1

A Graph-Theoretical View of Aspect Oriented Programming

John J. Sung, Karl Lieberherr

Northeastern University

jser@ccs.neu.edu, lieber@ccs.neu.edu

Abstract--Aspect Oriented Programming (AOP) is becoming prominent in the field of Computer Science and Software Engineering. AOP tools and concepts have been developed to increase the productivity of software engineers and programmers. We will introduce a Graph-Theoretical View of Aspect Oriented Programming that abstract AOP concepts and tools into graphs and graph operations. AspectJ, DemeterJ and DJ will be used to illustrate the value of the Graph-Theoretical View.

Index Terms--Aspect Oriented Programming, Aspect Oriented Analysis, Aspect Oriented Design, AspectJ, DemeterJ, DJ, Graph-Theoretical View,

I. INTRODUCTION

A

spect Oriented Programming has been around for some number of years. Since its introduction, there have been many concepts and software tools have been developed. Thus, it is puzzling that no analysis techniques have been developed for AOP tools and concepts.

What is the problem being solved by this solution?

Why would this useful? Learning concepts, comparison of concepts, conceptual overlap, conceptual equivalence, conceptual orthogonalilty, etc.

How can this be useful? Evaluation of strengths and weaknesses of concepts and tools, analysis of tools

II. Graph-Theoretical View

In Graph-Theoretical View (GTV), we use several basic concepts: graphs, traversals, and graph operations. We will quickly define those concepts.

Graphs are basically a set of nodes and edges. The nodes and edges can be anything.

Strategy is a graph interpreted as a constraint on some other graphs.

Traversal is a resultant graph of an application of a strategy on a graph. Decision points.

The graph operations that are relevant to GTV are addition of nodes and edges.

Table of different types of graphs in a programming system.

	Compile-Time
	Class Graph
	Static Call Graph

	Runtime
	Object Graph
	Dynamic Call Graph

class graph defines set of all legal object graphs, thus class graph is a type of constraint on object graphs. Similarly, static call graph defines set of all possible dynamic call graphs.

[image: image1.wmf]

Input

Specification

Processor

Output

Basic model of computation/processing in GTV. Input, Specification, and Output are graphs. Processor is a processor itself. This can be applied to programs, functions, compiler.

[image: image2.wmf]

Input

File

Lexical

Analyzer

Tokens

Token

Specification

Parser

Grammar

Specification

Parse

Tree

Compiler

Backend

Executable

Computer

System

User

Input

Dynamic call graph

Object Graph

Operations during traversals. Advice are specific nodes that are connected directly to some traversal.

Different levels of aspects. Aspects in AspectJ, verses aspects in DemeterJ. Aspects are separation of the different graphs, or separation of a graph into it's edges and nodes.

III. AspectJ Analysis

[image: image3.wmf]

Java Program

AspectJ

Advice

pointcut

advice body

join point

Introduction

Pointcuts, join points

Advice

cflow

java

IV. DemeterJ Analysis

class dictionary

strategy

traversal

advice

java

V. DJ Analysis

class graph

visitor

traversal graph

object graph

java

VI. Conceptual Map

comparison of graph-theoretical analysis

how these tools will overlap in concepts and function, and how these tools can be complimentary.

VII. Mapping of Traversal Concept

mapping of traversal concept to dynamic call graph, class graph, and object graphs.

[image: image4.wmf]

Traversal

Dynamic/Static Call Graph

Class Graph

Object Graph

References

[1] First Use of Aspect Oriented Programming

[2] First Introduction of AspectJ

[3] First Introduction of DemeterJ

[4] First Introduction of DJ

[5] Geregor's ontology presentation/paper

_1072527399.doc

join point

advice body

pointcut

Advice

AspectJ

Java Program

_1072527505.doc

Dynamic call graph

Object Graph

User

Input

Computer

System

Executable

Compiler

Backend

Parse

Tree

Grammar

Specification

Parser

Token

Specification

Tokens

Lexical

Analyzer

Input

File

_1072180955.doc

Output

Processor

Specification

Input

_1072183595.doc

Object Graph

Class Graph

Dynamic/Static Call Graph

Traversal

