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Abstract--Aspect Oriented Programming (AOP) is becoming prominent in the field of Computer Science and Software Engineering. AOP tools and concepts have been developed to increase the productivity of software engineers and programmers. We will introduce a Graph-Theoretical View of Aspect Oriented Programming that abstract AOP concepts and tools into graphs and graph operations. AspectJ, DemeterJ and DJ will be used to illustrate the value of the Graph-Theoretical View.
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I. INTRODUCTION

A

spect Oriented Programming has been around for some number of years. Since its introduction, there have been many concepts and software tools have been developed. Thus, it is puzzling that no analysis techniques have been developed for AOP tools and concepts.

What is the problem being solved by this solution?

Why would this useful? Learning concepts, comparison of concepts, conceptual overlap, conceptual equivalence,  conceptual orthogonalilty, etc.

How can this be useful? Evaluation of strengths and weaknesses of concepts and tools, analysis of tools

II. Graph-Theoretical View

In Graph-Theoretical View (GTV), we use several basic concepts: graphs, traversals, and graph operations. We will quickly define those concepts.

Graphs are basically a set of nodes and edges. The nodes and edges can be anything. 

Strategy is a graph interpreted as a constraint on some other graphs.

Traversal is a resultant graph of an application of a strategy on a graph. Decision points.

The graph operations that are relevant to GTV are addition of nodes and edges.

Table of different types of graphs in a programming system.

	Compile-Time
	Class Graph
	Static Call Graph

	Runtime
	Object Graph
	Dynamic Call Graph


class graph defines set of all legal object graphs, thus class graph is a type of constraint on object graphs. Similarly, static call graph defines set of all possible dynamic call graphs. 
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Basic model of computation/processing in GTV. Input, Specification, and Output are graphs. Processor is a processor itself. This can be applied to programs, functions, compiler.
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Operations during traversals. Advice are specific nodes that are connected directly to some traversal.

Different levels of aspects. Aspects in AspectJ, verses aspects in DemeterJ. Aspects are separation of the different graphs, or separation of a graph into it's edges and nodes. 

III. AspectJ Analysis
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IV. DemeterJ Analysis
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V. DJ Analysis
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VI. Conceptual Map

comparison of graph-theoretical analysis

how these tools will overlap in concepts and function, and how these tools can be complimentary.

VII. Mapping of Traversal Concept 

mapping of traversal concept to dynamic call graph, class graph, and object graphs.
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