Generic Programming

Karl Lieberherr

4/2/98 Generic Programming

What isit?

» Godl: to havelibraries of generic or
reusabl e software components

* reusable means widely adaptable, but still
efficient

* adaptation is done by programming
language mechanism rather than manual
text editing.

4/2/98 Generic Programming

What isit?

 Focus on high degree of adaptability and
efficiency
o Essential idea:
— Generic algorithms, not self-contained, use
container access operations

— Container classes with iterator classes

4/2/98 Generic Programming

What isit?

» Expressing algorithms with minimal
assumptions about data abstractions, and
vice versa, thus making them as
Interoperable as possible

« Lifting of a concrete algorithmto asa
general level as possible without losing
efficiency

4/2/98 Generic Programming

What isit?

 Lifting of a concrete algorithm to as ageneral level as
possible without losing efficiency i.€., the most
abstract form such that when specialized
back to the concrete case the result isjust as
efficient asthe original algorithm.

» From Dagstuhl 98 conference on generic
programming

4/2/98 Generic Programming 5

What isit?

» Generic programming is about making
programs more adaptable by making them
more generd

* Embody non-traditional kinds of
polymorphism

» Parameters of ageneric program arerichin
structure (programs, types, graphs).

» From Workshop on Gen. Prog. Sweden 98

4/2/98 Generic Programming 6

Overview of STL components

» Containers
— Sequence containers
— Sorted Associative Containers
* Generic Algorithms
— find, merge, search, copy, count, sort, accumulate
* |terators
» Function Objects

* Adaptors

« Allocators

4/2/98 Generic Programming

Container Generic Function

Algorithm object

Iterator

Using STL is about plugging the right
components together.

4/2/98 Generic Programming

|[terators

* Input Iterator: reading
 QOutput Iterator: writing

» Forward Iterator: Input Iterator, Output
Iterator, traversal in one direction

 Bidirectional Iterator: Forward Iterator plus
bidirectional traversal

 Random Access Iterator: Bidirectional
Iterator, constant time access

4/2/98 Generic Programming 9

tenpl ate <class Inputlterator, class T>
| nputlterator find(Inputlterator first,
| nput I terator | ast,
const T& value) {
while (first !'=last & *first != val ue)
++ first;
return first;

Works with any input iterator since (1) it only applies!=, *
and ++ to itsiterator parameters (2) it never triesto assign to
objects it obtainsusing * and (3) it isasingle pass algorithm.

Designing Generic Algorithms

4/2/98 Generic Programming 10

Constant versus Mutable Iterators

» Forward, bidirectional and random-access
iterators can be mutable or constant.

|terator categories provided by
containers
Container |terator |terator
category

vect0r<T> vector<T>::iterator M utabl e
random access
vector<T> vector<T>::const_iterat Constant
or
random access
| | St<T> list<T>::iterator Constant
bidirectional

4/2/98 Generic Programming 12

Generic Algorithms

» Basic agorithm organization

— in-place: places result into same container

— copying: copies result to a different container
« Nonmutating Sequence Algorithms

— find, adjacent_find, count, for_each,...
« Mutating Sequence Algorithms

— copy, copy_backward, fill, generate, ...

4/2/98 Generic Programming 13

Generic Algorithms

« Sorting-Related Algorithms
— sort, partial_sort, nth_element, binary _search,

» Generalized Numeric Algorithms
— accumulate, partial_sum, adjacent_difference,

4/2/98 Generic Programming 14

Contaners

» Sequence containers
— vector, deque, list

 Sorted associative containers
— set, multiset, map and multimap

4/2/98 Generic Programming

15

Container Adaptors

» Change interface of another component
— Stack Container Adaptor
— Queue Container Adaptor
— Dequeue Container Adaptor

4/2/98 Generic Programming

16

|terator Adaptors

» Change interface of an iterator
— reverse _bidirectional _iterator
— reverse _iterator (mutable)
— const_iterator (mutable)

— Insert Iterators
* back_inserter
« front_inserter

* inserter
Function Adaptors
» Negators

» Binders (partial evaluation)
» Adaptorsfor Pointersto Functions

4/2/98 Generic Programming 18

Summary

» STL doesagood job at providing alibrary
of reusable components.

 But generic programming can be much
more generic than STL indicates.

 Parameterize with more complex structures
than classes.

4/2/98 Generic Programming 19

10

