

Organizing

Computational Problem Solving Communities

via

Collusion-Resistant Semantic Game Tournaments

A dissertation presented

by

Ahmed Abdelmeged

to the Faculty of the Graduate School

of the College of Computer and Information Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Northeastern University

Boston, Massachusetts

July, 2014

ABSTRACT

Competitions have been successfully used to build and organize communities

aiming to solve complex computational problems. Recently, the winner of an open

online competition to solve a complex immunogenomics problem has produced an

algorithm that has a higher accuracy and is 1,000 times faster than the correspond-

ing algorithm developed by the US National Institutes of Health.

State of the art computational problem solving competitions follow the con-

test pattern where a trusted administrator is responsible for preparing an objective,

anonymous, neutral, correct and thorough process to evaluate participants. De-

pending on the computational problem of interest, it can be a massive undertaking

for the administrator to prepare such evaluation process. For example, consider the

effort involved in collecting 2.86 Gigabytes worth of compressed benchmarks for

the SAT 2013 competition.

The thesis of this dissertation is “semantic games of interpreted predicate logic

sentences provide a useful foundation for organizing computational problem solv-

ing communities”. Semantic games of interpreted predicate logic sentences spec-

ifying computational problems provide a correct, systematic approach for partici-

pants to assist the administrator in evaluating their opponents and therefore require

a significantly lower administrator overhead.

In this dissertation, we tackle a key challenge of fending against collusion po-

tential which can render the results of semantic game tournaments meaningless. We

report on the surprising discovery that it is in fact possible to fend against collusion

potential in semantic game tournaments by using certain ranking functions. We

give a, first of its kind, formal characterization of collusion-resistant ranking func-

tions for semantic game tournaments. We also give a representation theorem of

ranking functions possessing the limited collusion effect property as well as other

basic monotonicity properties. In essence, we show that under basic monotonicity

i

properties of ranking functions, the limited collusion effect property is logically

equivalent to using a ranking function that is based on a generalized form of fault

counting.

In this dissertation, we also sketch out a structured interaction space that we

specifically designed to hold semantic-game-based computational problem solving

competitions. The purpose is to give our readers a concrete sense of what is it

like to organize or to participate in a semantic-game-based computational problem

solving competition.

ii

ACKNOWLEDGEMENTS

It would not have been possible for me to complete this dissertation without the

help of several people whom I would like to thank. First, I would like to thank my

advisor, Karl Lieberherr, for his support especially during the phase of preparing

and defending this dissertation. I would also like to thank my long time commit-

tee member Thomas Whal for his extended support and always constructive and

enlightening feedback. I would also like to thank committee members Ravi Sun-

daram and Nicole Immorlica for their support and their stimulating discussions. I

would also like to thank former committee members Casper Harteveld and Christo

Wilson for their support and the valuable feedback they provided during the pro-

posal phase and the early stages of preparing this dissertation.

I would also like to thank faculty members Mitchell Wand, Olin Shivers,

Matthias Felleisen, Mirek Riedewald and Agnes Chan for their support during the

eight years I spent in the PhD program. I would also like to thank Therapon Sko-

tiniotis for his mentorship during my early years in the program. I would also like

to thank my colleagues Stephen Chang, Paul Stansifer, Justin Slepak and Vincent

St-Amour for their help and constructive suggestions. I would also like to thank my

friend and neighbor Muhammed Taibah for his support especially during the final

phase of preparing this dissertation. I would also like to thank Ruiyang Xu for his

careful proofreading of the proofs in this dissertation.

I would also like to thank Nehal Patel and Ian Holland for their financial sup-

port. I would also like to thank Bryan Lackaye for his help with numerous admin-

istrative issues.

Finally, I would like to thank my parents and my wife, Sally, for their love and

support.

iii

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES . vii

1 Introduction . 1

1.1 Thesis Statement and Rationale 5

1.2 Key Challenge and Contributions 10

1.3 Organization . 12

2 Background: Semantic Games . 14

3 Organizing Computational Problem Solving Communities 17

3.1 Computational Problem Solving Labs 18

3.2 Simplified Semantic Games . 21

3.3 Formulating Claims . 23

3.4 Expressing Claims and Strategies 29

3.5 Sample Computational Problem Solving Labs 32

3.5.1 The Highest Safe Rung Lab 32

3.5.2 Gale-Shapley’s Worst Case Input Lab 33

3.5.3 Minimum Graph Basis Lab 34

3.6 Related Work . 36

3.6.1 Crowdsourcing and Human Computation 36

3.6.2 Origin . 39

4 Collusion-Resistant Semantic Game Tournaments 40

4.1 Collusion-Resistant Ranking Functions at a Glance 41

4.2 Formalizing Beating and Ranking Functions 44

4.2.1 Notation . 44

4.2.2 Beating Functions . 45

iv

Chapter Page

4.2.3 Ranking Functions . 45

4.2.4 The Algebraic Structure of Beating Functions 46

4.3 Collusion-Resistant Ranking Functions 48

4.3.1 Limited Collusion Effect 48

4.3.2 Monotonicity . 49

4.3.3 A Representation Theorem for Monotonic, Collusion-Resistant

Ranking Functions . 50

4.4 Tournament Design . 59

4.4.1 Monotonicity . 60

4.4.2 Anonymity . 66

4.4.3 Neutrality . 67

4.5 Related Work . 67

4.5.1 Tournament Ranking Functions 67

4.5.2 Tournament Scheduling 69

4.5.3 Match-Level Neutrality 72

5 Conclusion and Future Work . 75

5.1 Conclusion . 75

5.2 Future Work . 76

5.2.1 Utilizing Relations Between Computational Problem Solv-

ing Labs . 76

5.2.2 Social Computing . 77

5.2.3 Evaluating Thoroughness 77

REFERENCES . 78

v

LIST OF FIGURES

Figure Page

3.1 Mockup of a CPSL Member’s Interface 19

3.2 Mockup of a CPSL Admin’s Interface 20

3.3 EBNF [1] Grammar of Formula Declaration Language 31

3.4 Claim Specification for The Highest Safe Rung Lab 33

3.5 HSR Strategy Skeleton . 34

3.6 Claim Family Specification of The Gale-Shapley’s Worst Case Input

Lab . 35

3.7 Claim Family Specification of The Minimum Graph Basis Lab . . . 35

4.1 Beating Functions Representing Partitions of the Semantic Games Rep-

resented by . 51

4.2 Tournament Scheduler . 60

4.3 Fault Counting Ranking Function � f 60

vi

LIST OF TABLES

Table Page

2.1 Rules for SG(〈Φ, A〉, ver, f al) . 15

3.1 Rules for SSG(〈Φ, A〉, ver, f al) 24

4.1 Outcome of a Semantic Game Tournament with Two Perfectly Acting

Participants . 42

4.2 Evaluating a Semantic Game Tournament with Two Perfectly Acting

Participants . 43

4.3 Outcome of a Semantic Game Tournament with Two Colluding Partic-

ipants . 43

4.4 Evaluating a Semantic Game Tournament with Two Colluding Partici-

pants . 44

vii

Chapter 1

Introduction

Competitions have been successfully used to build and organize communities aim-

ing to solve complex computational problems. A recent success of this paradigm is

demonstrated by the following quote from a recent Nature publication [20]: “His-

torically, prize-based contests have had striking success in attracting unconven-

tional individuals who can overcome difficult challenges. To determine whether

this approach could solve a real big-data biologic algorithm problem, we used

a complex immunogenomics problem as the basis for a two-week online contest

broadcast to participants outside academia and biomedical disciplines. Participants

in our contest produced over 600 submissions containing 89 novel computational

approaches to the problem. Thirty submissions exceeded the benchmark perfor-

mance of the US National Institutes of Health’s MegaBLAST. The best achieved

both greater accuracy and speed (1,000 times greater).”

There are numerous other examples of competitions organized to encourage

the research and development on computational problem solving. Examples in-

clude the SAT competition [4] organized to encourage the development of high

performance SAT solvers. Examples also include software development competi-

tions held on platforms such as TopCoder [30]. There are also numerous other ex-

amples of software development competitions organized for educational purposes

such as competitions held on platforms such as Project Euler [2] and Jutge [23].

A computational problem solving competition produces either a rating or a

ranking of the problem solving skills of its participants. A community aiming to

solve a computational problem can benefit from the result of a competition held be-

tween its members in a number of ways. First, to motivate community members to

develop skills related to solving the underlying computational problem. The com-

petition result is often used to objectively distribute a prize. Even with no prize to

distribute, the announcement of competition results can be rewarding to some par-

ticipants. Second, to effectively diffuse problem solving knowledge. The knowl-

edge of top ranked participants can be shared with other community members to

learn from before the next competition starts. This is called “leveling-the-boats”

and is a quite common practice. Finally, sponsors may be interested in the com-

petition results in order to hire top ranked participants or to use the solutions they

provide during competitions. Therefore, sponsors may offer a prize to attract more

high quality members to the community.

For a competition to successfully attract participants and sponsors, it is cru-

cial that the competition organizer or administrator provides a guarantee that the

competition result reflects an accurate assessment of the skill level of participants.

For this to happen, a competition must have the following five features: objectiv-

ity, anonymity, neutrality, monotonicity and thoroughness. Objectivity means that

a precise definition of the skills that may be reflected in the competition result is

included as a part of the competition definition. A typical definition of a computa-

tional problem solving skill is the ability to solve an instance of that computational

problem. Anonymity means that the competition result is independent of partic-

ipants’ identities and is solely based on skills that participants demonstrate their

possession or lack during the competition. Neutrality means that the competition

2

does not give an advantage to any of the participants. For example, a seeded tour-

nament where the seed (or the initial ranking) can affect the final ranking is not

considered neutral. Monotonicity means that a participant’s competition result can

only be positively affected by a demonstrated possession of skill, and can only be

negatively affected by a demonstrated lack of skill. For example, in a competition

where participants’ skills are assessed using a benchmark of problems together with

their reference solutions, monotonicity requires that the reference solutions are in-

deed correct. Thoroughness means that the competition result is based on a wide

enough range of skills that participants demonstrate during the competition.

State of the art computational problem solving competitions follow the con-

test pattern where a trusted administrator is responsible for preparing an objective,

anonymous, neutral, correct and thorough process to evaluate the skills of individ-

ual participants. Depending on the computational problem of interest, it can be a

massive undertaking for the administrator to prepare such evaluation process. For

example, consider the effort involved in collecting 2.86 Gigabytes worth of com-

pressed benchmarks for the SAT 2013 competition [4]. In order to reduce their

overhead and the amount of trust they request from the community, it is not un-

common for administrators to publish the entire evaluation process they develop to

be scrutinized by community members. In the SAT competition, the administrator

takes even a further step by making a call for benchmarks before the competition.

However, the administrator is still responsible for coordinating the development ef-

forts for the competition evaluation process. Furthermore, making the entire evalu-

ation process publicly available can encourage participants to shift their goal from

solving the underlying computational problem to solving the instances that they

may encounter in the competition.

Compared to computational problem solving competitions, sports competi-

tions put a smaller overhead on the administrator. In sports, the administrator’s

3

role, which is typically called a referee, is to ensure that participants follow a set of

easily checkable rules. Participants essentially assist in evaluating their opponents.

This sports-like approach was used in a historic computational problem solving

competition held, in 1535, between Tartaglia and Fior to figure out who knows

how to solve cubic equations more efficiently. The rules were that each provides

the other with 30 cubic equations to solve and the faster wins. One imagines it

was a relatively easy task to ensure that equations supplied by both Tartaglia and

Fior were indeed cubic equations and solutions produced by both Tartaglia and Fior

were indeed correct.

Unfortunately, direct adoption of this approach to more complex problems

may defeat the purpose of reducing the overhead on the administrator. For exam-

ple, consider the following two-party hypothetical competition to develop a correct

SAT solver. Each party provides 30 CNF formulas to be solved by the SAT solver

developed by their opponent. In this competition, the administrator would be re-

quired to check the correctness of solutions produced by both SAT solvers. When

one of the solvers claims a particular CNF formula to be unsatisfiable, the admin-

istrator has to check that the CNF formula is indeed unsatisfiable. It is however a

much harder task than it is to check the correctness of some claimed solution to

some cubic equation.

In this dissertation, we aim to develop an approach to organize computational

problem solving communities using competitions where participants assist in eval-

uating their peers yet remain meaningful. In the rest of this chapter, we present a

thesis summarizing our approach together with the rationale of our thesis. Then,

describe the key challenge facing the development of our approach as well as our

contributions. Finally, we describe the organization of this dissertation.

4

1.1 Thesis Statement and Rationale

Our thesis is: “Semantic games of interpreted logic sentences provide a useful foun-

dation to organize computational problem solving communities.”. In the following

few paragraphs, we briefly introduce semantic games and discuss the rationale be-

hind our thesis.

A Semantic Game (SG) is a constructive debate of the truth of some interpreted

logic sentence, or claim for short, between two distinguished parties: the verifier

which asserts that the claim holds, and the falsifier which asserts that the claim

does not hold. The rules of an SG are systematically derived from the syntax of

the underlying claim. The rules of an SG only allow the verifier to strengthen the

current claim and only allow the falsifier to weaken the current claim. Each legal

move reduces the number of logical connectives in the current claim. The verifier

wins if a true primitive claim is eventually reached. Otherwise, a f alse primitive

claim is eventually reached. An SG gives a meaning to its underlying claim in the

sense that the underlying claim is true (respectively f alse) if and only if there is a

winning strategy for the verifier (respectively falsifier).

We now illustrate SGs by an example. Consider the following logical sentence

specifying the MAXimum SATisfiability (MAX-SAT) problem: ∀φ ∈CNFs ∃v ∈

assignments(φ)∀ f ∈ assignments(φ). f sat(f ,φ) ≤ f sat(v,φ). This logical sen-

tence is interpreted in a structure that defines all non-logical symbols; namely,

CNFs, assignments, f sat and ≤. The details of the structure specification are well

known and we omit them here but they are an essential part of the claim specifi-

cation just like the claim’s logical formula. Before an SG can be played, the two

participants pick their sides in the debate. For now, we assume they picked oppo-

site sides, although the underlying logical sentence is trivially true and therefore,

by definition of SGs, there is a winning strategy for the verifier. An SG played on

5

this claim proceeds as follows:

1. The falsifier provides a CNF formula φ0. If the administrator determines,

according to the interpreting structure, that φ0 is not well-formed (i.e. φ0 6∈

CNFs), the falsifier loses at once. By providing φ0, the falsifier effectively

weakens the underlying claim to: ∃v∈ assignments(φ0)∀ f ∈ assignments(φ0).

f sat(f ,φ0)≤ f sat(v,φ0).

2. Given φ0, the verifier provides an assignment v0 for the variables in φ0. If

the administrator determines, according to the interpreting structure, that v0

is not well-formed (i.e. v0 6∈ assignments(φ0)), the verifier loses at once.

By providing v0, the verifier effectively strengthens the underlying claim to:

∀ f ∈ assignments(φ0). f sat(f ,φ0)≤ f sat(v0,φ0).

3. Given φ0 and v0, the falsifier provides an assignment f0 for the variables in

φ0. If the administrator determines, according to the interpreting structure,

that f0 is not well-formed (i.e. f0 6∈ assignments(φ0)), the falsifier loses at

once. By providing f0, the falsifier effectively weakens the underlying claim

to: f sat(f0,φ0)≤ f sat(v0,φ0).

4. The administrator evaluates, according to the interpreting structure, the prim-

itive claim f sat(f0,φ0) ≤ f sat(v0,φ0). The verifier wins if this primitive

claim evaluates to true otherwise the falsifier wins. (i.e. the verifier wins if

the assignment v0 it provided satisfies at least as many clauses as those satis-

fied by the assignment f0 provided by the falsifier to the formula φ0 provided

by the falsifier).

The rationale behind our thesis is that an SG can be used as a two-party compe-

tition that has several desirable features that we shall illustrate using our MAX-SAT

example:

6

• An SG is an objective competition. In an SG, participants are required to

provide test inputs as well as to solve instances of computational problems

that are formally specified by the claim The result of an SG solely depends on

how well participants solve these computational problems. A simple analysis

of our MAX-SAT example shows that it is in the best interest of the verifier

to provide an assignment v0 that satisfies the maximum satisfiable fraction of

clauses. A similar analysis shows that it is in the best interest of the falsifier

to provide an assignment f0 that satisfies more than v0 does, when possible.

It is also in the best interest of the falsifier to provide a CNF formula φ0

where it is hard for the verifier to find the assignment satisfying the maxi-

mum fraction of satisfiable clauses. In Section 3.3, we give further details on

how administrators can formulate claims such that participants are required

to solve specific computational problems.

• SGs can be carried out with a minimal overhead on the administrator. The ad-

ministrator is essentially responsible for implementing the structure in which

the underlying logical sentence is interpreted. It is always possible to rewrite

the underlying logical formula scraping some of the quantifiers either in or

out of the structure and consequently adding or reducing overhead on the

administrator. The reduced responsibility of the administrator makes it eas-

ier for participants and sponsors to trust the competition correctness. Fur-

thermore, the structure is only a part of the evaluation process that can be

published without encouraging participants to shift their goal to solving the

instances they may be required to solve during the competition. It is the

opponent’s responsibility to provide the other part of the evaluation process

consisting of test inputs. In our MAX-SAT example, the administrator only

has to implement functions to check whether a given formula is indeed a

7

well-formed CNF formula, check whether an assignment is indeed a cor-

rect assignment for the variables in a given formula, compute the fraction of

clauses of some CNF formula satisfied by some assignment, and compare

two such fractions. All of these are relatively easy tasks for the administra-

tor to implement. We may rewrite the underlying formula scraping the right

most quantifier into the structure as: ∀φ ∈CNFs ∃v ∈ assignments(φ). max-

sat(φ ,v). By doing so, the administrator becomes responsible for the much

harder task of implementing a checker of whether an assignment is indeed

satisfying the maximum satisfiable fraction in a given CNF formula.

• An SG is a correct competition. In an SG, the winner is the participant that

successfully demonstrates their opponent’s lack of skills. If the verifier wins,

then the underlying claim is either a true claim indeed or that the falsifier

has weakened the claimed too much during game play. Likewise, if the fal-

sifier wins, then the underlying claim is either a f alse claim indeed or that

the verifier has strengthened the claim too much during game play. In our

MAX-SAT example, the underlying claim is indeed true. The falsifier weak-

ens the claim by providing CNF formula φ0. However, any weaker claim

remains true. The verifier then strengthens the current claim by providing

an assignment v0 for the variables of φ0. Any assignment provided by the

verifier satisfying less than the maximum fraction of satisfiable clauses in φ0

would strengthen the current claim too much. Should this happen, the falsi-

fier has a chance to demonstrate the verifier’s lack of skill by providing an

assignment that satisfies a larger fraction of clauses in φ .

• SG traces contain concrete targeted feedback that losers can learn from. In

our MAX-SAT example, suppose that the falsifier has provided a CNF for-

mula φ and an assignment f that satisfies a larger fraction than the assign-

8

ment v provided by the verifier. The verifier can analyze the assignment f

and update its future course of action accordingly.

• In SGs, participants interact through well defined interfaces. This enables

participants to codify their strategies 1 for participating in an SG-based com-

putational problem solving competitions. These codified strategies enable a

more efficient and effective evaluation. Furthermore, the algorithms in these

codified strategies can also be useful byproducts of SG-based computational

problem solving competitions. In our MAX-SAT example, a codified strat-

egy for participating in an SG-based computational problem solving com-

petition consists of a function to pick a side in SGs of the aforementioned

MAX-SAT claim, a function to provide a CNF formula, a MAX-SAT solver

(i.e. a function to provide an assignment satisfying the maximum fraction

of clauses in a given CNF formula), and a function that is given a CNF for-

mula and an assignment and produces another assignment that satisfies, in

the given formula, at least as many clauses as the given assignment.

In support of our thesis, we developed an approach to scale the aforementioned

simple two-party, SG-based competition to an n-party, SG-based competition that

is objective, anonymous, neutral, monotonic, thorough and puts a minimal over-

head on the administrator. Developing an n-party, SG-based competition that is

guaranteed to be anonymous is the most challenging issue that we faced. In the

next section, we discuss this issue as well as the contributions of this dissertation.

1Provided that all functions in these strategies are indeed computable.

9

1.2 Key Challenge and Contributions

In sports, tournaments are commonly used to scale two-party games to n-party

games. Likewise, a tournament can be used to scale two-party SGs to n-party

games. An SG tournament is objective by virtue of being comprised of a number of

objective SGs. Similarly, organizing a tournament is a relatively simple additional

task for the administrator.

The contributions of this dissertation can be summarized as developing a thor-

ough, arguably neutral and provably anonymous and monotonic SG tournament.

More specifically we claim the following contributions:

1. Computational Problem Solving Labs (CPSLs): CPSLs are structured inter-

action spaces that we specifically designed to organize SG-based computa-

tional problem solving competitions. A CPSL is centered around a claim

specifying the lab’s computational problem. Competition participants sub-

mit their codified strategies for playing a more thorough, yet simpler, version

of semantic games. The submitted strategies compete in a thorough, arguably

neutral and provably anonymous and monotonic tournament.

2. Simplified Semantic Games (SSGs): A sports match is generally considered

as a thorough two person competition because in a sports match, participants

get to exercise a wide range of skills, enough to ensure that the match result

is accurate. In an SG, however, participants get essentially a single chance to

demonstrate a lack of skills of their opponents. A double round robin tour-

nament of SGs is not necessarily thorough because it gives every participant

only two chances to demonstrate a lack of skills of any other participant.

To address this issue, we developed a simplified version of semantic games

that allows participants to provide several values for a quantified variable

10

and therefore can be considered thorough. SSGs also use auxiliary games to

replace some of the moves that participants would normally be required to

take and thus simplify the process of codifying strategies. Further details are

given in Section 3.2.

3. Collusion-resistant ranking functions: Ensuring anonymity of the ranking

resulting from an SG tournament is quite challenging due to collusion poten-

tial. Collusion is possible because participants can arrange to identify their

colluding participants through the values they produce in the course of play-

ing an SG. In our MAX-SAT example, participants may, for example, use

specific variable names to disclose their identities to other colluding partici-

pants. Colluding participants can arrange to lose on purpose for the benefit

of a specific participant and thus affecting the accuracy of the competition

result. In Section 4.1 we give a detailed example showing how collusion

can affect the result of a competition. The potential of collusion can be fur-

ther aggravated by the potential of participating in a computational problem

solving competition using Sybil identities.

A surprising discovery to us is that in SG tournaments, it is in fact possible

to fend against collusion potential by using certain ranking functions. In this

dissertation, we give a, first of its kind, formal characterization of collusion-

resistant ranking functions for SG tournaments. We also give a representation

theorem of ranking functions possessing the limited collusion effect property

as well as other basic monotonicity properties. In essence, we show that

under basic monotonicity properties of ranking functions, the limited collu-

sion effect property is logically equivalent to using a ranking function that is

based on a generalized form of fault counting. We also present an SG-based

tournament and argue for its objectivity, anonymity, neutrality, monotonicity

11

and thoroughness.

4. Neutral SSG tournament design: Individual SGs of interpreted predicate

logic sentences are not neutral because the underlying claim is either true

or false and consequently either the verifier or the falsifier has a winning

strategy. Double round robin tournaments have been traditionally used in

sports to neutralize the advantages that an individual match gives to one of

its participants such as having the match played at the home field of one of the

participants. Likewise, a double round robin can be used to neutralize the ad-

vantage that an SG gives to either the verifier or the falsifier by having every

pair of participants play two games where they exchange taking the verifier

and the falsifier sides. Unfortunately, a monotonic, collusion-resistant rank-

ing function has to completely ignore those games where both participants

are forced to take sides opposing to the sides they choose. Since the number

of participants choosing to take the verifier side is not necessarily the same

as the number of participants choosing to take the falsifier side, verifiers and

falsifiers participate in a different number of non-ignored games and neutral-

ity is jeopardized. We argue that a round robin tournament remains neutral

under a specific monotonic, collusion-resistant ranking function.

1.3 Organization

The rest of this dissertation is organized as follows: In Chapter 2 we give a back-

ground of SGs. In Chapter 3 we sketch out a structured interaction space that we

specifically designed to organize computational problem solving communities us-

ing an SG-based competitions. The purpose is to give our readers a concrete sense

of what is it like to organize or to participate in an SG-based competition. In Chap-

ter 4, we present a, first of its kind, formal characterization of collusion-resistant

12

ranking functions for SG tournaments and give a representation theorem of rank-

ing functions possessing the limited collusion effect property as well as other basic

monotonicity properties. In essence, we show that under basic monotonicity prop-

erties of ranking functions, the limited collusion effect property is logically equiv-

alent to using a ranking function that is based on a generalized form of fault count-

ing. We also present an SG tournament and argue for its objectivity, anonymity,

neutrality, monotonicity and thoroughness. Chapter 5 concludes this dissertation.

13

Chapter 2

Background: Semantic Games

In this chapter we describe Hintikka’s standard SGs for classical predicate logic as

background information on SGs.

We use the term “claim” to abbreviate the phrase “interpreted logical sen-

tence”. An SG is a formal two-party debate of the truth of an underlying claim.

The two sides of the debate are called the verifier side and the falsifier side 1; par-

ticipants taking the verifier side assert that the claim is true. Participants taking the

falsifier side assert that the claim is false.

In the theory of Game Theoretic Semantics (GTS) of Hintikka, SGs give

meaning to claims [24], [19] in the following sense: a winning strategy for the

verifier exists if and only if that the underlying claim is indeed true and a win-

ning strategy for the falsifier exists if and only if the underlying claim is indeed

false. Participants can use this to take a side in SGs by deciding whether or not

the underlying claim holds. Participants deciding the underlying claim holds be-

come verifiers. Participants deciding the underlying claim does not hold become

falsifiers.

1other names have been also used in the literature such as I and Nature, Propo-
nent and Opponent, Alice (female) and Bob (male), and ∃loise and ∀belard.

Φ Move Subgame
∀x : Ψ(x) f al provides x0 SG(〈Ψ[x0/x], A〉, ver, f al)

Ψ∧ χ f al chooses θ ∈ {Ψ, χ} SG(〈θ , A〉, ver, f al)
∃x : Ψ(x) ver provides x0 SG(〈Ψ[x0/x], A〉, ver, f al)

Ψ∨ χ ver chooses θ ∈ {Ψ, χ} SG(〈θ , A〉, ver, f al)
¬Ψ N/A SG(〈Ψ, A〉, f al, ver)

p(x0) N/A N/A

Table 2.1: Rules for SG(〈Φ, A〉, ver, f al)

The rules of SGs are prompted by the logical connectives encountered in

claims. Table 2.1 shows the rules for first order logic proposed by Hintikka [19].

We use SG(〈Φ, A〉, ver, f al) to denote an SG where the underlying claim is com-

prised of the formula Φ interpreted in the structure A and ver, respectively f al,

denotes the participant currently taking the verifier, respectively falsifier, side. For

universally quantified formulas ∀x : Ψ(x), the current falsifier provides a value x0

for the quantified variable x and the game proceeds on the logically weaker sub-

claim Ψ[x0/x] as SG(〈Ψ[x0/x], A〉, ver, f al). For existentially quantified formulas

∃x : Ψ(x), the current verifier provides a value for the quantified variable and the

game proceeds on the logically stronger subclaim Ψ[x0/x] as SG(〈Ψ[x0/x], A〉, ver, f al).

For and-compounded formulas, the current falsifier chooses one of the subformu-

las for the game to proceed on. For or-compounded formulas, the current verifier

selects a subformula. For negated formulas ¬Ψ, no moves are required and the

game proceeds as SG(〈Ψ, A〉, f al, ver). Primitive formulas are evaluated in the

underlying structure and the current verifier wins if they hold, otherwise the current

falsifier wins.

We illustrate SG rules using the logical sentence ∀x ∈ [0,1]∃y ∈ [0,1]. x · y +

(1− x) · (1− y2)≥ 0.5 interpreted in the structure of real arithmetic. According to

the rules, the falsifier is required to provide a value for the universally quantified

variable x. Suppose that the falsifier provided 0 for x. The game then proceeds on

15

the logically weaker claim ∃y ∈ [0,1]. (1− y2) ≥ 0.5. According to the rules, the

verifier is required to provide a value for existentially quantified variables. Suppose

that the verifier provided 0, then the game proceeds on the logically stronger claim

1 ≥ 0.5. This is a true primitive claim in the structure of real arithmetic, therefore

the verifier wins according to the rules.

16

Chapter 3

Organizing Computational Problem

Solving Communities

In this chapter we sketch out a structured interaction space that we specifically de-

signed to organize computational problem solving communities with minimal effort

required by a central administrator. The purpose is to give our readers a concrete

sense of what is it like to organize or to participate in an SG-based computational

problem solving competition. We call our newly designed space, a Computational

Problem Solving Laboratory (CPSL). A CPSL is centered around a claim, i.e. an

interpreted predicate logic sentence, that formally specifies an underlying compu-

tational problem.

Members of a computational problem solving community contribute to a CPSL

by submitting their strategies for playing an adapted version of semantic games of

the lab’s claim. We call our adapted version of semantic games, Simplified Seman-

tic Games (SSGs). We specifically designed SSGs to simplify strategy development

as well as to enable SSG participants to ensure that their opponents are thoroughly

evaluated. We describe SSGs in Section 3.2.

Once a new strategy is submitted in a CPSL, it is entered into a competition

against the strategies submitted by other members in a provably collusion-resistant

tournament of SSGs. The outcome of the competition is a ranking that is announced

to all members through their CPSL interface as we shall describe in Section 3.1.

However, the competition design is the main subject of Chapter 4.

Following the CPSL introduction in Section 3.1 and the description of SSGs in

Section 3.2, we describe how a CPSL is defined and contributed to in Sections 3.3

and 3.4. We then present few sample CPSLs in Section 3.5. Finally, we discuss

work related to organizing computational problem solving communities in Sec-

tion 3.6.

3.1 Computational Problem Solving Labs

In a nutshell, a CPSL is a structured interaction space centered around a claim,

i.e. an interpreted predicate logic sentence, that formally specifies an underlying

computational problem. Members of a computational problem solving community

contribute to a CPSL by submitting their strategies for playing a simplified ver-

sion of semantic games of the lab’s claim. Once a new strategy is submitted in a

CPSL, it competes against the strategies submitted by other members in a provably

collusion-resistant tournament of simplified semantic games.

Figure 3.1 shows a mockup of a CPSL member’s interface. The interface

facilitates the following actions:

1. View an informal description of the CPSL’s underlying problem.

2. Download the claim that formally specifies the CPSL’s underlying problem.

In Section 3.4, we further describe how claims are expressed.

3. Download a code skeleton of the strategy for playing a simplified version of

semantic games of the lab’s claim. In Section 3.4, we also describe strategies

18

Figure 3.1: Mockup of a CPSL Member’s Interface

for playing a SSGs.

4. Download traces of the past games held in the lab, provided that the adminis-

trator has chosen to publish past game traces. These traces can help members

improve their strategies.

5. Submit their strategies for playing a simplified version of semantic games of

the CPSL’s claim.

6. View the rankings of the most recently submitted strategy of each lab mem-

ber. Besides the rank of each participant, two other pieces of information that

can also be useful in assessing the quality of strategies. These two pieces are

the time most recent update to the participant’s strategy, and the number of

19

faults incurred in the most recent competition. A non zero number of faults

means that the strategy is not perfect yet. Also, the further back in time the

most recent update to the participant’s strategy the more thoroughly tested the

strategy is. Another useful piece of information is the side chosen by each

participant. For CPSLs for claims about search and optimization problems,

the correct side is often trivially known. Having this piece of information

gives an additional assertion about the proceedings of the competition. In

CPSLs for claims specifying a single decision problem instances, the side

chosen by the top performing participants may indicate the solution of the

underlying decision problem instance.

Figure 3.2: Mockup of a CPSL Admin’s Interface

20

Figure 3.2 shows a mockup of CPSL admin’s interface. The interface facili-

tates the following actions:

1. Edit an informal description of the CPSL’s underlying problem.

2. Edit the claim that formally specifies the CPSL’s underlying problem. In

Section 3.3, we further discuss claim formulation.

3. Control whether or not to publish past game traces. Participants can learn

by examining past game traces. However, there are cases where traces may

give away too much information about the solution of the lab’s underlying

computational problem such as in the Gale-Shapely worst case input lab de-

scribed in Section 3.5. In those cases, the administrator may choose to not

publish past game traces.

4. View the rankings of the most recently submitted strategy of each lab mem-

ber.

We now describe an adopted version of Semantic Games that we base our

competitions on.

3.2 Simplified Semantic Games

We designed SSGs to simplify strategy development as well as to enable SSG par-

ticipants to ensure that their opponents are thoroughly evaluated. Strategies for

playing SSGs are simpler to develop because they only need to provide values

for universally and existentially quantified variables in the underlying claim. On

the other hand, strategies for playing SGs need to take a side on the underlying

claim, provide values for universally and existentially quantified variables in the

underlying claim, and select a subformula in and-compounded and or-compounded

21

formulas. Basically, SSGs make up for the missing moves through auxiliary SSGs.

To decide the underlying claim, a participant plays an SSG against itself. To select

a subformula, a participant decides the left subformula then selects a subformula

accordingly. SSGs enable participants to ensure that their opponents are thoroughly

evaluated because it is legal to provide several alternate values for universally and

existentially quantified variables in the underlying claim. Thus making an SSG cor-

respond to a collection of SGs, one SG for each possible choice of values provided

for quantified variables in the underlying claim. The result of an SSG is a number

[0,1] denoting the fraction of those SGs that the verifier wins in the course of that

SSG.

Table 3.1 specifies the rules for playing an SSG between two participants: a

verifier ver and a falsifier f al. The rules show an SSG of a claim consisting of a

logical formula Φ interpreted in a structure A. As we mentioned above, an SSG

corresponds to a collection of SGs. The output of an SSG is the fraction of SGs

won by the verifier.

The first rule applies to universally quantified formulas, i.e. formulas of the

form ∀x : Ψ(x). The falsifier is responsible for providing a set x̄ of alternative values

for x. For each provided value xi ∈ x̄, an SSG is played on the subformula Ψ with

xi substituted for the free occurrences of x in Ψ.

The second rule applies for and-compounded formulas, i.e. formulas of the

form Ψ∧ χ . The falsifier is responsible for selecting one subformula, i.e. either

Ψ or χ . To select a subformula, the falsifier decides the left subformula Ψ. If the

falsifier decides the left subformula Ψ to be f alse, the selected subformula is Ψ.

Otherwise, the selected subformula is χ . The rationale is that for the game to reach

this point, the falsifier must have at some point taken a position implying that Ψ∧

χ is f alse. To decide the left subformula Ψ, the falsifier plays an auxiliary SSG

against itself with Ψ as the underlying claim. As mentioned above, this auxiliary

22

SSG corresponds to a collection of SGs. If the falsifier wins all of these SGs in the

falsifier role, then Ψ is decided to be f alse. On the other hand, if the falsifier wins

all of these SGs in the verifier role, then Ψ is decided to be true. However, if the

falsifier wins only some of these games in either role, then there is no ground for

deciding Ψ to be either true or f alse. The falsifier is considered to have failed to

decide Ψ and loses the SSG at once.

The third and forth rules apply to existentially quantified formulas and or-

compounded formulas respectively and are quite similar to the first and second

rules. Therefore we give no further explanation for these two rules.

The fifth rule applies for negated formulas, i.e. formulas of the form ¬Ψ.

There are no moves required by the verifier nor by the falsifier. The SSG proceeds

on the subformula Ψ with the verifier and falsifier exchanging their roles.

The sixth applies to primitive formulas, i.e. formulas of the form p(x̄) where p

is a primitive defined in the structure A and x̄ is a vector of constants defined in the

structure A. The verifier wins if p(x̄) holds in A. Otherwise, the falsifier wins. The

final rule applies to formula references, i.e. formulas of the form p(x̄) where p(x̄)

refers to another claim Ψ. In this case, the SSG proceeds on Ψ. This rule enables

modular specification of claims.

We now describe the process of formulating claims for CPSLs.

3.3 Formulating Claims

A CPSL is centered around a claim that is specified by the administrator. Claim

specification is the task that requires the most overhead on the administrator side.

Furthermore, claim specification also determines the overhead on CPSL members.

Starting with a specific computational problem, there is usually a space of potential

claim specifications for the administrator to choose from usually under the follow-

23

Φ Move Subgame
∀x : Ψ(x) f al provides x̄ 1/|x̄| · ∑

xi∈x̄
SSG(〈Ψ[xi/x], A〉, ver, f al)

Ψ∧ χ N/A


SSG(〈Ψ, A〉, ver, f al) ,SSG(〈Ψ, A〉, f al, f al) = 0
SSG(〈χ, A〉, ver, f al) ,SSG(〈Ψ, A〉, f al, f al) = 1
1 ,otherwise

∃x : Ψ(x) ver provides x̄ 1/|x̄| · ∑
xi∈x̄

SSG(〈Ψ[xi/x], A〉, ver, f al)

Ψ∨ χ N/A


SSG(〈Ψ, A〉, ver, f al) ,SSG(〈Ψ, A〉, ver, ver) = 1
SSG(〈χ, A〉, ver, f al) ,SSG(〈Ψ, A〉, ver, ver) = 0
0 ,otherwise

¬Ψ N/A 1−SSG(〈Ψ, A〉, f al, ver)

p(x̄) 6= Ψ N/A

{
1 ,A |= p(x̄)
0 ,A 6|= p(x̄)

p(x̄) = Ψ N/A SSG(〈Ψ, A〉, ver, f al)

Table 3.1: Rules for SSG(〈Φ, A〉, ver, f al)

ing two constraints.

The first constraint is to ensure that a solution to the administrator’s computa-

tional problem is a part of strategies submitted by CPSL members. Typically, this

constraint is satisfied by straight forward formulations of search and optimization

problems. However, straight forward formulations of decision problems often vi-

olate this constraint. Formulating claims to satisfy this constraint appears in our

upcoming discussion of claim formulation for decision, search and optimization

problems.

The second constraint is to find an appropriate trade-off between the complex-

ity of the claim’s logical formula and the claim’s interpreting structure. In certain

situations, the administrator may be able to reduce the overhead of claim specifi-

cation by simplifying the claim’s structure and complicating the claim’s formula.

This situation appears in our upcoming discussion of promise problems. In other

situations, the administrator may be able to reduce the overhead of claim specifi-

cation by simplifying the claim’s formula and reusing existing complex computer

24

simulation models or interpreters. This situation appears in our upcoming discus-

sion of complex computational problems and complexity requirements. In other

situations, dropping a quantified variable, with a relatively easy algorithm to find,

from the claim’s formula at the expense of a slight increase in the complexity of

the structure might also be the appropriate trade-off to focus members on solving

interesting problems.

The first kind of computational problems we address is decision problems. A

decision problem can be specified by an arbitrary claim. For example, consider

Bertrand’s postulate that there is always at least one prime between n and 2 · n

which can be specified as ∀n ∈ {3,4,5, . . .}. ∃k ∈ {n,n+1, . . . ,2 ·n}. prime(k). A

strategy for playing an SSG of Bertrand’s postulate consist of two functions: one

to provide values for the universally quantified variable n and the other to provide

values for the existentially quantified variable k given a value for n.

Given a strategy s, a solution to Bertrand’s postulate can be obtained through

playing an SSG with s playing both the roles of the verifier and the falsifier. In case

s always wins as the verifier, s’s solution is that Bertrand’s postulate holds. In case

s always wins as the falsifier, s’s solution is that Bertrand’s postulate does not hold.

It is also possible to use an alternative formulation where a solution to Bertrand’s

postulate is directly obtainable from a strategy for playing SSGs of Bertrand’s pos-

tulate. By reformulating Bertrand’s postulate as: ∃d ∈ {true, f alse}. d ⇔ ∀n ∈

{3,4,5, . . .}. ∃k ∈ {n,n + 1, . . . ,2 · n}. prime(k), strategies for playing an SSG on

the reformulated Bertrand’s postulate will contain a function to provide a value for

the existentially quantified boolean variable d. This function can be considered

a solution to Bertrand’s postulate because d is logically equivalent to Bertrand’s

postulate.

The second kind of computational problems we address is search or function

problems. A search or function problem can be specified by a claim of the form

25

∀i : ∃o : Φ(i,o) where Φ is a logical formula that holds when o is the correct

output for the input i. A strategy for playing SSGs of such claims would contain a

function to provide values for o given a value for i. This function can be considered

as a solution to the underlying search or function problem. For example, consider

the search problem of finding a topological ordering of a DAG. This problem can

be specified as ∀g ∈ DAG. ∃s ∈ sequences(nodes(g)). correct(g,s). A strategy for

playing an SSG on this claim must contain a function that provides values for s

given a value for g. This function can be considered as a solution to the problem of

finding a topological ordering of a DAG.

The third kind of computational problems we address is optimization prob-

lems. An optimization problem can be specified by a claim of the form ∀i. ∃o1. ∀o2.

Ψ(i,o1,o2) where Ψ(i,o1,o2) is a logical formula that holds when o1 is the correct

output for i and o1 is better than o2 or when o2 is not a correct output for i. The

function for providing o1 in a strategy for playing SSGs of such claims can be

considered as a solution to the underlying optimization problem. The MAX-SAT

problem is a sample optimization problem that can be specified as ∀ f ∈CNF. ∃ j1 ∈

assignments(vars(f)). ∀ j2 ∈ assignments(vars(f)). f sat(j1, f)≥ f sat(j2, f).

Alternatively, when only approximate solutions are sought, an optimization

problem can be specified by a claim of the form ∀i. ∀δ . ∃o1. ∀o2. Ψ(i,δ ,o1,o2)

where Ψ(i,δ ,o1,o2) is a logical formula that holds when o1 is the correct output

for i and o2 is at most δ better than o1 or when o2 is not a correct output for i.

Again, the function for providing o1 in a strategy for playing SSGs of such claims

can be considered as a solution to the underlying optimization problem.

The forth kind of computational problems we address is promise problems. A

promise problem is formed by adding an extra constraint, or promise, to the input

domain of an existing computational problem. Promises tend to be semantic con-

straints that are computationally intensive to verify. Examples of promise problems

26

include finding a satisfying assignment for satisfiable CNF formulas which can be

formulated as: ∀ f ∈ Satis f iableCNFs. ∃g ∈ assignments(f). satis f ies(g, f) inter-

preted in a structure that specifies the set Satis f iableCNFs, the function assignments

and the relation satis f ies. The promise here being the extra semantic check that

f is indeed a satisfiable formula which has to be performed by the administra-

tor and can be a burden. Alternatively, this claim can be reformulated such that

the burden of showing the satisfiability of the CNF formula f provided by the

falsifier falls on the falsifier itself rather than on the administrator. The refor-

mulated claim is: ∀ f ∈ CNFs. ¬(∃h ∈ assignments(f). satis f ies(h, f))∨ (∃g ∈

assignments(f). satis f ies(g, f)). In this reformulation, the verifier would be re-

quired to choose either the subclaim on the left or on the right hand side of the ∨.

The verifier can choose the right hand side of the ∨ if it decides the CNF formula

f to be have a satisfying assignment. In this case, the verifier will be required to

demonstrate the satisfiability of f by providing a satisfying assignment g. The ver-

ifier can also choose the left hand side of the ∨ if it decides the CNF formula f

to be unsatisfiable. In this case, the falsifier would be required to demonstrate the

satisfiability of f by providing a satisfying assignment h. In general, promises can

be added to universally quantified variables using logical implications but added to

existentially quantified variables using logical conjunctions.

For complex computational problems, the overhead of claim specification is

typically reduced by putting most of the complexity into the claim’s structure rather

than the formula. The rationale is that the structure can be specified in a general

purpose programming language and may use existing software. We now give two

examples of claims specifying complex computational problems.

The first example is a claim about the complexity of a finding a topologi-

cal ordering of a graph. This claim is formulated as ∃algo ∈ TopOrdAlgos. ∃v0 ∈

N. ∃e0 ∈N. ∃c∈R+. ∀g∈Graphs. v0 > vertices(g)∨e0 > edges(g)∨correct(runFor

27

(algo,c · (v0+e0)),g) interpreted in a structure that defines the sets TopOrdAlgos,

N, R+ and Graphs and the functions runFor, vertices, edges, + and · and the

relations > and correct. The implementation of the function runFor can use an

existing interpreter to run the submitted algorithms for a specific number of steps.

The second example is a claim about the folding1 of a the HHHSSSPPP6660002 protein, ac-

cording to a specific computer simulation model of the corresponding natural phe-

nomena. The claim is formulated as ∃ f ∈HHHSSSPPP666000Foldings. ∀ f2 ∈HHHSSSPPP666000Foldings.

energy(HHHSSSPPP666000, f) ≤ energy(HHHSSSPPP666000, f) interpreted in a structure that defines the

constant HHHSSSPPP666000, the set HHHSSSPPP666000Foldings, the function energy and the predicate≤.

The implementation of the function energy can use an existing computer simulation

model to compute the energy of a particular protein folding.

Finally, the administrator may choose to put more complexity into the struc-

ture in order to focus the participants on specific problems. For example, the afore-

mentioned formulation of Bertrand’s postulate has primality testing included the

structure. Alternatively, Bertrand’s postulate may be formulated as ∀n∈{3,4,5, . . .}.

∃k ∈ {n,n+1, . . . ,2 ·n}. ∀ j ∈ 2, . . . ,k−1. remainder(k, j) > 0. In this formulation,

members are required to provide a factorization algorithm as a part of their strate-

gies.

1The folding of a protein is a 3-D structure of the protein. Proteins comprise
long chains of amino acids. Certain amino acids attract, others repulse. Certain
amino acids are hydrophilic and would rather be on the outside closer to water
molecules, others are hydrophobic and would rather be inside away from water
molecules. These forces determine the native state of the protein which is the most
stable folding of the protein.

2HHHSSSPPP666000 is one of the Heat Shock Proteins that are responsible for maintaining
the integrity of cellular proteins in response to high levels of heat

28

3.4 Expressing Claims and Strategies

As mentioned above, a CPSL lab is centered around a claim that is specified by the

administrator. It is our goal to make the tasks of claim specification and strategy

development as convenient and as accessible as possible. In this section we describe

a number of conventions for expressing claims and strategies in an Object Oriented

Programming Language (OOPL) as conveniently as possible. In Section 3.5, we

demonstrate these conventions in action through a number of examples.

A claim is specified by a class in an OOPL. The claim’s formula can be modu-

larly specified in a class-level or static array of strings named FORMULAS. Each entry

in the FORMULAS array declares a formula using the formula declaration language

formally specified in Figure 3.3. Formula names are unique within every FORMULAS

array. The first formula declaration in a FORMULAS array is a no parameter formula

declaration that declares the claim’s logical formula and may refer to other for-

mulas. Modular specification of the claim’s logical formula is intended only as a

syntactic convenience; recursion is disallowed. Non-logical symbols in the formula

declarations (i.e. constants, functions, sets and relations) can only be valid refer-

ences according to the host language scoping rules. Constants are references to an

existing class-level or static field. Functions are references to existing class-level

or static methods. Relations are references to existing boolean class-level or static

methods. Sets are either references to existing classes, abstract classes or inter-

faces. Set membership tests are handled by the host language runtime at object

construction time.

Figure 3.3 shows the grammar, in EBNF [1] notation, for our formula decla-

ration language. A formula declaration consists of a name followed by a parameter

list on the left hand side and a formula on the right hand side. The symbol := is

used to separate the sides. A formula is inductively constructed from a primitive

29

predicate or claim reference via conjunction, disjunction, negation, quantification

and parenthesization operations. Arguments to predicate or claim references may

be variable names, constants or function references. All operations associate to the

right. Quantification has the least precedence followed by disjunction then con-

junction then negation and parenthesization. Quantified variables and parameters

have their types declared. Quantified variable names cannot shadow the names

of other variable names in the same formula. This is a departure from standard

predicate logic syntax that enables quantified variables to be identified by their

name. This simplifies strategy development. References are interpreted according

to the scoping rules of the host language. As an example of a formula declaration,

consider HSR() := forall Integer q : forall Integer k : exists Integer n : HSRnqk(n, k,

q) and ! exists Integer m : greater (m, n) and HSRnqk(m, q, k).

In a CPSL centered around a claim specified by the class qualifier.SomeClaim,

a strategy for playing SSGs of qualifier.SomeClaim is specified by a class

named qualifier.SomeClaimStrategy. qualifier.SomeClassStrategymust

contain a class-level or static method that provides a collection of values for each

quantified variable that is reachable through references from the logical formula

of qualifier.SomeClaim. Methods are matched to the variables they provide

values for by name. The method name matches the corresponding variable name

qualified with its enclosing formula’s name and the formula’s enclosing class fully

qualified name. Depending on the host language, separators may need to be re-

placed. For example, a method for providing values for a variable named x de-

fined in a formula named Formula1 declared in qualifier.SomeClaim may be

called qualifier SomeClaim Formula1 x. The parameters of the method provid-

ing values for some variable var are all variables that are in scope at the declaration

site of var.

Now, we demonstrate these conventions in action through a number of exam-

30

D e c l a r a t i o n = I d e n t i f i e r , P a r a m e t e r L i s t , ’ := ’ , Formula ;

Formula = AndCompound , [’ o r ’ , Formula] ;
AndCompound = Simple , [’ and ’ , AndCompound] ;

Simple = Q u a n t i f i e d | Negated | R e f e r e n c e | P a r e n t h e s i z e d ;

Q u a n t i f i e d = Q u a n t i f i e r , VarDecl , ’ : ’ , Formula ;
Negated = ’ ! ’ , S imple ;
P a r e n t h e s i z e d = ’ (’ , Formula , ’) ’ ;
R e f e r e n c e = P r e d i c a t e O r C l a i m R e f e r e n c e , Argumen tL i s t ;

Q u a n t i f i e r = ’ e x i s t s ’ | ’ f o r a l l ’ ;
VarDecl = VarType , VarName ;
VarName = I d e n t i f i e r ;
VarType = Q u a l i f i e d I d e n t i f i e r ;
P r e d i c a t e O r C l a i m R e f e r e n c e = Q u a l i f i e d I d e n t i f i e r ;
Q u a l i f i e d I d e n t i f i e r = I d e n t i f i e r , { ’ . ’ , I d e n t i f i e r } ;

Argumen tL i s t = ’ (’ , [Term , { ’ , ’ , Term }] , ’) ’ ;
Term = VarName | ConstantName | R e f e r e n c e ;
ConstantName = Q u a l i f i e d I d e n t i f i e r ;

P a r a m e t e r L i s t = ’ (’ , [VarDecl , { ’ , ’ , VarDecl }] , ’) ’ ;

I d e n t i f i e r = (L e t t e r | Symbol) , { L e t t e r | D i g i t | Symbol } ;

L e t t e r = ’A’ | ’B ’ | ’C ’ | ’D’ | ’E ’ | ’F ’ | ’G’
| ’H’ | ’ I ’ | ’ J ’ | ’K’ | ’L ’ | ’M’ | ’N’
| ’O’ | ’P ’ | ’Q’ | ’R ’ | ’S ’ | ’T ’ | ’U’
| ’V’ | ’W’ | ’X’ | ’Y’ | ’Z ’
| ’ a ’ | ’ b ’ | ’ c ’ | ’ d ’ | ’ e ’ | ’ f ’ | ’ g ’
| ’ h ’ | ’ i ’ | ’ j ’ | ’ k ’ | ’ l ’ | ’m’ | ’ n ’
| ’ o ’ | ’ p ’ | ’ q ’ | ’ r ’ | ’ s ’ | ’ t ’ | ’ u ’
| ’ v ’ | ’w’ | ’ x ’ | ’ y ’ | ’ z ’ ;

D i g i t = ’ 0 ’ | ’ 1 ’ | ’ 2 ’ | ’ 3 ’ | ’ 4 ’ | ’ 5 ’ | ’ 6 ’ | ’ 7 ’ | ’ 8 ’ | ’ 9 ’
;

Symbol = ’ $ ’ | ’ ’ ;

Figure 3.3: EBNF [1] Grammar of Formula Declaration Language

31

ples using Java [13] as a host language.

3.5 Sample Computational Problem Solving Labs

3.5.1 The Highest Safe Rung Lab

The Highest Safe Rung (HSR) problem is to find the largest number of stress levels

that a stress testing plan can examine using q tests and k copies of the product under

test. To further illustrate the problem, we take jars as a representative product and

the rungs of a ladder as a representative of stress levels. A stress testing plan is a

decision tree for determining the highest level of stress a product can endure. This

corresponds to the highest rung from which a jar can be thrown without breaking.

If all we have is a single jar, then we cannot risk breaking it without figuring out

the highest safe rung. Therefore, we have to linearly search the rungs from the

lowest to the highest until the jar breaks. If we have k > 1 jars and q = k tests,

we can afford to break all the jars in a binary search that is capable of examining a

maximum of 2k stress levels. But, if we have more tests (i.e. q > k) what would the

maximum number of stress levels that a stress testing plan can examine?

Figure 3.4 shows a claim specification for the HSR problem. The claim’s

logical formula is named HSR and uses the subformula HSRnqk twice. The claim’s

logical formula contains two sets: Integer which refers to a standard Java [13]

library class and SearchPlan which refers to an interface defined in the scope of

HSRClaim. The claim’s logical formula also contains two relations: greater and

correct. Both relations refer to a static method defined in the scope of HSRClaim.

Figure 3.5 shows the skeleton of a strategy for playing SSGs of the claim HSR.

The skeleton defines a method for all the quantified variables reachable through

reference from the claim HSR.

32

c l a s s HSRClaim {
p u b l i c s t a t i c f i n a l S t r i n g [] FORMULAS = new S t r i n g [] {

”HSR () := f o r a l l I n t e g e r q : f o r a l l I n t e g e r k : e x i s t s
I n t e g e r n : HSRnqk (n , k , q) and ! e x i s t s I n t e g e r m :
g r e a t e r (m, n) and HSRnqk (m, q , k) ” ,

”HSRnqk (I n t e g e r n , I n t e g e r q , I n t e g e r k) := e x i s t s S e a r c h P l a n
sp : c o r r e c t (sp , n , q , k) ”

} ;

p u b l i c s t a t i c boolean g r e a t e r (I n t e g e r n , I n t e g e r m) {
re turn n > m;

}

p u b l i c s t a t i c i n t e r f a c e S e a r c h P l a n {}
p u b l i c s t a t i c c l a s s Conclus ionNode implements S e a r c h P l a n {

I n t e g e r h s r ;
}
p u b l i c s t a t i c c l a s s TestNode implements S e a r c h P l a n {

I n t e g e r t e s t R u n g ;
S e a r c h P l a n yes ; / / What t o do when t h e j a r b r e a k s .
S e a r c h P l a n no ; / / What t o do when t h e j a r does n o t break .

}

p u b l i c s t a t i c boolean c o r r e c t (S e a r c h P l a n sp , I n t e g e r n , I n t e g e r
q , I n t e g e r k) {

/ / sp s a t i s f i e s t h e b i n a r y s e a r c h t r e e p r o p e r t y , has n l e a v e s
, o f d e p t h a t most q , a l l roo t−to− l e a f p a t h s have a t most
k ” y e s ” b r a n c h e s .

. . .
}

}

Figure 3.4: Claim Specification for The Highest Safe Rung Lab

3.5.2 Gale-Shapley’s Worst Case Input Lab

The focal problem of the Gale-Shapley’s worst case input lab is finding the input

making the outermost loop of Gale-Shapley’s stable matching algorithm [10] iterate

the most. Figure 3.6 shows the claim specification of the Gale-Shapley’s worst case

input lab.

33

c l a s s HSRStra tegy {
p u b l i c s t a t i c I t e r a b l e <I n t e g e r > HSR q () {

/ / p r o v i d e an i n t e g e r q such t h a t t h e f o r m u l a ” f o r a l l I n t e g e r
k : e x i s t s I n t e g e r n : HSRnqk (n , k , q) and ! e x i s t s

I n t e g e r m : g r e a t e r (m, n) and HSRnqk (m, q , k) ” does n o t
ho ld

. . .
}
p u b l i c s t a t i c I t e r a b l e <I n t e g e r > HSR k (I n t e g e r q) {

/ / p r o v i d e an i n t e g e r k such t h a t t h e f o r m u l a ” e x i s t s I n t e g e r
n : HSRnqk (n , k , q) and ! e x i s t s I n t e g e r m : g r e a t e r (m, n

) and HSRnqk (m, q , k) ” does n o t ho ld .
. . .

}
p u b l i c s t a t i c I t e r a b l e <I n t e g e r > HSR n (I n t e g e r q , I n t e g e r k) {

/ / p r o v i d e an i n t e g e r n such t h a t t h e f o r m u l a ”HSRnqk (n , k , q
) and ! e x i s t s I n t e g e r m : g r e a t e r (m, n) and HSRnqk (m, q ,
k) ” h o l d s .

. . .
}
p u b l i c s t a t i c I t e r a b l e <I n t e g e r > HSR m(I n t e g e r q , I n t e g e r k ,

I n t e g e r n) {
/ / p r o v i d e an i n t e g e r m such t h a t t h e f o r m u l a ” e x i s t s I n t e g e r

m : g r e a t e r (m, n) and HSRnqk (m, q , k) ” h o l d s .
. . .

}
p u b l i c s t a t i c I t e r a b l e <Sea rch P lan > HSRnqk sp (I n t e g e r n , I n t e g e r

q , I n t e g e r k) {
/ / p r o v i d e a SearchPlan sp such t h a t t h e f o r m u l a ” c o r r e c t (sp ,

n , q , k) ” h o l d s
. . .

}
}

Figure 3.5: HSR Strategy Skeleton

3.5.3 Minimum Graph Basis Lab

The focal problem of the minimum graph basis lab is finding the smallest basis

for a given directed graph. The basis of a directed graph is a subset of the graph

nodes such that every node in the graph is reachable from some node in the basis.

Figure 3.7 shows the claim specification of the minimum graph basis lab.

34

c l a s s Wors tCaseGa leShap leyCla imFami ly {
p u b l i c s t a t i c f i n a l S t r i n g [] FORMULAS = new S t r i n g [] {

” W o r s t C a s e I n p u t () := f o r a l l I n t e g e r n : e x i s t s P r e f e r e n c e s
p r e f 1 : h a s S i z e (p r e f 1 , n) and ! e x i s t s P r e f e r e n c e s p r e f 2 :

h a s S i z e (p r e f 2 , n) and moreExpens ive (p r e f 2 , p r e f 1) ”
} ;

p u b l i c s t a t i c boolean moreExpens ive (P r e f e r e n c e s p r e f 1 ,
P r e f e r e n c e s p r e f 2) {

/ / Does p r e f 1 make t h e o u t e r m o s t l oop o f Gale−S h a p l e y ’ s
s t a b l e match ing a l g o r i t h m i t e r a t e more than p r e f 2 does ?

. . .
}
p u b l i c s t a t i c boolean h a s S i z e (P r e f e r e n c e s p r e f , I n t e g e r n) {

/ / Does p r e f have t h e p r e f e r e n c e s o f e x a c t l y n p a r t i e s ?
. . .

}
p u b l i c s t a t i c c l a s s P r e f e r e n c e s { . . . }

}

Figure 3.6: Claim Family Specification of The Gale-Shapley’s Worst Case Input
Lab

c l a s s MinGraphBas isCla imFami ly {
p u b l i c s t a t i c f i n a l S t r i n g [] FORMULAS = new S t r i n g [] {

” MinBasis () := f o r a l l Graph g : e x i s t s NodeSet ns1 :
a l l R e a c h a b l e (ns1 , g) and ! e x i s t s NodeSet ns2 :
a l l R e a c h a b l e (ns2 , g) and s m a l l e r (ns2 , ns1) ”

} ;

p u b l i c s t a t i c boolean a l l R e a c h a b l e (NodeSet ns , Graph g) {
/ / I s e v e r y node i n g r e a c h a b l e from some node i n ns ?
. . .

}
p u b l i c s t a t i c boolean s m a l l e r (NodeSet ns2 , NodeSet ns1) {

/ / Does ns2 have f e w e r nodes than ns1 ?
. . .

}
p u b l i c s t a t i c c l a s s NodeSet{ . . . }
p u b l i c s t a t i c c l a s s Graph{ . . . }

}

Figure 3.7: Claim Family Specification of The Minimum Graph Basis Lab

35

3.6 Related Work

3.6.1 Crowdsourcing and Human Computation

There are several existing systems and approaches that can be used to organize

human communities to perform complex tasks including the task of solving com-

putational problems. Algorithm development competitions held on platforms such

as TopCoder [30], Project Euler [2] and Jutge [23] are similar our CPSLs in that

they are based on organizing algorithm development competitions. In all three plat-

forms, algorithms submitted by community members are evaluated using a bench-

mark prepared by the competition or the system administrator. Moreover, formal

specification is not mandatory in any of these systems.

FoldIt [7] and EteRNA [5] are two crowdsourcing systems aiming to leverage

human intelligence to solve two particular optimization problems at the instance

level. FoldIt leverages human intelligence to find the native structure of specific

proteins according to a particular computer simulation model [3] of the natural

phenomena of protein folding. EteRNA, on the other hand, leverage human intelli-

gence to design RNA molecules with a certain folding as their native state. The two

systems are quite similar to each other and we limit our discussion here to FoldIt.

FoldIt is similar to CPSLs in that it organizes a community to solve a computational

problem. FoldIt is also similar to CPSLs in that the overhead on the administrator

is minimal and that FoldIt has a peer-evaluation nature in the sense that the system

only accepts foldings that are better than any other folding that has been previously

submitted by other human participants. FoldIt has a competitive nature that comes

from different leader-boards maintained by the system. However, it is controversial

whether competition is the main motivation for human participants to contribute

solutions to open protein folding problems. The main difference between FoldIt

36

and CPSLs is that FoldIt organizes a community to solve a fixed computational

problem at the instance level only. CPSLs can be used to organize a community to

solve computational problems in general.

Wikipedia has also been quite successful in organizing communities to per-

form complex tasks. Today, there are numerous Wikipedia pages that informally

describe computational problems as well as algorithms to solve them. Wikipedia

significantly differs from CPSLs in that community members collaboratively edit

Wikipedia pages. When conflicts arise, they are subjectively resolved through ne-

gotiation and arbitration. In CPSLs, each member has their own version of the

solution. These versions are always in a conflict that is solved through an objec-

tive competition. Moreover, in Wikipedia, formal specification of problems is not

mandatory. Furthermore, algorithms are typically specified at a high-level which

reduces the chances for conflicts yet making algorithms on the Wikipedia less di-

rectly reusable and testable.

Crowdsourcing has become an important problem solving approach that en-

ables us to tackle large scale problems that require human intelligence to solve.

There are two main reasons that human intelligence is required to solve a problem.

First, the problem is underspecified such as image labeling [31], the construction

of web page classifiers [16], and the creation of Wikipedia pages. Humans are

needed to partially specify what the problem is. Second, The problem is formally

specified but complex enough that we have either no known solution procedure or

a rather inefficient one. Examples include, programming and discovering protein

folding [7], [5]. Humans are needed either to solve the problem or to decide how

to solve the problem. CPSLs has the potential of being used as crowdsourcing sys-

tems for formally specified computational problems because they provide attractive

solutions to most of the key challenges of crowdsourcing systems and have other

features desirable in crowdsourcing systems.

37

CPSLs provide attractive solutions to most of the following four key chal-

lenges that crowdsourcing systems need to address [8]:

1. What contributions can users make? In a CPSL, community members are

required to provide a strategy for playing an SSG of the claim formally spec-

ifying the underlying computational problem of the CPSL.

2. How to evaluate users and their contributions? CPSLs evaluate strategies

submitted by community members using a collusion-resistant tournament of

SSGs where members are guaranteed to always have a chance to rank at the

top and to always have a chance to expose problems with the solutions of

their opponents.

3. How to combine user contributions to solve the target problem? As described

earlier, CPSLs do not combine user contributions. Instead, community mem-

bers can receive targeted feedback from the SSGs that their strategies lost.

Members can incorporate this feedback into their future strategies.

4. How to recruit and retain users? Competition outcome in a CPSL can serve

as a basis for a host of user recruitment schemes such as offering a monetary

prize to the competition winners.

As we mentioned earlier, CPSLs have features that are desirable for crowd-

sourcing systems. In [18], Kittur et al. argue that an ideal crowd work system would

offer peer-to-peer and expert feedback and encourage self-assessment. Such a sys-

tem would help workers to learn, and produce better results. In CPSLs, community

members can get, through competition, targeted feedback about the weaknesses of

their strategies.

38

3.6.2 Origin

We started this line of work with the Specker Challenge Game (SCG) [22]. The

goal was to create an educational game in which students can learn from each other

with a minimal interaction with the teaching staff. The rules where informally

described by ad-hoc rules that were called refutation protocols 3.

3In reference to the seminal work [25] of the famous philosopher of science,
Karl Popper.

39

Chapter 4

Collusion-Resistant Semantic Game

Tournaments

In this chapter we develop an SG tournament that is arguably objective, anonymous,

neutral, monotonic and thorough. As we mentioned earlier, collusion potential is

a key challenge to ensuring the anonymity and success of a tournament. A set of

colluding participants may arrange to lose, on purpose, against a specific participant

in order to inflate that participant’s rank and effectively worsen the rank of the

opponents of that participant.

In Section 4.1 we give an example demonstrating how a set of colluding partic-

ipants can worsen the rank of other participants behind their back and how certain

ranking functions can fend against collusion. Then, in Section 4.2, we formalize the

notions of beating functions representing SG tournament results as well as ranking

functions. Then, in Section 4.3, we provide a formal, in depth study of collusion-

resistant ranking functions that begins with a formal characterization of the limited

collusion effect property of ranking functions. Informally, the limited collusion ef-

fect property means that no participant can have their rank worsened behind their

back due to collusion. We then give a representation theorem of ranking functions

possessing the limited collusion effect property as well as other basic monotonicity

properties. In essence, we show that under basic monotonicity properties of rank-

ing functions, the limited collusion effect property is logically equivalent to using

a ranking function that is based on a generalized form of fault counting. Then, in

Section 4.4 we present an SG tournament and argue for its objectivity, anonymity,

neutrality, monotonicity and thoroughness. Finally, in Section 4.5 we discuss the

related work.

4.1 Collusion-Resistant Ranking Functions at a

Glance

Suppose that we have an underlying true claim C specifying a computational prob-

lem. Therefore, there must be a winning strategy for a verifier in any SG of C.

Suppose that p1 and p2 are two perfectly acting participants. Therefore, both will

choose to take the verifier side in an SG of C. Also, both p1 and p2 will apply

the winning strategy when taking the verifier side in an SG of C. Table 4.1 shows

the outcome of a double round robin semantic game tournament between p1 and

p2. p1 and p2 play two SGs on C. In the first game, shown in the top right cell,

p2 takes the verifier side and p1 is forced to take the falsifier side. In the second

game, shown in the bottom left cell, p1 takes the verifier side and p2 is forced to

take the falsifier side. By virtue of being perfectly acting participants, p2 wins the

first game and p1 wins the second game.

We demonstrate our notion of collusion-resistant ranking functions using the

following four score-based ranking functions:

• Number of wins (#W): For each participant, we count the number of wins

for every participant throughout the tournament. The higher the participant

41

H
HHH

HHFal
Ver

p1 p2

p1 - p2
p2 p1 -

Table 4.1: Outcome of a Semantic Game Tournament with Two Perfectly Acting
Participants

scores, the better the participant’s rank is.

• Number of losses (#L): For each participant, we count the number of losses

for every participant throughout the tournament. The lower the participant

scores, the better the participant’s rank is.

• Number of wins against a non forced participant (#WNF): we only count the

number of games a participant has won against a non forced participant. A

participant is said to be forced in an SG if it takes the opposite side to the side

the participant chooses to take. The higher the participant score, the better

the participant’s rank is.

• Number of faults (#NFL): we only count the number of games a participant

loses while taking its chosen side. The lower the participant scores, the better

the participant’s rank is.

Both #W and #L ignore the participants’ side choice altogether. Also, Both

#WNF and #NFL ignore games in which the loser is forced as a form of compen-

sation for players at a disadvantage. The rationale is that in such games it could be

that the loser had no chance of winning whatsoever.

Table 4.2 demonstrates the scores of p1 and p2 according to the four ranking

functions. Each participant wins a single game. Therefore, both score a single

point using the #W function. Each participant loses a single game. Therefore, both

score a single point using the #L function. Each participant wins only against a

42

Participant #W #L #WNF #NFL
p1 1 1 0 0
p2 1 1 0 0

Table 4.2: Evaluating a Semantic Game Tournament with Two Perfectly Acting
Participants

HHH
HHHFal
Ver

p1 p2 p3

p1 - p2 p3
p2 p1 - p2
p3 p1 p2 -

Table 4.3: Outcome of a Semantic Game Tournament with Two Colluding
Participants

forced player. Therefore, both score zero points using the #WNF function. Each

participant loses only while forced. Therefore, both score zero points using the

#NFL function. Using either of the four ranking functions, both p1 and p2 are top

ranked.

Now, suppose that a third player p3 has joined the tournament not for the

purpose of competing with p1 and p2 for the top rank, but to cut p1 short from

being top ranked. We assume p3 has access to the winning strategy of p2 and will

use it except against p2. This situation is illustrated in Table 4.3. The highlighted

cell marks the semantic game that p3 loses on purpose for the benefit of p2.

Now, we examine the four ranking functions to determine which ones are re-

sistant to the collusion between p3 and p2. Table 4.4 shows the scores of p1, p2

and p3 using the four ranking functions. For each ranking function, the cells corre-

sponding to the best scores are highlighted. Among the four ranking functions we

examined, we note that fault counting is the only collusion-resistant function.

In the following two sections, we provides a formal, in depth study of collusion-

resistant ranking functions.

43

Participant #W #L #WNF #NFL
p1 2 2 0 0
p2 3 1 1 0
p3 1 3 0 1

Table 4.4: Evaluating a Semantic Game Tournament with Two Colluding
Participants

4.2 Formalizing Beating and Ranking Functions

In this section we formalize the notions of beating and ranking functions. We use

a beating function to represent a tournament result and use a ranking function to

produce an ordering of tournament participants based on a tournament result. We

also describe the algebraic structure of beating functions. In subsequent sections,

we rely on the operations in this structure to formulate properties of beating and

ranking functions and use the properties of the structure of beating functions in our

proofs.

4.2.1 Notation

We modeled our notation for variables after the Hungarian notation used to name

variables in computer programs. The goal is to avoid as many quantifiers as pos-

sible when expressing logical formulas. For example, instead of writing ∀p ∈

P. Φ(p), we directly write Φ(p). Also, instead of writing ∀a,b ∈ P. Φ(a,b) we

directly write Φ(pa, pb).

Explicitly, we use a single capital Latin letter to denote a set and use the same

small Latin letter to denote an element of the set. Subscripts are used to distinguish

multiple elements of the same set, when necessary. Constants are denoted using

boldface font. Functions are denoted using small Latin letters and superscripts are

used to denote their type parameters. Free variables are assumed to be universally

44

quantified. Two distinctly named free variables are assumed to only take distinct

values. We use � to denote an arbitrary ranking function. We also use subscripts

to distinguish between ranking functions.

In our proofs, we put labels to the right of formulas. We use the notation

LABEL[term1/var1, . . . termn/varn] to denote a particular instantiation of the for-

mula labeled LABEL in which the freely occurring variables var1, . . .varn are re-

placed with the terms term1, . . . termn respectively.

4.2.2 Beating Functions

Let sv and sf be two constants denoting the verifier and falsifier sides respectively.

Let S = {sv,sf}. We use a beating function bp : P×P×S×S×S→Q+ to represent

the results of all semantic games comprising a tournament among a finite set of

players P. bp(pw, pl,swc,slc,sw) denotes the number, or fraction, of semantic games

won by pw against pl where pw chooses to take the side swc and pl chooses to take

the side slc and sw is the actual side taken by the pw. We use BP to denote the set of

all possible beating functions for a given finite set P of players.

4.2.3 Ranking Functions

We define a ranking to be a total preorder (i.e. a reflexive, transitive and total binary

relation). We use RP to denote the set of all possible rankings of a given set P of

players. A ranking function�: BP→ RP associates some ranking to every beating

function. We say that px is weakly better than py (i.e. px at least as good as py)

according to the ordering assigned by the ranking function� to the beating relation

bp if px �(bp) py. We say that px is strictly better than py if py 6�(bp) px. Formally,

a ranking function satisfies the following axioms:

45

p�(bp) p (REFL)

px �(bp) py∧ py �(bp) pz⇒ px �(bp) pz (TRAN)

px �(bp) py∨ py �(bp) px (TOTAL)

4.2.4 The Algebraic Structure of Beating Functions

The set BP and pointwise rational addition operation (bp
x +bp

y)(pw, pl,swc,slc,sw) =

bp
x (pw, pl,swc,slc,sw)+bp

y (pw, pl,swc,slc,sw) form an algebraic structure. The point-

wise rational addition operation is associative, commutative and bp
0 is its identity

element. bp
0 is the beating function representing the results of the empty set of

semantic games. Therefore, bp
0 (pw, pl,swc,slc,sw) = 0.

We add the following four restriction operations to the structure of beating

functions:

• Win restriction: we use bp |wpx
to denote a restricted version of bp that only

contains those games that px wins. Formally,

bp|wpx
(pw, pl,swc,slc,sw) =


bp(pw, pl,swc,slc,sw) , pw = px

0 ,otherwise
(DEF.1)

• Loss restriction: we use bp |lpx
to denote a restricted version of bp that only

contains those games that px loses. Formally,

bp|lpx
(pw, pl,swc,slc,sw) =


bp(pw, pl,swc,slc,sw) , pl = px

0 ,otherwise
(DEF.2)

• Fault restriction: we use bp| f l
px to denote a restricted version of bp that only

contains the games in which px makes a fault. These are the games that px

46

loses while not forced.Formally,

bp | f l
px

(pw, pl,swc,slc,sw) =


bp(pw, pl,swc,slc,sw) , pl = px∧ slc 6= sw

0 ,otherwise
(DEF.3)

• Control restriction: we use bp |cpx
to denote a restricted version of bp that

only contains those games that px controls. These are the games that px

either wins or had a chance to win. Formally:

bp|cpx
= bp |wpx

+bp | f l
px

(DEF.4)

We also add a complement restriction operation for each of the aforementioned

restriction operations. We use bp |!wpx
to denote a restricted version of bp that only

contains those games that px does not win. Formally:

bp|wpx
+bp|!wpx

= bp (DEF.5)

We use bp |!lpx
to denote a restricted version of bp that only contains those games

that px does not lose. Formally:

bp|lpx
+bp|!lpx

= bp (DEF.6)

We use bp |! f l
px to denote a restricted version of bp that only contains the games in

which px does not make a fault. Formally:

bp | f l
px

+bp|! f l
px

= bp (DEF.7)

We use bp |!cpx
to denote a restricted version of bp that only contains those games

that px does not control. Formally:

bp|cpx
+bp|!cpx

= bp (DEF.8)

47

We now list some formal properties of the structure of beating functions that

we use later in our proofs:

bp | f l
py
| f l
px

= bp
0 (PROP.1)

bp |lpy
| f l
px

= bp
0 (PROP.2)

bp |wpy
|wpx

= bp
0 (PROP.3)

bp|wpx
| f l
px

= bp
0 (PROP.4)

bp|! f l
px

= bp |wpx
+bp |!cpx

(PROP.5)

bp|!cpx
|cpx

= bp
0 (PROP.6)

bp | f l
px
|lpx

= bp | f l
px

(PROP.7)

4.3 Collusion-Resistant Ranking Functions

In this section, we formalize our notion of collusion-resistant ranking functions as

ranking functions satisfying the limited collusion effect property. Then we formal-

ize the two basic monotonicity properties of never penalizing wins nor reward-

ing losses. Finally, we provide a more practical alternative characterization of

collusion-resistant ranking functions that never discourage winning nor encourage

losing. Finally, we provide a representation theorem of ranking functions possess-

ing the limited collusion effect property as well as the other two basic monotonicity

properties. In essence, we show that under basic monotonicity properties of rank-

ing functions, the limited collusion effect property is logically equivalent to using

a ranking function that is based on a generalized form of fault counting.

4.3.1 Limited Collusion Effect

A ranking function� is said to have the Limited Collusion Effect (LCE) property

if for any two arbitrary players px and py the rank of py with respect to px cannot be

48

improved by manipulating games that px can not control their outcome. These are

the games that px is not involved in or the games px loses while forced. Formally,

a ranking function satisfies the LCE property if it satisfies the following axioms:

bp
2 |

c
px

= bp
0 ∧ px �(bp

1) py⇒ px �(bp
1 +bp

2) py (LCE.I)

bp
2 |

c
px

= bp
0 ∧ py 6�(bp

1) px⇒ py 6�(bp
1 +bp

2) px (LCE.II)

The first axiom asserts that if px is ranked weakly better than py under the

beating function bp
1 , then px remains weakly better than py when more games that

px cannot control are added to bp
1 . The second axiom asserts that if px is ranked

strictly better py under the beating function bp
1 , then px remains strictly better than

py when more games that px cannot control are added to bp
1 .

4.3.2 Monotonicity

As we mentioned earlier, a monotonic ranking function must not reward losing

nor penalize winning. In other words, a monotonic ranking function must have

a Non-Negative Regard for Winning (NNRW) and a Non-Positive Regard for

Losing (NPRL). That is, a player’s rank cannot be worsened by an extra winning

nor can it be improved by an extra loss. Formally, a ranking function must satisfy

the following axioms:

px �(bp
1) py⇒ px �(bp

1 +bp
2 |

w
px

) py (NNRW.I)

px �(bp
1 +bp

2 |
w
py

) py⇒ px �(bp
1) py (NNRW.II)

px �(bp
1) py⇒ px �(bp

1 +bp
2 |

l
py

) py (NPRL.I)

px �(bp
1 +bp

2 |
l
px

) py⇒ px �(bp
1) py (NPRL.II)

49

4.3.3 A Representation Theorem for Monotonic,

Collusion-Resistant Ranking Functions

We now give a representation theorem for monotonic, collusion-resistant ranking

functions. In essence, we show that under basic monotonicity properties of rank-

ing functions, the limited collusion effect property is logically equivalent to using

a ranking function that is based on a generalized form of fault counting. Being

fault-based is a quite unusual design principle for ranking functions that ranking

function designers are likely to violate. In sports tournaments, it is often the case

for ranking functions to be based on wins or at least based on both wins and losses

but not solely on losses [21]. Being fault-based is also a more practical characteri-

zation of monotonicity and possessing the limited collusion effect property as it is

easier to design fault-based ranking functions than it is to design ranking functions

possessing the limited collusion effect.

A ranking function � is said to be Local Fault Based (LFB) if for any two

arbitrary players px and py the relative rank � assigns to px with respect to py

solely depends on the games where px or py make a fault. Formally,

px �(bp| f l
px

+bp| f l
py

) py⇔ px �(bp) py (LFB)

Theorem 4.3.1. For any ranking function having NNRW and NPRL, LCE is equiv-

alent to LFB. Formally, NNRW ∧ NPRL⇒ (LCE⇔ LFB).

Figure 4.1 presents a partitioning of the games represented by an arbitrary

beating function bp . This partitioning illustrates the intuition behind this theorem

and its proof. The intuition is that a ranking function satisfying the LFB property

� must completely decide the relative rank of any two arbitrary players px and py

based on the games in the shaded partitions only. Games in the unshaded partitions

cannot influence the relative rank of px and py assigned by �.

50

bp

7

bp |cpx
bp|cpy

1

2

5

6

3

4

1 bp |! f l
py |wpx

= bp |!cpy
|wpx

2 bp|!wpy
| f l
px = bp |!cpy

| f l
px

3 bp| f l
py|wpx

= bp |cpy
|wpx

4 bp|wpy
| f l
px = bp |cpy

| f l
px

5 bp |!wpx
| f l
py = bp|!cpx

| f l
py

6 bp |! f l
px |wpy

= bp|!cpx
|wpy

7 bp|!cpx
|!cpy

Figure 4.1: Beating Functions Representing Partitions of the Semantic Games
Represented by bp

We now give an informal proof of this theorem using the partitioning shown in

Figure 4.1. We break our theorem into the following two lemmas. The first lemma

is that NNRW and LCE imply LFB. The second lemma is that NPRL and LFB

imply LCE. Our theorem follows directly from both lemmas.

To prove the first lemma, let � be a ranking function that violates the LFB

property. By definition of the LFB property, there must be two players px and py

such that the games in the unshaded region influence the relative rank assigned by

� to px and py. The influence can either be positive (case I) or negative (case

II) for px. Suppose that games in the unshaded region positively influence the

rank assigned by � to px with respect to py. But, assuming that � satisfies the

LCE property, games in partitions 1 , 7 cannot improve px’s rank with respect

to py because it only contains games not under py’s control. Also, assuming that

� satisfies the NNRW property, games in partition 6 cannot improve px’s rank

with respect to py because it only contains games that py has won. Therefore, our

assumption that � satisfies both LCE and NNRW cannot be true. We have shown

the contrapositive of the first lemma for case I. We now consider case II. Suppose

51

that games in the unshaded region negatively influence the rank assigned by �

to px with respect to py. But assuming that � satisfies the LCE property, games

in partitions 6 , 7 cannot worsen px’s rank with respect to py because it only

contains games not under px’s control. Also, assuming that � satisfies the NNRW

property, games in partition 1 cannot worsen px’s rank with respect to py because

it only contains games that px has won. Therefore, our assumption that � satisfies

both LCE and NNRW cannot be true. We have shown the contrapositive of the first

lemma for case II and the first part of the proof is now complete.

To prove the second lemma, let� be a ranking function satisfying both NPRL

and LFB. By definition of the LFB property, only games in the shaded region in-

fluence the relative rank assigned by � to px and py. Games in the regions 2 , 3

and 4 are under the control of px. Only games in region 5 can influence the

relative rank assigned by � to px and py, yet games in region 5 are not under the

control of px. However, games in region 5 are all faults made by py and by NPRL

they cannot improve the rank of py with respect to px. Therefore, only games under

the control of px may worsen px’s rank with respect to py. An identical argument

applies to the rank of py. This completes the prove of the second lemma and hence

the theorem.

Now we present our formal proof. We start with few lemmas. The first lemma

formalizes the partitioning shown in Figure 4.1. Essentially, our first lemma asserts

that if we add the games in the shaded region, represented by the beating function

bp | f l
px +bp | f l

py , to the games in partitions 1 , 6 and 7 represented by the beating

functions bp|! f l
py |wpx

, bp |! f l
px |wpy

and bp|!cpx
|!cpy

respectively, we get bp .

Lemma 4.3.2. bp | f l
px +bp | f l

py +bp |! f l
py |wpx

+bp|! f l
px |wpy

+bp|!cpx
|!cpy

= bp

Proof.

bp | f l
px

+bp | f l
py

+bp |! f l
py
|wpx

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

52

By DEF.8[bp | f l
py

/bp] :

=bp | f l
px

+bp | f l
py
|cpx

+bp| f l
py
|!cpx

+bp |! f l
py
|wpx

+bp|! f l
px
|wpy

+bp|!cpy
|!cpx

By DEF.4[bp | f l
py

/bp] :

=bp | f l
px

+bp | f l
py
|wpx

+bp| f l
py
| f l
px

+bp | f l
py
|!cpx

+bp |! f l
py
|wpx

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

By PROP.1 and identity of + :

=bp | f l
px

+bp | f l
py
|wpx

+bp| f l
py
|!cpx

+bp |! f l
py
|wpx

+bp|! f l
px
|wpy

+bp|!cpy
|!cpx

By commutativity of + and distributivity of + on restrictions :

=bp | f l
px

+(bp| f l
py

+bp|! f l
py

)|wpx
+bp| f l

py
|!cpx

+bp |! f l
px
|wpy

+bp |!cpy
|!cpx

By DEF.7 :

=bp | f l
px

+bp |wpx
+bp| f l

py
|!cpx

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

By commutativity of + and DEF.4 :

=bp |cpx
+bp | f l

py
|!cpx

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

By PROP.5 :

=bp |cpx
+bp | f l

py
|!cpx

+(bp |wpx
+bp |!cpx

)|wpy
+bp |!cpy

|!cpx

By distributivity of + on restriction operations:

=bp |cpx
+bp| f l

py
|!cpx

+bp|wpx
|wpy

+bp |!cpx
|wpy

+bp|!cpy
|!cpx

By PROP.3 and identity of + :

=bp |cpx
+bp| f l

py
|!cpx

+bp|!cpx
|wpy

+bp |!cpy
|!cpx

By commutativity of + and restrictions and distributivity of + on restrictions :

=bp |cpx
+(bp |wpy

+bp| f l
py

)|!cpx
+bp|!cpy

|!cpx

By DEF.4[py/px] :

=bp |cpx
+bp|cpy

|!cpx
+bp|!cpy

|!cpx

By distributivity of + on restrictions :

53

=bp |cpx
+(bp|cpy

+bp|!cpy
)|!cpx

By DEF.8[py/px] and commutativity of + :

=bp |cpx
+bp |!cpx

By DEF.8 and commutativity of + :

=bp

Our second lemma asserts that partitions 1 and 7 , represented by the beat-

ing functions bp |! f l
py |wpx

and bp|!cpx
|!cpy

respectively, are not under py’s control.

Lemma 4.3.3.

(bp|! f l
py
|wpx

+bp |!cpx
|!cpy

)|cpy
= bp

0

Proof.

(bp|! f l
py
|wpx

+bp |!cpx
|!cpy

)|cpy

By PROP.5[py/px] :

=(bp|wpy
|wpx

+bp |!cpy
|wpx

+bp|!cpx
|!cpy

)|cpy

By PROP.3 and identity of + :

=(bp|!cpy
|wpx

+bp |!cpx
|!cpy

)|cpy

By commutativity of + and restrictions and distributivity of + on restrictions :

=((bp|wpx
+bp|!cpx

)|!cpy
)|cpy

By PROP.6[py/px,(bp |wpx
+bp|!cpx

)/bp] :

=bp
0

54

Our third lemma asserts that NNRW and LCE imply LFB.

Lemma 4.3.4. NNRW ∧ LCE⇒ LFB.

Proof. We show the contrapositive of the lemma; Let � be a ranking function

violating LFB. Formally, px�(bp| f l
px +bp | f l

py) py 6⇔ px�(bp) py. We show that (px�

(bp| f l
px + bp | f l

py) py 6⇔ px �(bp) py)⇒ false under the assumption that � satisfies

both LCE and NNRW properties.

px �(bp| f l
px

+bp | f l
py

) py 6⇔ px �(bp) py

⇒px 6�(bp| f l
px

+bp| f l
py

) py∧ px �(bp) py∨ px �(bp| f l
px

+bp| f l
py

) py∧ px 6�(bp) py (I)

Consider the left disjunct only :

px 6�(bp| f l
px

+bp | f l
py

) py∧ px �(bp) py

Using Lemma 4.3.3 :

⇒((bp |! f l
py
|wpx

+bp|!cpx
|!cpy

)|cpy
= bp

0)∧ px 6�(bp | f l
px

+bp | f l
py

) py∧ px �(bp) py

By LCE.II[py/px, px/py,(bp| f l
px

+bp| f l
py

)/bp
1 ,(bp|! f l

py
|wpx

+bp |!cpx
|!cpy

)/bp
2] :

⇒px 6�(bp| f l
px

+bp| f l
py

+bp|! f l
py
|wpx

+bp |!cpx
|!cpy

) py∧ px �(bp) py

By the contrapositive of NNRW.II[(bp| f l
px

+bp| f l
py

+bp|! f l
py
|wpx

+bp|!cpx
|!cpy

)/bp
1 ,bp|! f l

px
/bp

2] :

⇒px 6�(bp| f l
px

+bp | f l
py

+bp|! f l
py
|wpx

+bp |!cpx
|!cpy

+bp|! f l
px
|wpy

) py∧ px �(bp) py

By Lemma 4.3.2 and commutativity of + and restrictions :

⇒px 6�(bp) py∧ px �(bp) py

⇒false (II)

Consider the right disjunct only :

px �(bp| f l
px

+bp | f l
py

) py∧ px 6�(bp) py

Using Lemma 4.3.3[py/px, px/py] :

⇒((bp |! f l
px
|wpy

+bp |!cpy
|!cpx

)|cpx
= bp

0)∧ px �(bp | f l
px

+bp| f l
py

) py∧ px 6�(bp) py

By LCE.I[(bp| f l
px

+bp| f l
py

)/bp
1 ,(bp|! f l

px
|wpy

+bp |!cpy
|!cpx

)/bp
2] :

55

⇒px �(bp| f l
px

+bp| f l
py

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

) py∧ px 6�(bp) py

By NNRW.I[(bp | f l
px

+bp | f l
py

+bp |! f l
px
|wpy

+bp|!cpy
|!cpx

)/bp
1 ,bp|! f l

py
/bp

2] :

⇒px �(bp| f l
px

+bp| f l
py

+bp|! f l
px
|wpy

+bp |!cpy
|!cpx

+bp|! f l
py
|wpx

) py∧ px 6�(bp) py

By Lemma 4.3.2 and commutativity of + and restrictions :

⇒px �(bp) py∧ px 6�(bp) py

⇒false (III)

From I , II and II :

px �(bp| f l
px

+bp| f l
py

) py 6⇔ px �(bp) py)⇒ false

Our forth lemma asserts that NPRL and LFB imply LCE.

Lemma 4.3.5. NPRL ∧ LFB⇒ LCE.

Proof. We separately derive the R.H.S. of each of the LCE axioms from its corre-

sponding L.H.S. under the assumptions of NPRL and LFB.

Consider the L.H.S. of LCE.I:

bp
2 |

c
px

= bp
0 ∧ px �(bp

1) py

Using LFB:

⇒bp
2 |

c
px

= bp
0 ∧ px �(bp

1 |
f l
px

+bp
1 |

f l
py

) py

By DEF.4:

⇒bp
2 |

f l
px

+bp
2 |

w
px

= bp
0 ∧ px �(bp

1 |
f l
px

+bp
1 |

f l
py

) py

By definition of a beating function and properties of rational addition :

⇒bp
2 |

f l
px

= bp
0 ∧ px �(bp

1 |
f l
px

+bp
1 |

f l
py

) py

Since bp
0 is the identity element for + :

56

⇒px �(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

) py

By NPRL.I[bp
2 |

f l
py

/bp
2]:

⇒px �(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

+bp
2 |

f l
py
|lpy

) py

By PROP.7[py/px,b
p
2 /bp]:

⇒px �(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

+bp
2 |

f l
py

) py

By distributivity:

⇒px �(bp
1 +bp

2 |
f l
px

+bp
1 +bp

2 |
f l
py

) py

By LFB:

⇒px �(bp
1 +bp

2) py = R.H.S. (I)

Consider the L.H.S. of LCE.II:

bp
2 |

c
px

= bp
0 ∧ py 6�(bp

1) px

Using LFB:

⇒bp
2 |

c
px

= bp
0 ∧ py 6�(bp

1 |
f l
px

+bp
1 |

f l
py

) px

By DEF.4:

⇒bp
2 |

f l
px

+bp
2 |

w
px

= bp
0 ∧ py 6�(bp

1 |
f l
px

+bp
1 |

f l
py

) px

By definition of a beating function and properties of rational addition :

⇒bp
2 |

f l
px

= bp
0 ∧ py 6�(bp

1 |
f l
px

+bp
1 |

f l
py

) px

Since bp
0 is the identity element for + :

⇒py 6�(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

) px

By the contrapositive of NPRL.II[py/px,b
p
2 |

f l
py

/bp
2]:

⇒py 6�(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

+bp
2 |

f l
py
|lpy

) px

By PROP.7[py/px,b
p
2 /bp]:

⇒py 6�(bp
1 |

f l
px

+bp
2 |

f l
px

+bp
1 |

f l
py

+bp
2 |

f l
py

) px

57

By distributivity:

⇒py 6�(bp
1 +bp

2 |
f l
px

+bp
1 +bp

2 |
f l
py

) px

By LFB:

⇒py 6�(bp
1 +bp

2) px = R.H.S. (II)

From I, II:

NPRL ∧ LFB⇒ LCE

We now proceed to prove Theorem 4.3.1.

Proof.

By 4.3.4:

NNRW∧LCE⇒ LFB

Therefore:

NNRW∧NPRL∧LCE⇒ LFB (I)

By 4.3.5

NPRL∧LFB⇒ LCE

Therefore:

NNRW∧NPRL∧LFB⇒ LCE (II)

Combining I ∧ II :

(NNRW∧NPRL∧LCE⇒ LFB)∧ (NNRW∧NPRL∧LFB⇒ LCE)

Simplifying:

NNRW∧NPRL⇒ (LCE⇔ LFB)

58

We now present our arguably objective, anonymous, neutral, monotonic and

thorough SG tournament.

4.4 Tournament Design

A tournament is comprised of a match scheduler and a ranking function. The match

scheduler determines the matches comprising the tournament. The ranking func-

tion determines the standings of participants. We present our scheduler first then

our ranking function then we present our arguments for objectivity, anonymity,

neutrality, monotonicity and thoroughness.

Figure 4.2 shows our scheduler which takes a set Q of participants, a claim

consisting of a logical formula Ψ and an interpreting structure A. The scheduler

first determines the side choices of participants. Participants that fail to take a side

are dropped out of the competition. Each pair of distinct participants choosing to

take different sides, plays a single SSG where they both take their chosen sides.

Each pair of distinct participants choosing to take the same side, plays two SSGs

where they switch the sides. The scheduler then returns the results represented as a

beating function.

Figure 4.3 shows our ranking function, the fault counting ranking function, in

which players are ranked according to the number of faults they incur; the fewer

the number of faults the better the rank.

We now argue for the objectivity, anonymity, collusion resistance , neutrality,

monotonicity and thoroughness of our tournament design. Our tournament is ob-

jective because the resulting ranking solely depends on the results of individual SGs

which are objective as we argued earlier. Our tournament is thorough because each

pair of participants play at least one SSG which are thorough as we argued earlier.

59

f u n c t i o n s c h e d u l e r (Q , Ψ , A)
l e t V = {q ∈ Q | SSG(〈Ψ,A〉,q,q) = 1}
l e t F = {q ∈ Q | SSG(〈Ψ,A〉,q,q) = 0}
l e t P = V ∪F

l e t result(px, py) =

{
SSG(〈Ψ,A〉, px, py) , px ∈V ∨ py ∈ F
undefined ,otherwise

l e t side(p) =

{
sv , p ∈V
sf , p ∈ F

l e t bp(pw, pl ,swc,slc,sw) =



result(pw, pl) ,swc = side(pw)∧ slc = side(pl)∧ sw = sv

∧ result(pw, pl) not undefined
1− result(pl , pw) ,swc = side(pw)∧ slc = side(pl)∧ sw = sf

∧ result(pl , pw) not undefined
0 ,otherwise

re turn bp

Figure 4.2: Tournament Scheduler

px � f(bp) py = f aultsbp
(px)≤ f aultsbp

(py) (DEF.9)

f aultsbp
(p) = ∑

pw,pl∈P∧swc,slc,sw∈S
bp| f l

p (pw, pl,swc,slc,sw) (DEF.10)

Figure 4.3: Fault Counting Ranking Function � f

The arguments for anonymity, monotonicity and neutrality are more involved and

we present them in the following subsections.

4.4.1 Monotonicity

According to Theorem 4.4.1, the fault counting ranking function has a non-negative

regard for winning and a non-positive regard for losing. We now give an informal

proof of Theorem 4.4.1. A win for participant px cannot be a fault and therefore

cannot increase the number of faults px incurs and hence cannot worsen px’s rank.

A loss for participant px may be a fault if px was not forced. In this case, the fault

count of px increases and consequently the rank of px may only worsen. A loss for

60

participant px while px is forced would not be counted and the rank of px will not

change.

Theorem 4.4.1. � f satisfies the NNRW and NPRL properties.

We start our formal proof by proving few auxiliary lemmas.

Lemma 4.4.2. f aultsbp
1 +bp

2 |
w
px (px) = f aultsbp

1 (px).

Proof.

L.H.S. = f aultsbp
1 +bp

2 |
w
px (px)

By definition DEF.10[bp
1 +bp

2 |
w
px

/bp , px/p]:

= ∑
pw,pl∈P∧swc,slc,sw∈S

(bp
1 +bp

2 |
w
px
| f l
px

)(pw, pl,swc,slc,sw)

By distributivity of fault restriction on + :

= ∑
pw,pl∈P∧swc,slc,sw∈S

(bp
1 |

f l
px

+bp
2 |

w
px
| f l
px

)(pw, pl,swc,slc,sw)

By PROP.4 :

= ∑
pw,pl∈P∧swc,slc,sw∈S

(bp
1 |

f l
px

+bp
0)(pw, pl,swc,slc,sw)

By identity of + :

= ∑
pw,pl∈P∧swc,slc,sw∈S

bp
1 |

f l
px

(pw, pl,swc,slc,sw)

By DEF.10[bp
1 /bp , px/p]:

= f aultsbp
1 (px) = R.H.S.

Lemma 4.4.3. f aultsbp
1 +bp

2 |
w
py (px)≥ f aultsbp

1 (px).

61

Proof.

L.H.S. = f aultsbp
1 +bp

2 |
w
py (px)

By definition DEF.10[bp
1 +bp

2 |
w
py

/bp , px/p]:

= ∑
pw,pl∈P∧swc,slc,sw∈S

(bp
1 +bp

2 |
w
py
| f l
px

)(pw, pl,swc,slc,sw)

By distributivity of fault restriction on + :

= ∑
pw,pl∈P∧swc,slc,sw∈S

(bp
1 |

f l
px

+bp
2 |

w
py
| f l
px

)(pw, pl,swc,slc,sw)

By definition of beating functions :

≥ ∑
pw,pl∈P∧swc,slc,sw∈S

bp
1 |

f l
px

(pw, pl,swc,slc,sw)

By identity of + :

= ∑
pw,pl∈P∧swc,slc,sw∈S

bp
1 |

f l
px

(pw, pl,swc,slc,sw)

By DEF.10[bp
1 /bp , px/p]:

= f aultsbp
1 (px) = R.H.S.

Lemma 4.4.4. f aultsbp
1 +bp

2 |
l
px (px)≥ f aultsbp

1 (px).

Proof.

L.H.S. = f aultsbp
1 +bp

2 |
l
px (px)

By definition DEF.10[bp
1 +bp

2 |
l
px

/bp , px/p]:

= ∑
pw,pl∈P∧swc,slc,sw∈S

(bp
1 +bp

2 |
l
px
| f l
px

)(pw, pl,swc,slc,sw)

By distributivity of fault restriction on + :

= ∑
pw,pl∈P∧swc,slc,sw∈S

(bp
1 |

f l
px

+bp
2 |

l
px
| f l
px

)(pw, pl,swc,slc,sw)

62

By definition of beating functions :

≥ ∑
pw,pl∈P∧swc,slc,sw∈S

bp
1 |

f l
px

(pw, pl,swc,slc,sw)

By DEF.10[bp
1 /bp , px/p]:

= f aultsbp
1 (px) = R.H.S.

Lemma 4.4.5. f aultsbp
1 +bp

2 |
l
py (px) = f aultsbp

1 (px).

Proof.

L.H.S. = f aultsbp
1 +bp

2 |
l
py (px)

By definition DEF.10[bp
1 +bp

2 |
l
py

/bp , px/p]:

= ∑
pw,pl∈P∧swc,slc,sw∈S

(bp
1 +bp

2 |
l
py
| f l
px

)(pw, pl,swc,slc,sw)

By distributivity of fault restriction on + :

= ∑
pw,pl∈P∧swc,slc,sw∈S

(bp
1 |

f l
px

+bp
2 |

l
py
| f l
px

)(pw, pl,swc,slc,sw)

By PROP.2 :

= ∑
pw,pl∈P∧swc,slc,sw∈S

(bp
1 |

f l
px

+bp
0)(pw, pl,swc,slc,sw)

By identity of + :

= ∑
pw,pl∈P∧swc,slc,sw∈S

bp
1 |

f l
px

(pw, pl,swc,slc,sw)

By DEF.10[bp
1 /bp , px/p]:

= f aultsbp
1 (px) = R.H.S.

63

We now proceed to prove Theorem 4.4.1.

Proof.

Suppose that the L.H.S. of NNRW.I holds for � f :

L.H.S. = px � f(b
p
1) py

By definition DEF.9[bp
1 /bp]:

⇒ f aultsbp
1 (px)≤ f aultsbp

1 (py)

By lemma 4.4.2:

⇒ f aultsbp
1 +bp

2 |
w
px (px)≤ f aultsbp

1 (py)

By lemma 4.4.3[px/py,py/px]:

⇒ f aultsbp
1 +bp

2 |
w
px (px)≤ f aultsbp

1 +bp
2 |

w
px (py)

By definition DEF.9[bp
1 +bp

2 |
w
px

/bp]:

px � f(b
p
1 +bp

2 |
w
px

) py = R.H.S. (I)

Suppose that the L.H.S. of NNRW.II holds for � f :

L.H.S. = px � f(b
p
1 +bp

2 |
w
py

) py

By definition DEF.9[bp
1 +bp

2 |
w
py

/bp]:

⇒ f aultsbp
1 +bp

2 |
w
py (px)≤ f aultsbp

1 +bp
2 |

w
py (py)

By lemma 4.4.2:

⇒ f aultsbp
1 +bp

2 |
w
py (px)≤ f aultsbp

1 (py)

By lemma 4.4.3:

⇒ f aultsbp
1 (px)≤ f aultsbp

1 (py)

By definition DEF.9[bp
1 /bp]:

px � f(b
p
1) py = R.H.S. (II)

Suppose that the L.H.S. of NPRL.I holds for � f :

64

L.H.S. = px � f(b
p
1) py

By definition DEF.9[bp
1 /bp]:

⇒ f aultsbp
1 (px)≤ f aultsbp

1 (py)

By lemma 4.4.5:

⇒ f aultsbp
1 +bp

2 |
l
py (px)≤ f aultsbp

1 (py)

By lemma 4.4.4[px/py,py/px]:

⇒ f aultsbp
1 +bp

2 |
l
py (px)≤ f aultsbp

1 +bp
2 |

l
py (py)

By definition DEF.9[bp
1 +bp

2 |
l
py

/bp]:

px � f(b
p
1 +bp

2 |
l
py

) py = R.H.S. (III)

Suppose that the L.H.S. of NPRL.II holds for � f :

L.H.S. = px � f(b
p
1 +bp

2 |
l
py

) py

By definition DEF.9[bp
1 +bp

2 |
l
py

/bp]:

⇒ f aultsbp
1 +bp

2 |
l
py (px)≤ f aultsbp

1 +bp
2 |

l
py (py)

By lemma 4.4.4[px/py,py/px]:

⇒ f aultsbp
1 +bp

2 |
l
py (px)≤ f aultsbp

1 (py)

By lemma 4.4.5:

⇒ f aultsbp
1 (px)≤ f aultsbp

1 (py)

By definition DEF.9[bp
1 /bp]:

px � f(b
p
1) py = R.H.S. (IV)

65

4.4.2 Anonymity

The ranking resulting from our tournament are solely based on skills that partic-

ipants demonstrate their possession or lack during the tournament because our

scheduler and ranking functions ignore participants’ identities. Furthermore, ac-

cording to Theorem 4.4.6 our ranking function has the limited collusion effect

property.

Theorem 4.4.6. � f satisfies the LCE property.

The proof of Theorem 4.4.6 falls immediately from Theorem 4.3.1 and Lemma 4.4.7

which states that the fault counting ranking function has the LFB property.

Lemma 4.4.7. � f satisfies the LFB property

Proof.

Consider the L.H.S of LFB applied to � f

L.H.S. = px � f(bp| f l
px

+bp| f l
py

) py

By definition DEF.9[bp | f l
px

+bp | f l
py

/bp]:

f aultsbp | f l
px+bp | f l

py (px)≤ f aultsbp | f l
px+bp | f l

py (py)

By definition DEF.10, distributivity of fault restriction on +, PROP.1 and identity of + :

f aultsbp
(px)≤ f aultsbp

(py)

By definition DEF.9:

px � f(bp) py = R.H.S.

66

4.4.3 Neutrality

Even though verifiers and falsifiers do not play the same number of games accord-

ing to our scheduler, the maximum number of faults that both verifiers and falsifiers

can make is the same. Furthermore, every participant, regardless of their chosen

side, can make a single fault at most against every other participant. To illustrate

this point, consider a tournament with nv participants choosing to be verifiers and

n f participants choosing to be falsifiers. According to our scheduler, verifiers play

two SSGs against every other verifier and one SSG against every other falsifier for

a total of 2 · (nv− 1)+ n f SSGs. Falsifiers play two SSGs against every other fal-

sifier and one SSG against every other verifier for a total of 2 · (n f −1)+nv. Even

though verifiers and falsifiers play a different number of games, only nv + n f − 1

games can contribute to the final score of every verifier and every falsifier. A ver-

ifier takes on the verifier role in nv + n f − 1 out of the 2 · (nv− 1) + n f it plays.

These are the games in which a verifier is not forced and can make a fault. In the

remaining nv−1 games, a verifier takes on the falsifier role against other verifiers

and although it may lose, this loss does not count as a fault and is therefore ignored

by the ranking function.

4.5 Related Work

4.5.1 Tournament Ranking Functions

Rating methods can be used to rank tournament participants. There is a vast body

of literature on the topic of heuristic [6] rating methods aiming to estimate the

skill level of participants such as the Elo [9] rating method. [21] gives a recent

comprehensive overview of rating methods used in sports tournaments. Our work

differs from this vast body of literature in two important aspects. First, our axioms

67

and ranking method are the first to be developed for an extended framework that

we developed specifically to capture some of the peculiarities of SG tournaments

such as side choice and forcing. Second, our work is the first to be concerned with

collusion resilience.

In [27], Rubinstein provides an axiomatic treatment of tournament ranking

functions that bears some resemblance to ours. Rubinstein’s treatment was devel-

oped in a primitive framework where “beating functions” are restricted to complete,

asymmetric relations. Rubinstein showed that the points system, in which only the

winner is rewarded with a single point is completely characterized by the following

three natural axioms:

• anonymity which means that the ranks are independent of the names of par-

ticipants,

• positive responsiveness to the winning relation which means that changing

the results of a participant p from a loss to a win, guarantees that p would

have a better rank than all other participants that used to have the same rank

as p, and

• Independence of Irrelevant Matches (IIM) which means that the relative rank-

ing of two participants is independent of those matches in which neither is

involved.

Our LCE axioms are, in some sense, at least as strong as Rubinstein’s IIM because,

according to LCE, the relative rank of some participant px w.r.t. another partici-

pant py cannot be worsened by games that px does not participate in nor can it be

improved by games that py does not participate in.

In [12], the authors provide an axiomatic study of several ranking functions

that are based on rating methods. Eight ranking methods, including the points

68

system, and fourteen different axioms, including Rubinstein’s IIM, are studied in

the paper. Each of the ranking methods is analyzed to determine the axioms it

possesses. Only the points system possesses the IIM axiom. The IIM axiom is,

however, considered to be an undesirable axiom to have because it is thought to

prevent the ranking function from making up for any advantage given to certain

participants by a tournament schedule that contains only a subset of the games

that would be played in a round robin tournament. Again, none of these ranking

functions is specifically developed for SG tournaments. Also, we use a round-

robin-like tournament and IIM-like axioms are not undesirable to have.

4.5.2 Tournament Scheduling

There is also a vast body of literature related to tournament scheduling. Different

design goals give rise to families of tournament schedulers. We focus our discus-

sion on scheduling two major families of tournaments: double round robin and

elimination tournaments.

In a double round robin tournament, every pair of participants play two matches

where they alternate their roles (e.g. as the host team or as the white player). This

is generally considered a fair selection of each participant’s opponents during the

course of the tournament. It is also considered to neutralize any advantage that a

match may give to one of the participants. As we discussed earlier, when matches

cannot end with a tie, the points system where the winner is rewarded with a sin-

gle point is a widely accepted ranking algorithm for round robin tournaments [27].

Unfortunately, a monotonic, collusion-resistant ranking function has to completely

ignore the results of those games where both participants are forced to take sides

opposite to the sides of their choice. Since the number of participants choosing

to take the verifier side is not necessarily the same as the number of participants

69

choosing to take the falsifier side, verifiers and falsifiers participate in a different

number of non-ignored games and neutrality is jeopardized.

The matches of a double round robin tournament of n participants are com-

monly modeled as the edges of the complete graph Kn. A double round robin

tournament schedule partitions the edge set with no two adjacent edges in the same

partition [17]. Double round robin tournament schedules are considered static as

matches are independent of the current standings of participants. Double round

robin tournament schedules are chosen to optimize other psychological or logis-

tical objectives. For example to minimize breaks and carry over effects in the

home-away patterns. An annotated bibliography of double round robin tourna-

ment scheduling is given in [17]. Fortunately, logistic and psychological concerns

that apply to classical sports do not carry over to computational problem solving

competitions are often held online.

A downside of round robin tournaments is that they often involve matches

that are uninteresting to spectate for various reasons such as matches between two

“weak” participants, matches between a “weak” and a “strong” participant where

the result is pretty much expected, and matches where the result matters for one of

the participants but not as much for the other. This is also not an issue for online

computational problem solving competitions where participants are usually inter-

ested in the match outcome rather than in spectating matches. Another downside

of round robin tournaments is the potential of collusion where a set of colluding

participants lose on purpose against a specific participant in order to inflate that

participant’s rank. While this is an issue with round robin sports tournaments, in

online computational problem solving competitions, this issue can be aggravated

by the potential of Sybil identities.

Elimination tournaments avoid the pitfalls of round robin tournaments by dy-

namically scheduling matches only between “strong” participants that have a chance

70

of winning the tournament. Participants that lose a single game are considered

“weak” and are eliminated from the tournament. Collusion is not effective in elim-

ination tournaments because losing a match in an elimination tournament does not

give the winner an advantage against other participants.

Single elimination tournament schedules are modeled as trees with internal

nodes representing games. Participants start at the leaves and winners flow towards

the root. The assignment of participants to leaves is called seeding. The probability

of a participant winning the tournament depends on the number and the strengths of

opponents it may meet on their path to the root. Unless the number of participants

is a power of two 1 and it is safe to assume that all participants are of equal strength,

a single elimination tournament cannot be considered neutral.

In fact, there is a large body of literature that is concerned of biasing elimi-

nation tournaments to favor the stronger participants according to a precalculated

rating. The rationale there is that elimination tournaments are only used for com-

petition finals and that the better winning chances in the finals is considered to be

a reward for ranking high in the initial phase of the competition. In the literature,

this is called increasing the predictive power [28] of the tournament. The predictive

power of a tournament is the probability that the best participant wins the tourna-

ment. Some variants of the elimination tournament skew the tree to shorten the

paths taken by the strongest participant [32]. Other variants, such as the McIntyre

System, add more paths to the root for the top participant(s). Other variants add

more paths to the root for all participants such as the double elimination tourna-

ments. In those variants, the tournament is no longer a tree. There are also variants

that dynamically seed the participants after each round [15], [29], [11], [32].

It is however not possible to have a correct elimination tournament of semantic

1Unless the number of participants is a power of two, some participants will
have to play more games and are therefore at a disadvantage.

71

games with three or more participants. Simply because the tournament may get

stuck when it is time for two verifiers (or falsifiers) to play. Forcing one of the

participants to take the opposite side sacrifices neutrality.

4.5.3 Match-Level Neutrality

There are games that offer asymmetric roles to players where participants in certain

roles have an advantage over participants in other roles. For example, in chess

there are the white and black participant roles where the white role provides the

participant with the first move advantage. In soccer, each team attacks a different

goal. One team can have an advantage due to wind direction for example. In SGs,

participants taking the verifier role have an advantage when the underlying claim is

true and participants taking the falsifier role have an advantage when the underlying

claim is false.

There are generic approaches to restore fairness either in a single game round

or across multiple game rounds. One approach is to play two game rounds where

participants alternate their roles. For example, in soccer, matches are split in halves

where teams switch the goal they attack (and the team kicking off the half-match).

In chess tournaments, it is often the responsibility of the administrator to ensure

that each participant plays, as nearly as possible, the same number of games as

White and Black. This approach is often combined with round robin tournaments to

neutralize the home game advantage. The combined approach is called the double

round robin tournament. As we mentioned earlier, a monotonic, collusion-resistant

ranking function has to completely ignore the results of those games where both

participants are forced to take sides opposite to the sides of their choice. Since

the number of participants choosing to take the verifier side is not necessarily the

same as the number of participants choosing to take the falsifier side, verifiers and

72

falsifiers participate in a different number of non-ignored games and neutrality is

jeopardized.

Another approach is adding compensation points for the participants at a dis-

advantage or subtracting compensation points form participants at an advantage.

An example is the Komi points added to the black participant in the game Go.

In a tournament where all participants play the same number of games, the fault

counting ranking function is equivalent to subtracting compensation points from

participants winning against participants at the disadvantage of being forced.

A third approach is the Pie rule in reference to a class of logical games called

cut-and-choose games [14]. In the traditional cut-and-choose game one participant

cuts a piece of cake into two smaller pieces; then the opponent chooses one of the

pieces and eats it, leaving the other one for the cutter. This mechanism is supposed

to put pressure on the cutter to cut the cake fairly.

The pie rule can be applied to games with a demonstrated first move advantage

as follows: participants are first assigned roles at random. The first participant

makes a move; then the second participant gets to choose which side whether or not

to swap roles with the first participant. This puts pressure on the first participant

not to take advantage of the first move. This rule has been used in board games

such as Hex and Mancala. It has also been applied to an extended version of go

where the first move is to select the amount of Komi points to compensate the black

participant. The Pie rule is not applicable to selecting a side in SGs because there

are only two possible moves one that is good and one that is bad.

There are, also, game specific approaches to restore fairness that involve tweak-

ing the rules of the game so that each role has a different form of advantage. For

example, in soccer, one team that gets to choose the goal to attack and the other gets

the kick-off. In chess, different starting configurations where the white is missing

more pieces than the black were proposed [26]. We do not see this approach appli-

73

cable to semantic games as well.

74

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation we developed a sports-like computational problem solving com-

petition that can be organized with arbitrarily low overhead on the admin because

participants assist in the evaluation of their opponents. At the same time, our com-

petition maintains five desirable properties, namely: objectivity, anonymity, mono-

tonicity, neutrality, and thoroughness.

We proposed the idea of organizing sports-like open online computational

problem solving competitions as tournaments of semantic games. The use of se-

mantic games of interpreted predicate logic sentences specifying computational

problems ensures that participants are correctly evaluated by their peers. We also

developed a simplified version of semantic games for which it is simpler to codify

a strategy for playing them. Furthermore, our simplified version of semantic games

enable participants to thoroughly evaluate their opponents.

We also sketched out a structured interaction space that we specifically de-

signed to hold semantic-game-based computational problem solving competitions.

Our purpose was to give our readers a concrete sense of what is it like to organize

or to participate in a semantic-game-based computational problem solving compe-

tition.

We also reported on the surprising discovery that it is in fact possible to fend

against collusion potential in semantic game tournaments by using certain ranking

functions. We presented the first of its kind, formal characterization of collusion-

resistant ranking functions for SG tournaments. We also presented a representation

theorem of ranking functions possessing the limited collusion effect property as

well as other basic monotonicity properties. In essence, we showed that under basic

monotonicity properties of ranking functions, the limited collusion effect property

is logically equivalent to using a ranking function that is based on a generalized

form of fault counting.

Finally, we presented a specific SG-based tournament design and argued for

its objectivity, anonymity, neutrality, monotonicity and thoroughness.

5.2 Future Work

There are three directions in which we would like to extend this dissertation. We

shall describe them in the following subsections.

5.2.1 Utilizing Relations Between Computational Problem

Solving Labs

It is possible to make meta-claims about the relationship between other claims. For

example, the minimum graph basis claim from Section 3.5.3 is equivalent to a claim

about the number of source nodes of the corresponding strongly connected compo-

nents dag. Like regular claims, it is possible to define CPSLs around meta-claims.

However, we see a potential to further utilize meta-claims to translate strategies

76

across labs.

5.2.2 Social Computing

Social computing technologies such as blogs, instant messaging, wiki systems have

been used to amend the structured interactions of FoldIt. Social computing tech-

nologies increase participants’ engagement and enhance the diffusion of knowledge

among community members. In future, we would like to incorporate social com-

puting technologies into the design of CPSLs.

5.2.3 Evaluating Thoroughness

Devising a suitable measure for how thorough is one participant’s evaluation of

other participants is important to encourage participants to improve the thorough-

ness of their evaluation as well as to give a sense of the reliability of competition

results.

77

REFERENCES

[1] ISO/IEC standard 14977 - Information technology - Syntactic metalanguage -
Extended BNF.

[2] Project Euler. Website. http://projecteuler.net/.

[3] Rosetta The premier software suite for macromolecular modeling. Website.
https://www.rosettacommons.org/.

[4] The international SAT Competitions. Website. http://www.satcompetition.org/.

[5] EteRNA. Website, 2011. http://eterna.cmu.edu/.

[6] J.D. Beasley. The Mathematics of Games. Dover books on mathematics. Dover
Publications, Incorporated, 2006.

[7] Seth Cooper, Adrien Treuille, Janos Barbero, Andrew Leaver-Fay, Kathleen Tu-
ite, Firas Khatib, Alex Cho Snyder, Michael Beenen, David Salesin, David
Baker, and Zoran Popović. The challenge of designing scientific discovery
games. In Proceedings of the Fifth International Conference on the Foun-
dations of Digital Games, FDG ’10, pages 40–47, New York, NY, USA,
2010. ACM.

[8] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. Crowdsourcing sys-
tems on the world-wide web. Commun. ACM, 54(4):86–96, April 2011.

[9] A.E. Elo. The rating of chessplayers, past and present. Arco Pub., 1978.

[10] D. Gale and L. S. Shapley. College admissions and the stability of marriage.
The American Mathematical Monthly, 69(1):pp. 9–15, 1962.

 http://projecteuler.net/
 https://www.rosettacommons.org/
 http://www.satcompetition.org/
http://eterna.cmu.edu/

[11] Mark E. Glickman. Bayesian locally optimal design of knockout tournaments.
Journal of Statistical Planning and Inference, 138(7):2117 – 2127, 2008.

[12] Julio Gonzlez-Daz, Ruud Hendrickx, and Edwin Lohmann. Paired compar-
isons analysis: an axiomatic approach to ranking methods. Social Choice
and Welfare, 42(1):139–169, 2014.

[13] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley
Professional, 2005.

[14] Wilfrid Hodges. Logic and games. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Spring 2009 edition, 2009.

[15] F. K. Hwang. New concepts in seeding knockout tournaments. The American
Mathematical Monthly, 89(4):pp. 235–239, 1982.

[16] P. Ipeirotis, F. Provost, V. Sheng, and J. Wang. Repeated labeling using multiple
noisy labelers. This work was supported by the National Science Founda-
tion under GrantNo. IIS-0643846, by an NSERC P, Vol, 2010.

[17] Graham Kendall, Sigrid Knust, Celso C. Ribeiro, and Sebastin Urrutia.
Scheduling in sports: An annotated bibliography. Computers Operations
Research, 37(1):1 – 19, 2010.

[18] Aniket Kittur, Jeffrey V. Nickerson, Michael Bernstein, Elizabeth Gerber,
Aaron Shaw, John Zimmerman, Matt Lease, and John Horton. The fu-
ture of crowd work. In Proceedings of the 2013 conference on Computer
supported cooperative work, CSCW ’13, pages 1301–1318, New York, NY,
USA, 2013. ACM.

[19] J. Kulas and J. Hintikka. The Game of Language: Studies in Game-Theoretical
Semantics and Its Applications. Synthese Language Library. Springer,
1983.

[20] Karim R Lakhani, Kevin J Boudreau, Po-Ru Loh, Lars Backstrom, Carliss
Baldwin, Eric Lonstein, Mike Lydon, Alan MacCormack, Ramy A Arnaout,
and Eva C Guinan. Prize-based contests can provide solutions to computa-
tional biology problems. Nature Biotechnology, 31(2):pp. 108–111, 2013.

79

[21] A.N. Langville and C.D. Meyer. Who’s #1?: The Science of Rating and Rank-
ing. Princeton University Press, 2012.

[22] Karl J. Lieberherr, Ahmed Abdelmeged, and Bryan Chadwick. The Specker
Challenge Game for Education and Innovation in Constructive Domains.
In Keynote paper at Bionetics 2010, Cambridge, MA, and CCIS Technical
Report NU-CCIS-2010-19, December 2010. http://www.ccs.neu.edu/home/
lieber/evergreen/specker/paper/bionetics-2010.pdf.

[23] Jordi Petit, Omer Giménez, and Salvador Roura. Jutge.org: an educational
programming judge. In Proceedings of the 43rd ACM technical symposium
on Computer Science Education, SIGCSE ’12, pages 445–450, New York,
NY, USA, 2012. ACM.

[24] Ahti Pietarinen. Games as formal tools vs. games as explanations. Technical
report, 2000.

[25] Karl Raimund Popper. Conjectures and refutations: the growth of scientific
knowledge, by Karl R. Popper. Routledge, London, 1969.

[26] Thomas H. Quinn. Level the playing field: Nullifying first-
move advantage in chess. http://cargocollective.com/tomquinn/
Level-the-Playing-Field-Nullifying-First-Move-Advantage-in-Chess,
may 2011.

[27] Ariel Rubinstein. Ranking the participants in a tournament. SIAM Journal on
Applied Mathematics, 38(1):pp. 108–111, 1980.

[28] Dmitry Ryvkin and Andreas Ortmann. Three prominent tournament formats:
Predictive power and costs. Cerge-ei working papers, The Center for Eco-
nomic Research and Graduate Education - Economic Institute, Prague,
2006.

[29] Allen J. Schwenk. What is the correct way to seed a knockout tournament?
The American Mathematical Monthly, 107(2):pp. 140–150, 2000.

[30] TopCoder. The TopCoder Community. Website, 2009. http://www.topcoder.
com/.

80

http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://www.ccs.neu.edu/home/lieber/evergreen/specker/paper/bionetics-2010.pdf
http://cargocollective.com/tomquinn/Level-the-Playing-Field-Nullifying-First-Move-Advantage-in-Chess
http://cargocollective.com/tomquinn/Level-the-Playing-Field-Nullifying-First-Move-Advantage-in-Chess
 http://www.topcoder.com/
 http://www.topcoder.com/

[31] Luis von Ahn and Laura Dabbish. Labeling images with a computer game. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’04, pages 319–326, New York, NY, USA, 2004. ACM.

[32] Thuc Duy Vu. Knockout Tournament Design: A Computational Approach.
PhD thesis, Stanford University, Department of Computer Science, 2010.

81

	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Thesis Statement and Rationale
	Key Challenge and Contributions
	Organization

	Background: Semantic Games
	Organizing Computational Problem Solving Communities
	Computational Problem Solving Labs
	Simplified Semantic Games
	Formulating Claims
	Expressing Claims and Strategies
	Sample Computational Problem Solving Labs
	The Highest Safe Rung Lab
	Gale-Shapley's Worst Case Input Lab
	Minimum Graph Basis Lab

	Related Work
	Crowdsourcing and Human Computation
	Origin

	Collusion-Resistant Semantic Game Tournaments
	Collusion-Resistant Ranking Functions at a Glance
	Formalizing Beating and Ranking Functions
	Notation
	Beating Functions
	Ranking Functions
	The Algebraic Structure of Beating Functions

	Collusion-Resistant Ranking Functions
	Limited Collusion Effect
	Monotonicity
	A Representation Theorem for Monotonic, Collusion-Resistant Ranking Functions

	Tournament Design
	Monotonicity
	Anonymity
	Neutrality

	Related Work
	Tournament Ranking Functions
	Tournament Scheduling
	Match-Level Neutrality

	Conclusion and Future Work
	Conclusion
	Future Work
	Utilizing Relations Between Computational Problem Solving Labs
	Social Computing
	Evaluating Thoroughness

	REFERENCES

