
1

4/2/98 Generic Programming 1

Generic Programming

Karl Lieberherr

4/2/98 Generic Programming 2

What is it?

• Goal: to have libraries of generic or
reusable software components

• reusable means widely adaptable, but still
efficient

• adaptation is done by programming
language mechanism rather than manual
text editing.

2

4/2/98 Generic Programming 3

What is it?

• Focus on high degree of adaptability and
efficiency

• Essential idea:
– Generic algorithms, not self-contained, use

container access operations

– Container classes with iterator classes

4/2/98 Generic Programming 4

What is it?

• Expressing algorithms with minimal
assumptions about data abstractions, and
vice versa, thus making them as
interoperable as possible

• Lifting of a concrete algorithm to as a
general level as possible without losing
efficiency

3

4/2/98 Generic Programming 5

What is it?

• Lifting of a concrete algorithm to as a general level as

possible without losing efficiency i.e., the most
abstract form such that when specialized
back to the concrete case the result is just as
efficient as the original algorithm.

• From Dagstuhl 98 conference on generic
programming

4/2/98 Generic Programming 6

What is it?

• Generic programming is about making
programs more adaptable by making them
more general

• Embody non-traditional kinds of
polymorphism

• Parameters of a generic program are rich in
structure (programs, types, graphs).

• From Workshop on Gen. Prog. Sweden 98

4

4/2/98 Generic Programming 7

Overview of STL components

• Containers

– Sequence containers

– Sorted Associative Containers

• Generic Algorithms

– find, merge, search, copy, count, sort, accumulate

• Iterators

• Function Objects

• Adaptors

• Allocators

4/2/98 Generic Programming 8

Less(T)List(T)

Container Generic
Algorithm

Function
object

Iterator

Sort

Using STL is about plugging the right
components together.

5

4/2/98 Generic Programming 9

Iterators

• Input Iterator: reading

• Output Iterator: writing

• Forward Iterator: Input Iterator, Output
Iterator, traversal in one direction

• Bidirectional Iterator: Forward Iterator plus
bidirectional traversal

• Random Access Iterator: Bidirectional
Iterator, constant time access

4/2/98 Generic Programming 10

template <class InputIterator, class T>
InputIterator find(InputIterator first,
 InputIterator last,
 const T& value) {
 while (first != last && *first != value)
 ++ first;
 return first;
}

Works with any input iterator since (1) it only applies !=, *
and ++ to its iterator parameters (2) it never tries to assign to
objects it obtains using * and (3) it is a single pass algorithm.

Designing Generic Algorithms

6

4/2/98 Generic Programming 11

Constant versus Mutable Iterators

• Forward, bidirectional and random-access
iterators can be mutable or constant.

4/2/98 Generic Programming 12

Iterator categories provided by
containers

Container Iterator Iterator
category

vector<T> vector<T>::iterator Mutable
random access

vector<T> vector<T>::const_iterat
or

Constant
random access

list<T> list<T>::iterator Constant
bidirectional

7

4/2/98 Generic Programming 13

Generic Algorithms

• Basic algorithm organization
– in-place: places result into same container

– copying: copies result to a different container

• Nonmutating Sequence Algorithms
– find, adjacent_find, count, for_each,…

• Mutating Sequence Algorithms
– copy, copy_backward, fill, generate, ...

4/2/98 Generic Programming 14

Generic Algorithms

• Sorting-Related Algorithms
– sort, partial_sort, nth_element, binary_search,

...

• Generalized Numeric Algorithms
– accumulate, partial_sum, adjacent_difference,

...

8

4/2/98 Generic Programming 15

Containers

• Sequence containers
– vector, deque, list

• Sorted associative containers
– set, multiset, map and multimap

4/2/98 Generic Programming 16

Container Adaptors

• Change interface of another component
– Stack Container Adaptor

– Queue Container Adaptor

– Dequeue Container Adaptor

9

4/2/98 Generic Programming 17

Iterator Adaptors

• Change interface of an iterator
– reverse_bidirectional_iterator

– reverse_iterator (mutable)

– const_iterator (mutable)

– Insert Iterators
• back_inserter

• front_inserter

• inserter

4/2/98 Generic Programming 18

Function Adaptors

• Negators

• Binders (partial evaluation)

• Adaptors for Pointers to Functions

10

4/2/98 Generic Programming 19

Summary

• STL does a good job at providing a library
of reusable components.

• But generic programming can be much
more generic than STL indicates.

• Parameterize with more complex structures
than classes.

