 and v2 without exceeding the degree
requirement on v1. Repeating the above transformations with other vertices that violate the desired property
will lead to a degree-3 graphical game that satisfies the property.

Now we have a degree 3 graph with the desired property. Create a 3-coloring and create one player per
color. Each player takes each of the strategies for each node in that color. For ease of notation, assume that
each of the original nodes had only 2 strategies. This can be easily adjusted for more strategies. Add dummy
strategies as necessary so that each of the 3 players has the same number of strategies. Also add a fourth
player with half the number of strategies as any other player.

This gives us 4 players. Let the strategies for player 1 be {a10, a11, a20, a21, . . . , ak0, ak1}. The strate-
gies for player 2 are {b10, b11, . . . , bk0, bk1}. The strategies for player 3 are {c10, c11, . . . , ck0, ck1}. The
strategies for player 4 are {d1, d2, . . . , dk}.
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Next we will assign payoffs for each hyperedge. Start by giving each hyperedge the same payoff as in
the graphical game (we can do this because no two nodes influencing the same strategy are strategies of the
same player). Notice that these payoffs will not depend at all on player 4. All of player 4’s payoffs start at
0. Let pi(w, x, y, z) = the payoff to player i if player 1 plays w, 2 plays x, player 3 plays y, player 4 plays
z. Now we want to add to these payoffs in order to ensure that each player plays each strategy pair equally.

Let M be strictly greater than the largest payoff so far. Now, change the following payoffs:
p1(asi, x, y, ds)+ = M (player 1 is playing either strategy from the node numbered s, player 4 is play-

ing his sth strategy).
p2(w, bsi, y, ds)+ = M (player 2 is playing either strategy from the node numbered s, player 4 is playing
his sth strategy).
p3(w, x, csi, ds)+ = M (player 3 is playing either strategy from the node numbered s, player 4 is playing
his sth strategy).
p4(asi, x, y, d(s+1))+ = M (player 1 is playing either strategy from the node numbered s, player 4 is play-
ing strategy s mod k + 1).

If fi(x) = the amount player i plays strategy x then in any equilibrium we must have (for all s)

f1(as0) + f1(as1) = f4(ds)
f2(bs0) + f2(bs1) = f4(ds)
f3(cs0) + f3(cs1) = f4(ds)

f4(ds) = f1(a(s−1)0) + f1(a(s−1)1) for 1 < s ≤ k

f4(d1) = f1(ak0) + f1(ak1)

These equations imply that:

f1(as0) + f1(as1) = f1(a(s−1)0) + f1(a(s−1)1) for s > 0
f1(a00) + f1(a01) = f1(ak0) + f1(ak1) for s > 0
f2(bs0) + f2(bs1) = f1(as0) + f1(as1)
f3(cs0) + f3(cs1) = f1(as0) + f1(as1)

In other words, given a personalized equilibrium in this game, we can simply multiply by the number of
pairs (nodes) per player to get a personalized equilibrium in the graphical game.

The remaining two reductions will be used to show PPAD membership of PERSONALIZED EQUI-
LIBRIUM. We show how to reduce PERSONALIZED EQUILIBRIUM to ε-APPROXIMATE PERSONALIZED

EQUILIBRIUM, as long as ε is sufficiently small. Finally, we reduce ε-APPROXIMATE PERSONALIZED

EQUILIBRIUM to END OF THE LINE, thereby completing the proof that finding personalized equilibria
(as well as ε-approximate personalized equilibria) is PPAD-complete. We start with an LP compactness
claim that will be useful to show PERSONALIZED EQUILIBRIUM ≤P ε-APPROXIMATE PERSONALIZED

EQUILIBRIUM.

Lemma 4.8 (LP Compactness). If an LP with n variables and rational coefficients, each represented by at
most β bits, is such that there is a point obeying each constraint to within ε = 1

23nβ , then the LP is feasible.

Proof.
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Lemma 4.9. If t, b, ti, bi, yi, zi, (for 1 ≤ i ≤ n), are β-bit integers, then either
∑n

i=1
tiyi

bizi
≥ t

b or∑n
i=1

tiyi

bizi
< t

b −
1

23nβ .

Proof. Suppose we have
∑n

i=1
tiyi

bizi
< t

b . Then the difference t
b −

∑n
i=1

tiyi

bizi
is at least 1/(b ·

∏
i bi

∏
i zi),

which is at least 1/2β+2nβ < 2−3nβ since each integer in the product is at most 2β .

From Lemma 4.9, we get the following. If x satisfies
∑n

i=1 aixi ≥ b − 1
23nβ , where each ai and b are

rational numbers whose numerators and denominators are representable as β-bit integers, then x satisfies∑n
i=1 aixi ≥ b. This immediately implies the Lemma.

Corollary 4.10. Given a linear program with≤ n variables and coefficients of the form a
b for integers a and

b, each represented by at most β bits, each coordinate of a vertex must be representable by c
d for integers c

and d, each represented by less than 3nβ bits.

We use the next lemma to show that an approximate personalized equilibrium almost satisfies the con-
straints of Theorem 4.3. As long as ε is small enough, this will imply by Lemma 4.8 that an ε-approximate
personalized equilibrium will point us to a feasible LP that finds an exact personalized equilibrium.

Lemma 4.11. An ε1-approximate personalized equilibrium (with ε1 = 1
23|E|(β+γ) ) will obey every constraint

in program 4 to within ε2 = 1
d for γ bit integer d, if each utility value is representable as a

b for integers a
and b of at most β bits each.

Proof. Assume for the sake of contradiction that we have an ε1-approximate personalized equilibrium that
does not satisfy some constraint of the program to within ε2. Let wi(e) = the weight placed by player i on
hyperedge e in this approximate equilibrium. The first three constraints of program 4 must be satisfied to
within ε1, since they are the definition of a feasible weight assignment. Therefore, assume this equilibrium
does not satisfy the min constraint to within ε2 for some player i and some subset F ⊆ Ei for which LP 5
is feasible.

Consider a solution δ∗ for LP 5 for this i and F . Let M = ε2
maxe∈F |δ∗(e)| , and let δ′(e) = δ∗(e) ·M . M

is well-defined since δ∗(e) < 0 for all e ∈ F . Furthermore, for all e with δ(e) < 0 (i.e., for all e ∈ F ),
|δ′(e)| ≤ ε2 ≤ wi(e).

Now consider the following slightly adjusted linear program.

maximize
∑
e∈Ei

δ(e)ui(e)

∑
e:s∈e

δ(e) = 0 s ∈ Sj , 1 ≤ j ≤ k, j 6= i (6)

δ(e) ≥ −ε2 (e ∈ F )
δ(e) ≥ 0 (e /∈ F )

By our choice of δ′ and the analysis above, δ′ obeys each constraint of the new linear program 6, and δ′

gives a maximization value > 0. LP 6 has |Ei| ≤ |E| variables, each coefficient ui(e) can be represented as
a
b for β-bit integers a and b, and coefficient ε2 = 1

d for γ bit integer d. The maximization point of an LP will
be at a vertex, so by Corollary 4.10, each dimension of the maximization point of LP 6 will be representable
by c

b for integers c and d, each of less than 3|E|(β + γ) bits.
Let δ = the solution to LP 6, and consider the alternate assignment for player i specified by w∗

i (e) =
wi(e) + δ(e). By the first constraint of LP 6, this still does not overfill or underfill any strategy by more
than ε1, and player i still places total weight between 1− ε1 and 1+ ε1. By the second and third constraints,
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δ(e) < 0 if and only if e ∈ F , in which case |δ(e)| ≤ ε2 (when wi(e) ≥ ε2), so w∗
i (e) ≥ 0. In other words,

we still have a valid weight assignment for an ε1-approximate personalized equilibrium. Since we know LP
6 has a solution > 0, and (from above) each coordinate of the solution is representable as c

d for integers c and
d, each of at most 3|E|(β + γ), this gives a total utility for player i that is more than 1

23|E|(β+γ) = ε1 larger
than the original total utility. Therefore, the original solution was not a valid ε1-approximate personalized
equilibrium, contradicting our assumption and completing the proof.

Theorem 4.12. There is a polynomial time reduction from finding an exact personalized equilibrium in a
game with |E| edges to finding an ε-approximate personalized equilibrium for any ε ≤ 1

|E|3|E|29|E|2β+3|E|β ,

assuming all utilities can be represented as a
b for integers a and b, each of at most β bits.

Proof. The reduction consists of two steps. In the first step, we find an ε-approximate personalized equilib-
rium for the given game in which we want to find an exact personalized equilibrium. In the second step, we
solve the following linear program for wi(e) and pi(s), ∀i ∈ 1 . . . k, s ∈ Si, e ∈ Ei. Let E′

i ⊂ Ei = the set
of all edges e such that player i assigned≤ 1/(|E| ·23|E|β) weight to edge e in the approximate equilibrium.

∑
e∈Ei:s∈e

wi(e) ≤ pj(s) 1 ≤ i, j ≤ k, s ∈ Sj (7)

∑
s∈Si

pi(s) = 1 1 ≤ i ≤ k

wi(e) = 0 ∀e ∈ E′
i, 1 ≤ i ≤ k

wi(e) ≥ 0 1 ≤ i ≤ k, e ∈ Ei \ E′
i

ε ≤ 1

E3|E|∗29|E|2β+3|E|β = 1

23|E| log2 |E|+9|E|2β+3|E|β = 1
23|E|(β+3|E|β+log2 |E|) . Since ε ≤ 1

23|E|(β+3|E|β+log2 |E|) , by
Lemma 4.11, the approximate equilibrium found in the first step will satisfy all constraints of program 4 to
within 1

23|E|β+log2 |E| = 1/(|E| ∗ 23|E|β). Therefore, a solution found in the second step will exactly satisfy
all “min” constraints in program 4. Clearly, a solution found in the second step will exactly satisfy all other
constraints in program 4, since the other constraints are identical.

Each value wi(e) is being decreased by at most 1/(|E|23|E|β) (but not to less than 0) from the approx-
imate equilibrium to the solution to the second step, so the last two constraints in linear program 7 are
satisfied exactly using the values from the approximate equilibrium, while the first two constraints in linear
program 7 are satisfied to within 1/(23|E|β) by the values from the approximate equilibrium. Therefore, the
approximate equilibrium satisfies each constraint of linear program 7 to within ε = 1/(23|E|β). By Lemma
4.8, linear program 7 is feasible, so by Lemma 4.3, we can find an exact personalized equilibrium.

Theorem 4.12 and Theorem 4.13 put PERSONALIZED EQUILIBRIUM in PPAD.

Theorem 4.13. ε-APPROXIMATE PERSONALIZED EQUILIBRIUM ≤P END OF THE LINE

Proof. We used fixed point theorems to prove the existence of a personalized equilibrium, and relaxing
the problem to finding ε-approximate equilibria automatically moves us from a continuous to a discrete
world. Here, we show that finding an ε-approximate equilibrium is in PPAD. This is not surprising given
that several discrete fixed point problems have been shown to be in the class PPAD. Our proof uses the
machinery already established for proving that finding approximate Nash equilibrium in r-player games is
in PPAD [13]. Their proof [13][Section 3.2] will apply to personalized equilibria as well, as long as we
can define a polynomial-time computable function f(x) for x ∈ Rn·k for a game with k players, n strategies
per player, which satisfies the conditions we enumerate below. We need to introduce some notation first.
For p ∈ [k] and i ∈ [n], we denote by xi

p the ((p − 1)n + i)-th coordinate of x (the amount that player
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p plays strategy i). For player p, let Dp denote the set {(p − 1)n + j : j ∈ [n]}; that is, the dimensions
corresponding to the strategies of p. Then xp is the projection of x on Dp and x−p is the projection of x on
[nk]−Dp. The function f(x) must satisfy the following requirements for the proof to translate:

1. ∀p,
∑

i f(xi
p) = 1

2. If ‖x− x′‖∞ < δ, then ‖f(x)− f(x′)‖∞ < Umax2poly(n,m,k)δ, where m is the number of edges and
Umax is the maximum payoff entry in the given instance.

3. If ‖f(x) − x‖∞ < ε1, then x is an ε-approximate personalized equilibrium. Here, we will use any
ε1 ≤ ε

nUmax . In the proof from [13], ε1 only affects the number of nodes in the END OF THE LINE

graph.

We define f(x) as follows: we set f(x)p to be the lexicographically least best response to x−p. We now
show that f satisfies the three conditions listed above. The first condition is immediate from the definition
of f(x). For the second condition, fix x, x′, and a player p. Then f(x)p is obtained by solving a best
response linear program for player p given the strategy distribution x−p of the other players. The LP, which
we denote by O for this proof, is over the variables f(x)i

p, for strategy i ∈ Sp, and wp(e) for every edge e,
and maximizes a linear utility u(f(x)p, wp) subject to linear constraints B · (f(x)p, wp)T ≥ c. We note that
every element of B is either 0 or 1 and every element of c is either 0, 1, or a coordinate of x−p. Similarly,
f(x′)p is an optimal solution to an LPO′, which maximizes u(f(x′)i

p, w
′
p) subject to B · (f(x)p, w

′
p)

T ≥ c′,
where c′ is derived from x′−p in the same way as c is derived from x−p.

Let U and U ′ denote the optimal values of O and O′. We first argue that if ‖x − x′‖∞ ≤ δ, then
|U − U ′| ≤ mUmax(nk)!δ, where m is the number of edges and Umax is the maximum payoff entry in the
given game. We note that x satisfies the constraints of O′ to within δ. We also know that O′ is feasible.
The number of variables and constraints in both O and O′ are n + m and nk + m + 1. Therefore, by
Lemma 4.14, there exists a point y that satisfies the constraints of O′

p such that ‖y − x‖∞ ≤ (nk)!δ; here
we use the fact that every entry in the constraint matrix and vector of O and O′ is at most 1. Thus, the utility
achieved by y is at least u(f(x)p, wp) − mUmax(nk)!δ, yielding U ′ ≥ U − mUmax(nk)!δ. Similarly, we
have U ≥ U ′ −mUmax(nk)!δ. This gives the desired bound |U − U ′| ≤ mUmax(nk)!δ.

By definition, we have that (f(x)p, wp) is the lexicographically least element of the feasibility LP con-
sisting of the constraints of Op together with the constraint u(f(x)p, wp) ≥ U . Let us call this LP P .
Similarly, (f(x′)p, w

′
p) is the lexicographically least element of the feasibility LP P ′ consisting of the con-

straints of O′ together with the constraint u(f(x′)p, w
′
p) ≥ U ′. We note that P and P ′ have the same set of

variables and the same constraint matrix; that is, P and P ′ can be written down as Ax ≥ b and Ax ≥ b′

respectively. Since ‖x−x′‖∞ ≤ δ and |U −U ′| ≤ mUmax(nk)!δ, we have ‖b− b′‖∞ ≤ mUmax(nk)!δ. We
now apply Corollary 4.15 to obtain that ‖f(x)p − f(x′)p‖∞ is at most Umax2poly(n,m,k)δ.

For the third condition, recall our definition of an ε-approximate personalized equilibrium. We require:
(3a) for every player p, 1 − ε ≤

∑
e wp(e) ≤ 1, (3b) for each player pair p and q, and for each strategy s,∣∣∑

e:s∈e wp(e)−
∑

e:s∈e wq(e)
∣∣ ≤ ε, and (3c) for any best response weight assignment w∗

p for any player
p,

∑
e w∗

p(e)up(e) −
∑

e wp(e)up(e) ≤ ε. (3a) is immediate, and we have
∑

e we(p) = 1. For (3b), recall
that yp is the exact best response to x−p. Therefore, for any player pair p and q and strategy s of q, we
could find a weight assignments w on all edges e (specifically, the weight assignments that made this a best
response) such that

∑
e:s′∈e wp(e) = ys′

p (for all s′, strategies of p), and
∑

e:s∈e wp(e) = xs
q. Since w was

a weight function for y, we also have
∑

e:s∈e wq(e) = ys
q . We are told that |y∗sq − xs

q| is at most ε1, so we
have |

∑
e:s∈e wp(e)−

∑
e:s∈e wq(e)| ≤ ε1.

Condition (3c): As above, we can define the weight function w∗
p(e) that makes yp a best response

against x−p. Also define any weight assignment wp that gives (for all strategies s of p)
∑

e:s∈e wp(e) =
xs

p. For any strategy s of p, we are told that |ys
p − xs

p| < ε1, so we can say for any strategy s of p,
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∑
e:s∈e w∗

p(e) −
∑

e:s∈e wp(e) < ε1 ⇒
∑

e:s∈e w∗
p(e)up(e) −

∑
e:s∈e wp(e)up(e) < ε1Umax. This means∑

s |
∑

e:s∈e w∗
p(e)up(e) −

∑
e:s∈e wp(e)up(e)| < nε1Umax if n is the number of strategies for p. We can

remove the absolute values because w∗ was a best response, giving
∑

e w∗
p(e)up(e) −

∑
e wp(e)up(e) ≤ ε

as required, as long as εl ≤ ε
(

1
nUmax

)
.

Lemma 4.14. Given a q × r matrix A, an q-vector b such that Ax ≥ b is feasible, and p ∈ Rr and e ∈ Rq

such that Ap ≥ b − e, there exists p′ satisfying Ap′ ≥ b such that ‖p − p′‖∞ is at most emax(AmaxDmax)q,
where emax = maxj ej , Amax equals maxij |Aij | and Dmax is the largest determinant, in absolute value, of
any submatrix of the matrix consisting of the columns of A and b.

Proof. We find a point y such that Ay ≥ b−Ap and ‖y‖∞ ≤ emax(AmaxDmax)q. Setting p′ = p+y gives us
the desired lemma. We first note that Ay ≥ b−Ap is feasible since it is satisfied by the point x− p, where
x satisfies Ax ≥ b. Let d equal b−Ap. So our goal is to find a y satisfying Ay ≥ d. By our assumption on
p, we have di ≤ emax for all i.

Consider the following algorithm for constructing y. Set y = 0 and L to be the empty LP. At the end of
i iterations, we will maintain the invariant that ‖y‖∞ ≤ (AmaxDmax)iemax. Find any constraint Aky ≥ dk

not in L that is not satisfied. (If no such constraint exists, then we are done.) Add this constraint to L. By
the invariant on |y|, it follows that |Aky| is at most Ai+1

maxD
i
maxemax. Since dk ≤ emax, it follows that |dk| is

at most Ai+1
maxD

i
maxemax. Since the right hand side of every inequality of L is at most this number, and the

left hand side is a submatrix of A, by Cramer’s rule there exists a vertex of L, every coordinate of which
has magnitude at most Ai+1

maxD
i
maxemax times the largest entry in the determinant of any submatrix of A,

which is at most Dmax. (Note that L is feasible since Ay ≥ d is feasible.) This yields the desired invariant
‖y‖∞ ≤ (AmaxDmax)(i+1)emax.

The above procedure stops in at most q iterations, and yields a point y such that ‖y‖∞ ≤ emax(AmaxDmax)q,
thus completing the proof of the lemma.

Corollary 4.15. Let A be an q×r matrix, b be an q-vector, and p be the lexicographically smallest vector in
Ax ≥ b. Let b′ ∈ Rq be such that Ax ≥ b′ is feasible. If p′ is the lexicographically smallest vector in Ax ≥
b′, then ‖p− p′‖∞ is at most emax(AmaxDmax)qr+r(r+1), where emax = maxj |bj − b′j |, Amax = maxi,j |Aij |,
and Dmax is the largest determinant, in absolute value, of any submatrix of the matrix consisting of columns
from A and b.

Proof. Let L denote the LP Ax ≥ b′. We apply Lemma 4.14 with (A, p, b, e) replaced by (A, p, b′, b− b′) to
obtain a point p′ satisfying L such that |p1 − p′1| is at most emax(AmaxDmax)q. We add a constraint x1 = p′1
to the LP L and apply Lemma 4.14 with (A, p, b, e) replaced by (Ã, p, b̃, ẽ), where Ã is the constraint matrix
of L, b̃ is the right-hand side of L, and ẽ is the vector obtained by adding two additional coordinates to e,
each with magnitude at most |p1 − p′1| (for the two new inequality constraints resulting from the addition
of x1 = q1). We obtain a new point p′ satisfying L such that |p1 − p′1| and |p2 − p′2| are both at most
emax(AmaxDmax)2q+2. Repeating this for all the coordinates yields the lexicographically smallest vector p′

of Ax ≥ b′ with ‖p− p′‖∞ at most emax(AmaxDmax)qr+r(r+1).

5 Scarf’s Lemma and Fractional Stability Problems

This section discusses the complexity of a number of well-known combinatorial problems that can be
categorized as fractional stability problems. We begin with Scarf’s Lemma, a fundamental result in combi-
natorics, originally introduced to prove that every balanced cooperative game with non-transferable utilities
has a nonempty core (see Section 5.3) [41]. The core (no pun intended) of his argument is an elegant and
constructive combinatorial argument, which has been applied to diverse combinatorial problems, including
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fractional stable matchings in hypergraphic preference systems, strong kernels in digraphs, and the frac-
tional stable paths problem [2, 1, 28, 21]. We first show that the computational version of Scarf’s lemma is
PPAD-complete. We then establish the PPAD-completeness of stable matchings in hypergraphic prefer-
ence systems, strong kernels in digraphs, core of balanced games with non-transferable utility, the fractional
stable paths problem, and a fractional version of the Bounded Budget Connection game [30, 31].

5.1 Scarf’s Lemma

In the computational version of Scarf’s lemma (SCARF) we are given matrices B, C and a vector b
satisfying the conditions in Theorem 5.1, and the goal is to find α ∈ Rn

+ satisfying the desired properties.

Theorem 5.1. (Scarf’s lemma [41]) Let I = [δij ] be an m × m identity matrix. Let [n] = {1, 2, . . . , n}.
Let m < n and let B be an m× n real matrix such that bij = δij for 1 6 i, j 6 m. Let b be a non-negative
vector in Rm, such that the set {α ∈ Rn

+ : Bα = b} is bounded. Let C be an m × n matrix such that
cii 6 cik 6 cij whenever i, j 6 m, i 6= j and k > m. Then there exists a subset J ⊂ [n] of size m such that

(P1) Bα = b for some α ∈ Rn
+ such that αj = 0 whenever j /∈ J , and

(P2) For every k ∈ [n] there exists i ∈ [m] such that cik 6 cij for all j ∈ J .

A subset J ⊂ [n] of size m is called a feasible basis of (B, b) if it satisfies (P1), and subordinating if it
satisfies (P2). To compute α of SCARF, it suffices to have a J ⊆ [n] that is simultaneously subordinating and
a feasible basis. Once such J is computed, α can be computed by solving a system of linear equations. Also,
given a solution α, J is easy to compute, since J is α’s support. Hence finding α and J are computationally
equivalent, to within polynomial time. In Theorem 5.2, we argue that Scarf’s original proof [41], together
with Todd’s orientation technique [46], gives an end of the line argument for the existence of a subordinating
and feasible basis, thus showing that SCARF is in PPAD. We refer to Appendix ?? for details.

Theorem 5.2. SCARF ≤P END OF THE LINE.

Proof. The pair (B, b) is non-degenerate if b is not in the cone spanned by fewer than m columns of B. We
call C ordinal-generic if all the elements in each row of C are distinct. There exists a small perturbation b′

of b such that the pair (B, b) is non-degenerate and every feasible basis for (B, b′) is also a feasible basis for
(B, b). By slightly perturbing C, we can obtain an ordinal-generic matrix C ′ satisfying the assumptions of
the theorem, and if the perturbation is small enough, then any subordinating set for C ′ is also subordinating
for C. Hence, we may assume that (B, b) is non-degenerate, and that C is ordinal-generic.

Lemma 5.3 is well-known. Its proof requires that {α ∈ Rn
+ : Bα = b} is bounded and (B, b) is

non-degenerate. For the proof of Lemma 5.4, we refer the reader to [41] or [2] or page 1127 of Schrijver’s
Combinatorial Optimization book [42]. Proof of Lemma 5.4 uses the assumption that C is ordinal-generic.

Lemma 5.3. Let J be a feasible basis for (B, b), and k ∈ [n] \ J . Then there exists a unique j ∈ J such
that J + k− j (i.e., J ∪{k}\{j}) is a feasible basis. Also, given J and k, we can find j in polynomial time.

Lemma 5.4. (Scarf [41]) Let K be a subordinating set for C of size m-1. Then there are precisely two
elements j ∈ [n]\K such that K + j is subordinating for C, unless K ⊆ [m], in which case there exists
precisely one such j. Given K, we can find values of j in polynomial time.

The natural pivot rules arising from Lemma 5.3 and Lemma 5.4 are called the feasible pivot rule and the
ordinal pivot rule respectively.

The original proof of Scarf’s lemma ([41], [2]) uses an “undirected end of the line argument”, thus
showing its PPA-membership. It is easy to see that PPAD ⊆ PPA, however it is unknown if PPAD
= PPA. To prove PPAD-membership of SCARF, we need a “directed end of the line argument”. Shap-
ley [44] presented a geometric orientation rule for the equilibrium points of (nondegenerate) bimatrix games
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based on the Lemke-Howson algorithm [32]. Extending Shapley’s rule, Todd [46] developed a similar orien-
tation theory for generalized complementary pivot algorithms. We now apply Todd’s orientation technique
to prove PPAD-membership of SCARF.

Let X = {1, 2, . . . , n}. A subset of X of cardinality m is called an m-subset. Let Xm denote the
collection of ordered (with the natural ordering defined by X) m-tuples of distinct elements of X . Two
m-tuples in Xm are equivalent iff one is an even permutation of the other. Let P be any element of an
equivalent set. We denote the corresponding equivalent set by P . If P ′ ∈ Xm is an odd permutation of
P ∈ Xm, then we call P ′ the negative of P and write P ′ = −P . Let P = (e1, . . . , en) ∈ Xn. For µ = ±1,
we say P contains µ(P\ei) positively (negatively) if µ(−1)i is positive (negative).

Let e ∈ X be a specific element. LetF be the set of all feasible bases containing e, and S be the set of all
subordinating sets of size m not containing e. Note that both F and S are m-subsets of [n]. Let V (F ,S, e)
be the set of pairs (F , S) ∈ F × S satisfying either (i) F = ±S (called a matched pair) or (ii) e ∈ F, e /∈ S
and F\S = {e} (called an unmatched pair). A matched pair (T , T ) is positive, while (T ,−T ) is negative.
An unmatched pair (F , S) is positive (negative) if F is contained in (S ∪ e) positively (negatively).

Lemma 5.5. (Todd [46]) (a) Every matched pair is adjacent to one unmatched pair by a feasible pivot, or
one unmatched pair by a ordinal pivot, but not both. (b) Every unmatched pair is adjacent to one pair by a
feasible pivot and one pair by a ordinal pivot.

Lemma 5.6. (Todd [46]) (a) If two unmatched pairs are adjacent by a feasible pivot, they have opposite
signs. (b) If a matched pair and an unmatched pair are adjacent by a feasible pivot, they have the same
sign. (c) If two pairs are adjacent by a ordinal pivot, they have opposite signs.

Similar to [46], we construct a directed graph with vertices representing the pairs in V (F ,S, e). If two
unmatched pairs are adjacent by a feasible pivot, we add a directed edge from the negative pair to the positive
pair. If a matched pair is adjacent by a feasible pivot to an unmatched pair, we add a directed edge from
the matched pair to the unmatched pair if both are positive and in the reverse direction if both are negative.
If two pairs are adjacent by an ordinal pivot, we add a directed edge from the positive pair to the negative
pair. From Lemmas 5.5 and 5.6, it follows that each unmatched pair has indegree 1 and outdegree 1. Each
matched pair has indegree 0 and outdegree 1 if positive, and indegree 1 and outdegree 0 if negative. It is
easy to see that [m] is in F and is not subordinating. By Lemma 5.4 there exists f 6= e such that [m]− e+f
is in S. We shall use the pair ([m], [m] − e + f) as the initial source of END OF THE LINE. This gives the
required PPAD property.

In Section 5.2, we establish the PPAD-hardness of FRACTIONAL HYPERGRAPH MATCHING, which
reduces to SCARF in polynomial time [1], thus completing the proof that SCARF is PPAD-complete.

5.2 Hypergraphic Preference Systems

A hypergraphic preference system is a pair (H,O), where H = (V,E) is a hypergraph, and O = {�v :
v ∈ V } is a family of linear orders, �v being an order on the set of edges containing the vertex v. A set M
of edges is called a stable matching with respect to the preference system if (a) it is a matching and (b) for
every edge e there exists a vertex v ∈ e and an edge m ∈ M containing v such that e �v m. A nonnegative
function w on the edges in H is called a fractional matching if

∑
v∈h w(h) ≤ 1 for every vertex v. A

fractional matching w is called stable if every edge e contains a vertex v such that
∑

v∈h,e�vh w(h) = 1.
Aharoni and Fleiner [1] used Scarf’s lemma to prove that every hypergraphic preference system has a

fractional stable matching. This naturally leads to a computational problem – FRACTIONAL HYPERGRAPH

MATCHING : given a hypergraphic preference system (H,O), find a fractional stable matching. We first
observe that the proof of [1] is a polynomial time reduction from FRACTIONAL HYPERGRAPH MATCHING

to SCARF, thus placing it in PPAD. We now show that FRACTIONAL HYPERGRAPH MATCHING is
PPAD-hard via a reduction from preference games. The proof of Lemma 5.7 is deferred to Appendix 5.
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Lemma 5.7. DEGREE d PREFERENCE GAME ≤P FRACTIONAL HYPERGRAPH MATCHING.

Proof. We are given a preference game over players [n] = {1, . . . , n}. We construct the following hyper-
graph matching instance (H,O), H = (V,E). The set V of vertices is [n] ∪ {i∗ : i ∈ [n]}; that is, we have
two vertices i and i∗ for each player i. The set of edges is given by the following.

{{i∗} : i ∈ [n]}
⋃
{{i, i∗} ∪ Ji : i ∈ [n], Ji ⊆ in(i)}}

(Note that Ji is a subset of players that prefer i over themselves.)
We next describe the linear order for a given vertex i. Let e1 and e2 be two edges containing i. By our

construction of E, there exists a unique i1 such that {i1, i∗1} is a subset of e1. Similarly, there is a unique
i2 such that {i2, i∗2} is a subset of e2. If i1 6= i2, then we require that e1 �i e2 if and only if i1 �i i2. If
i1 = i2, then we require the following condition on �i: e1 �i e2 whenever e1 ⊇ e2. Finally, for any vertex
i∗, we select any linear order in which e1 �i∗ e2 whenever {i, i∗} is a subset of e1 and e �i∗ {i∗} for all e.

The number of vertices in the above hypergraph is 2n, and the number of edges is at most n(2d + 1),
where d is the maximum in-degree of the preference game. Since we are given a preference game of constant
degree, the above construction is polynomial time.

We show that there is a stable solution for the preference game if and only if there is a stable fractional
matching for the hypergraph preference system. Suppose w is a stable solution for the preference game: wij

represents the weight assigned by player i to player j. For a given player j, we sort all the players i in in(j)
in nonincreasing order of the wij values; let the order be j1, j2, . . . , jdj

, where dj is the in-degree of j. To
every edge of the form {j, j∗} ∪ {j1, . . . , jk}, 1 ≤ k < dj , we assign the weight wjkj − wjk+1j . We assign
weight wjdj

to the edge {j, j∗}∪ in(j) and weight wjj −wj1j to the edge {j, j∗}. Finally, we assign weight
1− wjj to the edge {j∗}. This ensures the following:∑

e:{j,j∗}∈e f(e) = wjj for all j∑
e:{j,j∗,i}∈e f(e) = wij for all j, i ∈ in(j)

We next argue that the fractional matching f thus defined is stable.
There are three types of edges for us to consider. (1) e = {j, j∗, j1, j2, . . . , jk} for some j, k, (2)

e = {j, j∗} ∪ S for some j, S 6= {j1, j2, . . . , jk} for any k, and (3) e = {j∗} for some j
First consider e = {j, j∗, j1, j2, . . . , jk} for some j, k. We separate this into two cases. The first

case is when there is no proper subset of e that has positive weight. In this case, we argue that j is a
vertex in e such that

∑
h�je f(h) equals 1.

∑
h�je f(h) =

∑
i�jj

∑
h:{i,i∗,j}∈h f(h) +

∑
e⊆h f(h) =∑

i�jj wji+
∑

h:e⊆h f(h)+
∑

h:h⊂e f(h) =
∑

i�jj wji+
∑

h:{j,j∗}h f(h) =
∑

i�jj wji+wjj = 1. The sec-
ond case is when there is some proper subset e′ of e with positive weight. Say e′ = {j, j∗, j1, j2, . . . , js−1}
for s ≤ k. Because s ≤ k, js ∈ e. We will show that js is a vertex in e such that

∑
h�jse f(h) equals

1. Since e′ has positive weight, wjs−1j − wjsj > 0 ⇒ wjsj < wjj . Therefore, since w was a prefer-
ence game equilibrium,

∑
i�jsj wjsi = 1. So,

∑
i�jsj

∑
h:{i,i∗,js}∈h f(h) = 1 ⇒

∑
h:{j,j∗,js}∈h f(h) +∑

i�jsj,i 6=j

∑
h:{i,i∗,js}∈h f(h) = 1 ⇒

∑
h�jse f(h) = 1.

Next consider e = {j, j∗} ∪ S for some j, S 6= {j1, j2, . . . , jk} for any k. Now, pick edge e′ ⊃ e,
e′ = {j1, j2, . . . , jk} for jk ∈ e. Again, we can separate this into two cases based on whether or not
there is a proper subset of e′ with positive weight. If there is no such proper subset, then j will have∑

h�je f(h) = 1, but the same argument as above. If there is a proper subset e′′ ⊂ e′ with positive weight,
we will argue that jk satisfies

∑
h�jk

e f(h) = 1. Since {j, j∗} ∈ e′′, jk /∈ e′′,
∑

h={j,j∗}∪S f(h) ≥
f(e′′)+

∑
h:{j,j∗,jk}∈h f(h) ⇒ wjj ≥ f(e′′)+wjkj . We picked e′′ such that f(e′′) > 0, so wjj > wjkj . As

in the previous paragraph, this implies that
∑

h�jk
e f(h) = 1.
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To complete this direction of the lemma, consider an edge {j∗} for some j. By our construction, this is
the least preferred edge for j∗, and the assignment of weight 1−wjj guarantees that the sum of the weights
of all edges containing j∗ equals 1.

We next prove the other direction of the lemma. Suppose f is a stable fractional matching for the
hypergraph preference system. We construct the following assignment for the preference game. We set wij

to be the sum of the weights of edges containing the subset {j, j∗, i}. It is easy to see that wij ≤ wjj for all
i and j. It remains to argue the stability of w.

We first claim that if f is stable, then for any S1 and S2 such that S1−S2 and S2−S1 are both nonempty,
at most one of f({j, j∗} ∪ S1) and f({j, j∗} ∪ S2) is positive. To see this, observe that if both are positive,
then for every vertex v in the edge e = {j, j∗} ∪ S1 ∪ S2, the sum of weights assigned to edges that are at
least as much preferred by v as e is less than one since v is in either {j, j∗} ∪ S1 or {j, j∗} ∪ S2, both of
which have positive weight and are less preferred than e by v. This implies that such a matching could not
be stable for edge e. Thus, in f , the positive weights to edges containing {j, j∗} are all assigned to a chain
of edges e1 ⊂ e2 . . . ⊂ ek, for some k. Define ek+1 to be {j, j∗} ∪ in(j). We next observe that for every
vertex v in ei − ei−1, 1 < i ≤ k + 1, the sum of the weights of the edges v prefers at least as much as ei

equals 1. This is because such a vertex exists in ei−1 ∪ {v} (by the definition of stable matching) and v is
the only possibility.

Consider any wi` > 0. To establish stability of w, we prove by a contradiction that for all j such that
j �i `, wij = wjj . Suppose not, then there exists a j such that j �i `, and two edges e, e′ ⊇ {j, j∗} with
i ∈ e, i /∈ e′, and f(e′) > 0. Let e denote the smallest edge containing i in the chain e1 ⊂ e2 . . . ⊂ ek+1

mentioned in the preceding paragraph. (Since i ∈ ek+1, e exists.) By the argument above, the sum of the
weights of the edges i prefers at least as much as e equals 1. However, wi` > 0 implies that there exists an
edge e′′ ⊇ {`, `∗, i} with f(e′′) > 0, yielding a contradiction since i prefers e over e′′.

5.3 Cooperative Games with Non-Transferable Utilities

Definition 5.8. A game with non-transferable utilities over n players is specified by a function V that for
each subset S of N = {1, 2, . . . , n} returns a set V (S) of outcomes – each outcome being a vector of
utility values, one component for each player in S. A collection T of coalitions is balanced if there exists
an assignment of reals δS for each coalition S in T such that for all v,

∑
S:v∈S δS = 1. We say that u is

attainable by S if u ∈ V (S). A game is balanced if and only if for any balanced collection T and any u, if
uS is attainable by all S in T , then u is attainable by N .

As mentioned earlier, Scarf [41] proved that every balanced game has a nonempty core. We define
CORE-BALANCED-NTU below, a natural computational version of this claim. Scarf’s proof [41], which is a
reduction to SCARF, and Theorem 5.9, which is proved in Appendix ??, establish its PPAD-completeness.
CORE-BALANCED-NTU: The game is specified by a set N of players, a collection S of proper subsets of N
(the coalitions), and for each S ∈ S, vectors u1, . . . , ukS

in R|S| such that V (S) = {u ∈ R|S| : ∃j u ≤ uj}.
For a coalition S /∈ S, V (S) = {0}|S| and V (N) is defined as the set of all u for which there exists a
balanced collection T such that uS is attainable by all S in T . The goal is to find an element in the core.

Theorem 5.9. FRACTIONAL HYPERGRAPH MATCHING ≤P CORE-BALANCED-NTU.

Proof. Suppose we are given a hypergraph H and for each vertex i, a preference ranking among all edges
containing i. We first add, for each vertex i in H , a new vertex i∗ and edge {i, i∗}. We set the preference of
i for the edge {i, i∗} to be the least among all the edges containing i. Let N denote the new set of nodes and
E the new set of edges. For S ∈ E and i ∈ N , let ri(S) denote the rank of S in i’s preference list, with 0
assigned to the least preferred edge (thus for every i, ri({i, i∗}) = 0). We now define a balanced cooperative
game with non-transferable utilities. For each node in N , we have a player in the game. For any coalition
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S, we consider two cases. If S ∈ E, then we have a single vector rS = (ri1(S), ri2(S), . . . , ri|S|(S), where
S = {i1, i2, . . . , i|S|). Note that by definition, if S /∈ E and S 6= N , then V (S) equals 0|S|.

For N , note that V (N) is precisely the set of all u such that uS is attainable by all S in some balanced
collection T . We first observe that we can determine in polynomial time whether a given u is in V (N). For
each S, if u ≤ rS , then we have a variable xS for S. Now we simply solve the linear program:∑

S:i∈S

xS = 1

It is easy to see that the linear program is feasible if and only if u is in V (N). Consider any balanced
collection T ; if we have a u such that uS is attainable by all coalitions S in T , then the above linear program
would be feasible – the δS values that verify the balanced condition yield the solution for the above LP, and
hence u is attainable by N . For the other direction, consider any u that is attainable by N . Then, by our
construction the above linear program is feasible. The xS values we obtain precisely specify the δS values,
meaning that uS is attainable by every S for which δS > 0.

It is straightforward to compute the above reduction in time polynomial in H . We finally claim that
from an element of the core, a fractional stable hypergraph matching can be obtained in polynomial time.
Suppose u is in the core. Since u is attainable by N , we find the xS that satisfy the above linear program.
We claim that the weights xS yield a stable fractional hypergraph matching in H . Consider any edge S′.
Since u is in the core, there exists a player i in S′ such that the utility for i in u is at least as high as that for
i in V (S′). Since u is attained by N , the utility (preference) of i in each S for which xS > 0 is also at least
as high as that of i in S′. Thus, xS yields a stable matching.

5.4 Fractional Stable Paths Problem

The Fractional Stable Paths problem, introduced in [21], is defined as follows. Let G be a graph with
a distinguished destination node d. Each node v 6= d has a list π(v) of simple paths from v to d and a
preference relation �v among the paths in π(v). For a path S, we also define π(v, S) to be the set of paths
in π(v) that have S as a suffix. A proper suffix S of P is a suffix of P such that S 6= P and S 6= ∅.

A feasible fractional paths solution is a set w = {wv : v 6= d} of assignments wv : π(v) → [0, 1]
satisfying:

1. Unity condition: for each node v,
∑

P∈π(v) wv(P ) ≤ 1

2. Tree condition: for each node v, and each path S with start node u,
∑

P∈π(v,S) wv(P ) ≤ wu(S).

In other words, a feasible solution is one in which each node chooses at most 1 unit of flow to d such that no
suffix is filled by more than the amount of flow placed on that suffix by its starting node. A feasible solution
w is stable if for any node v and path Q starting at v, one of the following holds:

(S1)
∑

P∈π(v) wv(P ) = 1, and for each P in π(v) with wv(P ) > 0, P ≥v Q; or

(S2) There exists a proper suffix S of Q such that
∑

P∈π(v,S) wv(P ) = wu(S), where u is the start node
of S, and for each P ∈ π(v, S) with wv(P ) > 0, P ≥v Q.

In other words, in a stable solution: if node v has not fully chosen paths that it prefers at least as much as Q,
then it has completely filled path Q by filling some suffix with paths it prefers at least as much as Q.

We define a computational version, FRACTIONAL SPP: given an instance of the fractional stable paths
problem, find a fractional stable solution.

33



5.4.1 PPAD-completeness
Theorem 5.10. PREFERENCE GAME ≤P FRACTIONAL SPP.

Proof. We are given a preference game over player set [n], including preference relation �i for all i ∈
1 . . . n. We will convert this into a fractional stable paths problem. Create a node vi for each i. Also create
a universal destination node d. For all i, define Pii = the path (vi, d). For all i, j, define Pij = the path
(vi, vj , d). Let π(vi) (the set of preferred paths for vi) = {Pij : j �i i}. If k �i j, then Pik �i Pij .

Let wi(j) refer to the amount of weight placed by node vi on path Pij in a fractional SPP solution, and
let wi(i) be the amount of weight placed by i on path Pii. Now we will show that w is a fractional stable
paths solution if and only if w defines an equilibrium of the preference game.
w is a fractional stable paths solution ⇒ w is an equilibrium of the preference game.. By the unity
condition, for each i,

∑
j:Pij∈π(vi)

wi(j) ≤ 1 ⇒
∑

j wi(j) ≤ 1. Pii starts at vi, and there is no proper
final suffix of Pii, so condition (S1) must apply for Pii. Therefore,

∑
j:Pij∈π(vi)

wi(j) =
∑

j wi(j) = 1, as
required for the preference game. By the tree condition, for any i, j,

∑
P∈π(v,Pjj

weight on P ≤ wj(j) ⇒
wi(j) ≤ wj(j). So w is a feasible weight assignment for the preference game.

Now suppose for contradiction that w is not lexicographically maximal (with respect to w−i) for player i
in the preference game. Then, there is some feasible weight assignment w′ and some j such that

∑
k�ij

wi(k) <∑
k�ij

w′
i(k). Take the lexicographically maximal such w′ and the highest preference such j (from i’s pref-

erence list). By this choice of w′ and j,
∑

k�ij
wi(k) =

∑
k�ij

w′
i(k), so

∑
k=ij

wi(k) <
∑

k=ij
w′

i(k).
There must be some j′ with j′ =i j such that wi(j′) < w′

i(j
′). Consider path Pij′ . (S2) is not true

by our choice of j′ and the fact that w′ was a feasible solution (so w′
i(j

′) ≤ wj′(j′)). However, since∑
k=ij′

wi(k) <
∑

k=ij′
w′

i(k), there must be some path Pik such that k ≺i j′ with wi(k) > 0. So (S1) is
also not true, and w was not a stable solution - a contradiction.

w is an equilibrium of the preference game ⇒ w is a fractional stable paths solution.. We know that∑
j wi(j) = 1 for all i. This immediately satisfies the unity condition. Since w is a feasible set of weights

for the preference game, wi(j) ≤ wj(j) for all i, j. This means that the weight placed on Pij is at most
the weight placed on Pjj . Since Pij is the only path from vi that passes through node vj , the tree condition
holds. Now consider any path Pij from node i. Case 1: wi(j) = wj(j). In this case, condition (S2) is
satisfied. Case 2: wi(j) < wj(j). Because w was lexicographically maximal, any weight assignment w′

with
∑

k�ij
w′

i(k) ≥
∑

k�ij
wi(k) must be infeasible. We said that wi(j) < wj(j), so it is only possible

for all such w′ to be infeasible if
∑

k�ij
wi(k) = 1. Then

∑
k≺ij

wi(k) = 0, so (S1) is satisfied.

Theorem 5.11. FRACTIONAL SPP ≤P PERSONALIZED EQUILIBRIUM.

Proof. Suppose we are given an instance of FRACTIONAL SPP, consisting of a set of nodes V , a set of
preferred paths π(v) for all v ∈ V , and a preference relation �v for each set π(v). We can also find π(v, S),
the set of all P ∈ π(v) such that S is a subpath of P . Let qv(P ) = the number of paths Q such that P �v Q.

We will create the following instance of PERSONALIZED EQUILIBRIUM. The set of players is V . The
set of strategies Sv for a node V is π(v) ∪ {N} (N stands for “No path”). For node v, there is exactly one
edge defined for each strategy. Edge P ′ for strategy P = {S : P ∈ π(v, S)}. The edge for strategy N
(N ′) is a singleton edge, containing only that strategy. The payoffs to player v are: uv(P ′) = qv(P ) + 1,
uv(N) = 1.

Suppose w is a set of weights in a personalized equilibrium of the game defined above. wv(P ′) repre-
sents the weight assigned by v to edge P ′. We will show that w is a personalized equilibrium if and only if
w′ : w′

v(P ) = wv(P ′) is a fractionally stable solution to the FRACTIONAL SPP instance.
First, assume w is a personalized equilibrium. Then, we know that for all v, the total weight placed by v

on all edges is 1, or wv(N)+
∑

P∈π(v) wv(P ′) = 1. Therefore,
∑

P∈π(v) wv(P ′) ≤ 1 ⇒
∑

P∈π(v) w′
v(P ) ≤

1, so the Unity condition holds. Also, the sum of weights placed by v on edges adjacent to a strategy
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S of another player v′ is at most wv′(S). That is, for path S ∈ π(v′) (v′ 6= v),
∑

P ′:S∈P ′ wv(P ′) ≤
wv′(S′) ⇒

∑
P∈π(v,S) wv(P ′) ≤ wv′(S′) ⇒

∑
P∈π(v,S) w′

v(P ) ≤ w′
v′(S), so the Tree condition holds.

Finally, take any path Q ∈ π(v). Case 1: The payoff to v in the personalized equilibrium is at least
qv(Q) + 1. In this case, we know that v puts a total of weight 1 on edges with payoff at least qv(Q) + 1,
or

∑
P ′:uv(P ′)≥qv(Q)+1 wv(P ′) = 1 ⇒

∑
P :P�vQ wv(P ′) = 1 ⇒

∑
P :P�vQ w′

v(P ) = 1, so condition
(S1) holds. Case 2: The payoff to v in the personalized equilibrium is less than qv(Q) + 1. Since this is
a personalized equilibrium, it cannot be possible for v to move some weight off a lower paying hyperedge
onto a higher paying hyperedge. This includes moving weight from any of the edges in the equilibrium
with payoff less than qv(Q) + 1 to the edge Q′. By nature of the edges we’ve defined, if P ′ ∩ Q′ for
P ′, Q′ ∈ π(v), then either P ′ ⊂ Q′ or Q′ ⊂ P ′. This means that there is some S ∈ Q′(S ∈ π(v′) such
that

∑
R′:S∈R′ wv(R′) = wv′(S′) and for all R′ : S ∈ R′, if wv(R′) > 0 then qv(R) ≥ qv(Q). So,∑

R∈π(v,S) wv(R′) = wv′(S′) ⇒
∑

R∈π(v,S) w′
v(R) = w′

v′(S), and for all R ∈ π(v, S) with w′
v(R) > 0,

R �v Q, as required for condition (S2).
Next, assume w′ is a fractionally stable solution. We can assign weights wv(P ′) = w′

v(P ), wv(N) =
1 −

∑
P∈π(v) wv(P ). The Unity condition ensures that

∑
P∈π(v) w′

v(P ) ≤ 1, wv(N) ≥ 0 and we have a
set of weights that sum to 1 for any player v. The Tree condition says that

∑
P∈π(v,S) w′

v(P ) ≤ w′
v′(S) for

any S ∈ π(v′), which gives
∑

P ′:S∈P ′ wv(P ′) ≤ wv′(S′), as required for a feasible solution. Finally, we
must verify that wv is a best response for player v. Let w∗ be the best response weight function for v, and
for the sake of contradiction, assume w∗ gives a better total payoff. Look at the edge P ′ with the highest
qv(P ) such that w∗

v(P
′) > wv(P ′). By nature of the edges we’ve defined, if P ′ ∩ Q′ for P ′, Q′ ∈ π(v),

then either P ′ ⊂ Q′ or Q′ ⊂ P ′. Therefore, for all edges P ′′ with qv(P ′′) > qv(P ′), if w∗
v(P

′′) < wv(P ′′),
then we could increase w∗

v(P
′′) and improve the payoff, so P ′ is the highest utility edge in which wv and w∗

v

differ. Now look at edge P ′ with weights w in the fractional stable paths problem. Since w∗
v(P

′) > wv(P ′)
and w∗

v(P
′′) = wv(P ′′) for all P ′′ with higher payoff than P ′, then for all S ∈ P ′ (s ∈ π(v′) for some

v′),
∑

R′:S∈R′,qv(R)>qv(P ) wv(R′) < wv′(S′) ⇒
∑

R∈π(v,S),qv(R)>qv(P ) w′
v(R) < w′

v′(S), so condition (S2)
is not satisfied. However, since v puts less weight on edges with payoff at least as high as the payoff for P ′,
the total payoff to v is < qv(P ) + 1. Therefore,

∑
R′:qv(R)≥qv(P ) wv(R′) < 1, so

∑
R�vP w′

v(R) < 1, so
condition (S1) is also not satisfied. This means that w′ was not a fractionally stable solution, contradicting
our assumption. So w must have been a best response weighting for each v.

5.4.2 Special Cases of Fractional SPP
Theorem 5.12. Fractional SPP is PPAD-hard even if each node’s preference list consists of all paths,
ordered shortest to longest based on edge length (where each node defines its own edge lengths, which may
not obey triangle inequality).

Proof. In the reduction from preference games to fractional SPP in Theorem 5.10, each path in any pref-
erence list has either 1 hop (a direct path to the destination d) or two hops. For each of these two hop
paths (i → j → d), let Qij = the number of paths P such that P ≥i (i → j → d). Notice that
(i → j → d) ≥i (i → k → d) if and only if Qij ≤ Qik. Now, define the following lengths l on the
edges of the graph from the perspective of node i. If (i → j → d) ∈ π(i), then l(i, j) = Qij , l(j, d) = 1.
l(i, d) = Qii + 1. Pick Mi = maxj Qij + 2. Let l(x, y) = Mi for all other edges. Now, any path
(i → j → d) ∈ π(i) will have length Qij , path (i → d) will have length Qii. This preserves the preference
list across these paths. Most other paths will have a last segment of length Mi, so will be longer than l(i, d).
The only exception is paths that pass through a j such that (i → j → d) ∈ π(i). However, for these paths,
the only way to arrive at j without following the direct edge (i, j) would be to pass through an edge of length
Mi, so these paths too will be longer than l(i, d).
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Theorem 5.13. Fractional SPP is PPAD-hard even if all preferred paths are preference-ordered based on
the path length (where each node defines its own distances on the edge lengths, and these distances form a
metric and obey triangle inequality), assuming we may only use edges from a given template graph.

Proof. This is very similar to the proof of Theorem 5.12. However, in this case, we must remove from the
template any edges directly from a node i created in the reduction from Theorem 5.10 to the destination d,
since any of these edges would necessarily be a shortest path (and therefore a highest preference path) from
the node i to d. Instead, we will add one additional node i′ for every i 6= d and replace all paths of the form
(i → d) with a path (i → i′ → d). We must also remove from the template any edges of the form (x, j′) for
any x 6= j. Otherwise, a path ending in (x → j′ → d) would be at least as short as the same path ending in
(x → j → j′ → d), so we would not be able to enforce use of the new edges. Now we will define edges
lengths l as follows (from the perspective of a node i).

If (i → j → d) ∈ π(i), then l(i, j) = Qij , l(j, j′) = Qij , l(j′, d) = 1. l(i, i′) = 2Qii + 1.
l(i′, d) = 1. For two paths (i → j → d) ∈ π(i) and (i → k → d) ∈ π(i), define l(j, k) = Qij + Qik. Let
Mi = maxj 3Qij . l(x, y) = M for all other edges (x, y) (excluding the edges that have been removed from
the template: (j, d) for all j and (j, k′) for all j 6= k).

As in the previous proof, the preference order is preserved. However, we must also verify that triangle
inequality holds. Clearly, the length 1 edges obey this, since they are the shortest edges in the graph.
Consider a length Qij edge (i, j). Any other path that starts at i and ends at j must either traverse a length
Mi edge into j or a length Qij edge into j, so this is the shortest route from i to j. Consider a length Qij

edge (j, j′). A path that starts at j must traverse either a length Mi edge or a length Qij edge, so this is also
a shortest route. Consider a length Qij + Qik edge (j, k). Any path into or out of j must traverse an edge of
length Mi or an edge of length Qij , and likewise for k. Therefore, a path out of j and into k must traverse
at least Qij + Qik. Finally, consider any length Mi edge. At least one end of the edge must be at some x
such that (i → x → d) is not in π(i), and any other edge into or out of this node will also have length Mi.
Therefore, the lengths obey triangle inequality.

Notice, if any edge may be used, and if the preferences are based on shortest path lengths for a metric
defined for each node, then there is a trivial algorithm for finding an equilibrium: each node only follows
the “direct to destination” path. Since a metric must obey triangle inequality, this path length cannot be
strictly longer (cannot be less preferred) than any path including additional nodes. Theorem 5.10 together
with Theorem 3.3 implies that FRACTIONAL SPP is PPAD-hard. Therefore, it is natural to next consider
special instances that might be easier to solve. For instance, in real world internet routing, we would like
to see path preferences primarily based on shortest paths. What would happen if we restrict ourselves to
path preferences that echo the real world? Unfortunately, by adding appropriate edge lengths to the above
reduction, we show in Appendix ?? that FRACTIONAL SPP is PPAD-hard even if all preferences are based
only on shortest path lengths.

5.4.3 Approximate Fractional SPP
There are two notions of approximation for FSPP : ε-solution is defined by Haxell and Wilfong [21] and
ε-stable solution is defined by Kintali [27]. Below we present their definitions :

ε-solution (Haxell and Wilfong [21]): An ε-solution is defined as a set w = {wv : v 6= d} of assignments
wv : π(v) → [0, 1] satisfying the following:

1. Unity condition: for each node v,
∑

P∈π(v) wv(P ) ≤ 1

2. Tree condition: for each node v, and each path S with start node u,
∑

P∈π(v,S) wv(P ) ≤ wu(S) + ε.

3. For any node v and path Q starting at v, one of the following holds:
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•
∑

P∈π(v) wv(P ) = 1, and for each P in π(v) with wv(P ) > 0, P ≥v Q; or
• There exists a proper suffix S of Q such that

∑
P∈π(v,S) wv(P ) = wu(S) + ε, where u is the

start node of S, and for each P ∈ π(v, S) with wv(P ) > 0, P ≥v Q.

ε-SOLUTION OF FSPP : Given an instance of FSPP find an ε-solution.

Using Scarf’s lemma, Haxell and Wilfong [21] proved that every instance of FSPP has an ε-solution. We
observe that their proof is a polynomial time reduction from ε-SOLUTION OF FSPP to SCARF, thus showing
PPAD-membership of the former. For more details we refer the reader to [21].

ε-stable Solution (Kintali [27]) : An ε-stable solution is a feasible solution such that for any node v and
path Q starting at v, one of the following holds:

• 1− ε ≤
∑

P∈π(v) wv(P ) ≤ 1, and for each P in π(v) with wv(P ) > 0, P ≥v Q; or

• There exists a proper suffix S of Q such that wu(S) − ε ≤
∑

P∈π(v,S) wv(P ) ≤ wu(S), where u is
the start node of S, and for each P ∈ π(v, S) with wv(P ) > 0, P ≥v Q.

ε-STABLE SOLUTION OF FSPP : Given an instance of FSPP find an ε-solution.

Furthermore, we can define a new notion of approximate equilibrium which encompasses both of these
previous definitions: say APPROXIMATE-FSPP. It is easy to verify that the reduction from Theorem 5.10
also reduces finding an ε-approximate equilibrium in a preference game to APPROXIMATE-FSPP. Com-
bined with the previous observations in this section, we get the following theorem.

Theorem 5.14. APPROXIMATE-FSPP is PPAD-complete.

5.5 Kernels in Digraphs

Let D(V,A) be a directed graph. Let I(v) denote the in-neighborhood of a vertex v i.e., I(v) is v
together with the vertices u such that (u, v) ∈ A. A set K of vertices is a clique if every two vertices in K
are connected by at least one arc. A set of vertices is called independent if no two distinct vertices in it are
connected by an arc. A subset of V is called dominating if it meets I(v) for every v ∈ V . A kernel in D is
an independent and dominating set of vertices. A directed triangle shows that not all digraphs have kernels.

A non-negative function f on V is called fractionally dominating if
∑

u∈I(v) f(u) > 1 for every vertex
v. The function is strongly dominating if for all v,

∑
u∈K f(u) > 1 for some clique K contained in I(v).

A non-negative function f on V is called fractionally independent if
∑

u∈K f(u) 6 1 for every clique K.
A fractional kernel is a function on V which is both fractionally independent and fractionally dominating.
When it is also strongly dominating, it is called a strong fractional kernel. As in the integral case, a directed
triangle shows that not all digraphs have fractional kernels.

An arc (u, v) is called irreversible if (v, u) is not an arc of the graph. A cycle in D is called proper if
all of its arcs are irreversible. A digraph in which no clique contains a proper cycle is called clique-acyclic.
Aharoni and Holzman [2] proved that every clique-acyclic digraph has a strong fractional kernel. We define
a computational problem – STRONG KERNEL : given a clique-acyclic digraph D(V,E) with largest clique
of constant size, find a strong fractional kernel. For these graphs, the proof of [2] is a polynomial-time re-
duction from STRONG KERNEL to SCARF. The following lemma establishes PPAD-hardness of STRONG

KERNEL.
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Lemma 5.15. DEGREE 3 PREFERENCE GAME ≤P STRONG KERNEL.

Proof. We are given a preference game over player set [n]. We construct the following digraph D = (V,E).
For each player i, we introduce vertex 〈i, i〉 and a vertex 〈i, j〉 for each j in out(i). We have an edge from
〈i, j〉 to 〈i, k〉 if i prefers j over k. For each 〈i, j〉, j 6= i, we also have an additional vertex I(i, j) that has
an edge from 〈j, j〉 and an edge into 〈i, j〉.

We now claim that the preference game has an equilibrium if and only if D has a strong fractional
kernel. Let the preference game have an equilibrium w. Consider the following function f on V . We set
f(〈i, j〉) = wij and f(I(i, j)) = 1 − f(〈j, j〉). We have two kinds of maximal cliques. One kind is the
set {〈i, j〉} for a given i; we have

∑
j f(〈i, j〉) =

∑
j wij = 1. The other maximal cliques are the edges

(〈j, j〉, I(i, j)) and (I(i, j), 〈i, j〉. Since f(I(i, j)) = 1− f(〈j, j〉) and f(〈i, j〉) ≤ f(〈j, j〉), it follows that
f is fractionally independent.

We next show that f is fractionally strongly dominating. For vertex I(i, j), this is immediate since
f(I(i, j)) + f(〈j, j〉) = 1. Consider a vertex 〈i, j〉. If j is the least preferred player of i with wij > 0, then
the vertex 〈i, j〉 is covered by the clique consisting of 〈i, j′〉 over all j′ that are at least as preferred to i as j.
Otherwise, wij = wjj , in which case f(I(i, j)) + f(〈i, j〉) = 1. Thus, f is strongly dominating.

Suppose D has a strong fractional kernel f . We set wij = f(〈i, j〉). By the fractional independence
property applied to the cliques formed by I(i, j) and 〈i, j〉, we obtain that wij ≤ wjj . Consider a vertex
〈i, j〉. The set of vertices with edges into 〈i, j〉 is the union of two cliques – the set of 〈i, k〉 with k ≥i j,
and the set {I(i, j), 〈i, j〉}. If j is the least preferred player such that f(〈i, j〉) is positive, then the sum
of the weights in the first clique is 1; otherwise, the sum of the weights in the second clique is 1, yielding
wij = wjj . This establishes the stability of w.

The graph constructed above does not satisfy the clique-acyclic property. This is because the clique
formed by the set of 〈i, k〉 with k ≥i j contains proper cycles. When the outdegree of every player in the
preference game is at most 3 (including the self-loop), then we can achieve the desired condition by making
the following changes to the graph. Suppose the preference list of player i is i1, i2, i. Then, we replace the
edge (〈i, i1〉, 〈i, i〉) with a three-hop path (〈i, i1〉, J(i, i1)), (J(i, i1),K(i, i1)), (K(i, i1), 〈i, i〉). We do the
same with i2. Finally, we add the edges (K(i, i1),K(i, i2)) and (K(i, i1),K(i, i2)). We can verify that
in any strong fractional kernel, the weight of K(i, i1) (resp., K(i, i2)) would be identical to that of 〈i, i1〉
(resp., 〈i, i2〉). The remainder of the proof is same as before. The loop (K(i, i1),K(i, i2)) guarantees that
no clique contains a proper cycle.

6 Fractional Bounded Budget Connection Game

We define a fractional variant of the Bounded Budget Connection game, as in [30, 31]. A fractional
Bounded Budget Connection game (henceforth, a fractional BBC game) is specified by a tuple 〈V, d, c, b〉,
and a length function `u for each u ∈ V , where V is a set of nodes, d ∈ V is a distinguished destination
node, c : V × V → Z, b : V → Z, and `u : V × V → Z (for each u ∈ V ) are functions. For any u, v ∈ V ,
c(u, v) denotes the cost to u of directly linking to v, and `x(u, v) denotes the length of the link (u, v) from
the perspective of x, if u has established this link. For any node u ∈ V , b(u), specifies the budget u has
for establishing outgoing directed links: the sum of the costs of the links established by u times the amount
placed on each link should not exceed b(u).

A strategy for node u is a weight function wu : V → [0, 1] that u places on each outgoing edge
(u, v) : v ∈ V such that

∑
(u,v) c(u, v)× wu(v) ≤ b(u). Let wu denote a strategy chosen by node u and let

W = {wu : u ∈ V } denote the collection of strategies. The network formed by W is simply the directed,
capacitated complete graph G(W ), in which the capacity of the directed edge (u, v) is wu(v). The utility of
a node u is given by −f(u), where f(u) is the cost of a 1-unit minimum cost flow from u to d, according
to the capacities given by W and the lengths from the perspective of u given by `u. We assume that there is
also always an additional edge from each node to d with cost 0, capacity ∞, and length = some large integer
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M � n maxx,u,v `x(u, v); we refer to M as the disconnection penalty. In other words, if the max flow from
u to v is α < 1, then f(u) is the cost of the minimum cost α flow from u to d plus (1− α) ·M .

Theorem 6.1. PREFERENCE GAME ≤P FRACTIONAL BBC

Proof. We use a similar reduction from a preference game to fractional BBC. Given any instance P of the
preference game, We will create an instance B of fractional BBC = 〈V, d, c, b〉, where V = S, d = an
additional node, ∀i, j ∈ V : c(i, j) = 1, ∀i: b(i) = 1, plus length function li for each i ∈ V , defined as
follows. Let pi(k) = the number of j such that j ≥i k. ∀j 6= i, li(j, d) = 1, li(i, j) = pi(j). ∀j 6= i, k 6=
i, li(j, k) = li(k, j) = |S|+ 1. li(i, d) = 1 + pi(i). Given a solution to B, define a solution to P: set wi(j)
= the weight placed on edge (i, j) (for j 6= i), and wi(i) = the weight placed on edge (i, d).

Consider any instance P of the preference game, consisting of a set of players S and a preference
relation ≥i for each i ∈ S. We will create an instance B of fractional BBC = 〈V, d, c, b〉, where V = S,
d = an additional node, ∀i, j ∈ V : c(i, j) = 1, ∀i: b(i) = 1, plus length function li for each i ∈ V ,
defined as follows. Let pi(k) = the number of j such that j ≥i k. ∀j 6= i, li(j, d) = 1, li(i, j) = pi(j).
∀j 6= i, k 6= i, li(j, k) = li(k, j) = |S|+1. li(i, d) = 1+pi(i). Given a solution to B, define a solution to P
by setting wi(j) = the weight placed on edge (i, j) (for j 6= i), and wi(i) = the weight placed on edge (i, d).

Since the total cost for all edges is 1, and the total budget for a node is 1, each node in B will place total
weight 1 on edges adjacent to it. This exactly corresponds to the requirement that

∑
j wi(j) = 1 in P. The

possible paths for a one-unit flow from i to d in B are: (1) the path consisting of only edge (i, d), which
has cost pi(i) + 1 ≤ |S| + 1, (2) a path of the form (i, j, d) through some other node j, which has cost
pi(j) + 1 ≤ |S| + 1, or (3) a path including some edge (j, k) for j 6= i, k 6= i, which has cost > |S| + 1.
Therefore, a minimum cost flow will only use paths of the form (i, d) and (i, j, d), so the requirement in P
that wi(j) ≤ wj(j) corresponds to using the weight j places on edge (j, d) as a capacity on that edge when
finding the min-cost flow. Now, we only need to show that a node’s best response in B exactly corresponds
to a lexicographically maximal weight assignment in P.

Suppose we have a best response for node i in B that corresponds to a weight assignment w in P that
is not lexicographically maximal for i. Then, there is some assignment w′ = w′

i ∪ {wj : j 6= i} such
that for some j ∈ S,

∑
k≥ij

wi(k) <
∑

k≥ij
w′

i(k). There must be some k+ ∈ S such that k+ ≥i j and
w′

i(k
+) > wi(k+), and there must be some k− ∈ S such that ¬(k− ≥i j) and w′

i(k
−) < wi(k−). Suppose

we move ε weight in the best response in B from Pik− to Pik+ . pi(k−) > pi(k+), so moving this weight
will decrease the cost of a minimum cost flow, contradicting the fact that this was a best response.

Suppose we have a lexicographically maximal weight assignment w for P that does not correspond to a
best response for node i in B. Then, in B, i could move weight from some path Pij to a different path Pik to
decrease the cost of its min-cost flow. This means that pi(k) < pi(j), or the number of nodes preferred by
i over k is smaller than the number of nodes preferred by i over j. Since preference relations are transitive,
this implies that k ≥i j. However, since Pik had space left, wi(k) < wk(k), so w is not lexicographically
maximal.

Theorem 6.2. FRACTIONAL BBC ≤P PERSONALIZED EQUILIBRIUM.

Proof. Consider any instance of fractional BBC. Create a player in the matrix game for each node in the
BBC instance. Assign the player one action for each available edge in the BBC instance. For any hyperedge
in the matrix game, a player’s payoff is negative of the length of the shortest path to the destination made
up of a subset of the edges represented by that hyperedge (or negative of the disconnection penalty if there
is no such path to the destination). The proof that this preserves the set of equilibria is similar to the above
proof for fractional SPP games.
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Figure 2: We show these problems to be PPAD-complete. Each reduction line is labeled with the Section
or Citation where the reduction can be found. Two of these reductions, STRONG KERNEL ≤P SCARF and
CORE-BALANCED-NTU ≤P SCARF, are only polynomial time reductions for the specific versions of the
problems discussed in this paper. In our definition of STRONG KERNEL, formally given in Appendix 5.5,
we assume that the largest clique in the graph has constant size, since otherwise it is not clear whether the
problem is even in TFNP. CORE-BALANCED-NTU, as defined in Section 5.3, assumes that the game
description explicitly lists the possible coalitions and their Pareto-optimal outcomes.
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