
Picocenter: Supporting long-lived, mostly-idle
applications in cloud environments

Liang Zhang* James Litton† Frank Cangialosi†

Theophilus Benson‡ Dave Levin† Alan Mislove*

*Northeastern University †University of Maryland ‡Duke University

Motivation

Related Work

Design and Implementation Evaluation

Picocenter
End-users wish to run wide range of applications in the cloud
 E.g., iRedMail, ownCloud, GitLab, Rocket.Chat

These applications are long-lived but mostly idle (LLMI) apps
 Long-lived: Users wish them to be available for a long time
 Mostly-idle: Personalized services are likely to be idle

Problem:
 Current cloud computing models are not suited for LLMI apps

A hosting infrastructure designed to run lots of LLMI apps in the cloud

Provide a process-like environment and arbitrary network protocols
 Support wide variety of applications

Swap idle applications to cloud storage
 Use cloud resources efficiently, thus dramatically reduce cost

Key challenge: swap in application quickly on request
 Reactive page faulting and prefetching with ActiveSet

ActiveSet: predicted pages that are needed for the request
 Reduce total download size compared to full checkpoint
 Minimize fetching pages compared to reactive paging only

Operating system containers (e.g., VServer, Docker, BSD Jail)
 Do not support checkpoint/restore and partial swap ins

Dedicated runtime (e.g., AppEngine, Lambda, Azure Functions)
 Limited programming environment and event/network support

Swapping (e.g., VM pre-paging and migration, checkpoint/restore)
 Picocenter builds on checkpoint/restore with partial swapping

Process-like environment with LXC
 Users submit Docker-like app images and get back a DNS name
 An extended CRIU supports partial swap ins and ActiveSet
 A FUSE application catches page faults and builds ActiveSet

The Hub: Serves DNS requests; assigns apps to workers

The Workers: Host and run applications; provide NAT for IPv4

How quickly can Picocenter restore real-world applications?
 Picocenter restores real-world applications in under 250 ms

Hub WorkerClient Cloud Storage

DNS Lookup

IP address

TCP SYN

TCP SYN/ACK

Revive application

Fetch memory image

DNS Lookup

IP address

TCP SYNA
ct

iv
e

ap
pl

ic
at

io
n

In
ac

ti
ve

 a
pp

lic
at

io
n

Hub Worker
Tenants

Clients

Submit app

Domain name
of app

DNS lookup Assigned
Worker IP

Cloud Storage (e.g., S3)

...

Assign app

Notify of swap out

Interact with apps

Swap apps
in and out

App memory/
FS image

App memory/
FS image

App memory/
FS image

App
assignments

DNS
entries

NAT

Linux container

Running app
Linux container

Running app
Linux container

Running app

1

3

2
5

4

 0.1

 1

 1 10 100 1000 10000

La
te

nc
y

(s
)

Application Working Set Size (KB) (M)

Reactive paging only
Full checkpoint

ActiveSet

Options for running LLMI apps in the cloud today:
 1. Platform as a Service (PaaS): limited programming environment
 2. Infrastructure as a Service (IaaS): can be expensive to run

Goal: Support LLMI apps in cloud environments
 Lower cost by allowing provider to run many LLMI apps
 Leverage workload by swapping idle apps to cloud storage

How much does ActiveSet help to reduce the time to restore?
 ActiveSet reduces latencies by a factor of 1.5x – 5x

We deploy Picocenter on Amazon Virginia datacenter

Source code: https://github.com/LeoLiangZhang/Picocenter

(h)ot: app is running on a worker; (c)old: swap in from cloud storage;
(w)arm: swap in from a worker’s local storage;

