
Picocenter: Supporting long-lived, mostly-idle applications
in cloud environments

Liang Zhang† James Litton‡ Frank Cangialosi‡

Theophilus Benson§ Dave Levin‡ Alan Mislove†

†Northeastern University ‡University of Maryland §Duke University
{liang,amislove}@ccs.neu.edu {litton,frank,dml}@cs.umd.edu tbenson@cs.duke.edu

Abstract
Cloud computing has evolved to meet user demands, from
arbitrary VMs offered by IaaS to the narrow application in-
terfaces of PaaS. Unfortunately, there exists an intermediate
point that is not well met by today’s offerings: users who
wish to run arbitrary, already available binaries (as opposed
to rewriting their own application for a PaaS) yet expect their
applications to be long-lived but mostly idle (as opposed to
the always-on VM of IaaS). For example, end users who
wish to run their own email or DNS server.

In this paper, we explore an alternative approach for cloud
computation based on a process-like abstraction rather than
a virtual machine abstraction, thereby gaining the scalabil-
ity and efficiency of PaaS along with the generality of IaaS.
We present the design of Picocenter, a hosting infrastructure
for such applications that enables use of legacy applications.
The key technical challenge in Picocenter is enabling fast
swapping of applications to and from cloud storage (since,
by definition, applications are largely idle, we expect them
to spend the majority of their time swapped out). We develop
an ActiveSet technique that prefetches the application’s pre-
dicted memory working set when reviving an application.
An evaluation on EC2 demonstrates that using ActiveSet,
Picocenter is able to swap in applications in under 250 ms
even when they are stored in S3 while swapped out.

1. Introduction
Over the past few years, cloud computing services have com-
moditized computing resources. Rather than purchasing and
managing their own servers, consumers have turned to third
parties for redundancy, scale, resilience, and security. Cloud

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

EuroSys ’16, April 18 - 21, 2016, London, United Kingdom
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2901318.2901345

Platform as a Service Infrastructure as a ServicePicocenter

Short-lived or
mostly active

Long-lived and
mostly idle

Long-lived and
mostly idle

Limited ABI/API Arbitrary processes Arbitrary VMs

Figure 1: Picocenter represents a unique point in the space between
existing abstractions by allowing users to run arbitrary processes
that are, in expectation, long-lived yet mostly idle.

computing has thus had to evolve to meet the increasingly
wide range of user applications.

To adapt to users’ specific needs, there are now two pri-
mary models for cloud computing services, each tailored
to a particular use case (Figure 1): First, Infrastructure as
a Service (IaaS) systems, such as Microsoft Azure and
Amazon EC2, offer the greatest generality—users can run
arbitrary computations and have arbitrary network-facing
applications—but are most effectively used by applications
that are either mostly active (e.g., a popular web server)
or short-lived (e.g., finite but intensive computation). The
generality of IaaS comes at the cost of users having to as-
sume the responsibility and overhead of launching, running,
and managing an operating system to support their appli-
cations. Largely to address these challenges, Platform as a
Service (PaaS) systems, such as Google App Engine (GAE),
Heroku, and Amazon Lambda, emerged to facilitate cloud
application development. Inverse to IaaS, PaaS systems limit
generality—users must program their applications according
to a constrained API using managed languages (typically
permitting only event-driven code that cannot bind to new
ports)—and are most effectively used by applications that
are idle most of the time.

Unfortunately, neither of these models of cloud com-
putation are well-suited for supporting a class of services
that are what we call long-lived but mostly idle (LLMI).
LLMI applications include a variety of services, such as per-
sonal email and web servers, decentralized social network
nodes [3, 9, 53], per-user mobile cloud offload servers [10,
13, 16, 30, 34], personal cloud-based storage services [5],

or rendezvous services [44]. Because these are LLMI, PaaS
would seem to be the best fit, yet we are not aware of any
PaaS API that supports such applications. There are many bi-
nary executables publicly available that implement these ser-
vices, making IaaS a reasonable fit, but running them in an
always-on VM would unnecessarily waste cloud resources
(and thus cost more than necessary), as they are mostly idle.
Moreover, in both current offerings, the user overhead to
start an application is high: IaaS users must set up and man-
age a VM, while PaaS users must reimplement their service
within the cloud provider’s limited API.

In this paper, we present Picocenter, an intermediate
point between IaaS and PaaS systems that efficiently sup-
ports LLMI processes in a cloud environment. More con-
cretely, Picocenter simultaneously (1) allows users to deploy
arbitrary binaries (without reimplementing to meet a con-
strained API) in a more cost-efficient manner than existing
services, and (2) allows cloud providers to increase their rev-
enues by enabling a new set of users and applications.

Picocenter provides two key abstractions that make it
a unique point in the space of cloud computing solutions.
First, to tenants (those who launch applications), it appears
that they have sole access to an OS, while in reality there
may be many users running in isolation within the same OS.
This virtualization is similar to approaches like Docker [14],
unikernels [43], and OSv [31]. Unlike these and PaaS sys-
tems, however, Picocenter supports arbitrary computation
(including forking which is not supported by unikernels and
OSv), arbitrary network protocols (AppEngine only supports
HTTP), and event handling (Amazon Lambda [1] supports
only a pre-defined set of Amazon event triggers). Similar to
systems like Docker [14], Picocenter leverages prior work
on Linux containers [40] to provide a client execution inter-
face that supports legacy applications, ensures security and
isolation, and, most importantly, scales to support a work-
load where a large number of applications are alive, but not
actively running.

Second, to clients (those who interact with applications),
Picocenter provides the abstraction that services are always
up and running because they quickly respond to requests,
though in reality Picocenter may swap entire processes off of
a running machine and store it in long-term storage (such as
Amazon S3). We achieve this by supporting checkpoint and
restore—based on Linux’s Checkpoint/Restore in Userspace
(CRIU) [38]—as well as dynamic page loading from cloud
storage. To avoid costly delays when restoring applications,
we develop an ActiveSet technique that learns the set of com-
monly accessed memory pages when requests arrive; we first
prefetch those pages from cloud storage before fetching ad-
ditional pages on-demand. Our ActiveSet technique repre-
sents a prediction of the memory pages that are likely to be
accessed the next time an application is restored.

While each of these two goals have been addressed sep-
arately in prior work, we are the first to achieve them in

tandem. Picocenter is therefore the first system that has had
to tackle the performance challenges that arise when check-
point/restore is applied to containers (we detail our imple-
mentation in §5).

We deploy Picocenter to Amazon’s EC2 service and eval-
uate it with four approaches. First, using microbenchmarks,
we show that Picocenter’s overhead due to OS virtualiza-
tion is quite small. Second, we evaluate the performance of
application swapping, showing that Picocenter can swap in
and restore real-world legacy applications such as the popu-
lar lighttpd web server, the BIND DNS server, and the Post-
fix email server in approximately 250 ms, even when the ap-
plication’s memory image is completely stored on S3 (con-
versely, some PaaS systems have load times of 20–30 sec-
onds [18]). Third, we demonstrate that the ActiveSet tech-
nique can dramatically speed up application restore times by
only downloading the memory pages likely to be accessed
when an application is restored. Fourth, we roughly estimate
the real-world cost of running applications in Picocenter to
end users; we demonstrate that Picocenter can represent a
savings of over 99% compared to running a dedicated VM.

The remainder of this paper is structured as follows. In §2,
we present an overview of LLMI applications and review
related work. We describe Picocenter’s design in §3, its ap-
proach to enabling efficient swapping of applications in §4,
and its implementation in §5. In §6, we present microbench-
marks and an end-to-end evaluation on Amazon EC2 which
show that Picocenter is able to provide the abstraction that
users’ processes are always running, even when the limited
computing resources demand that they be swapped out when
idle. Finally, we conclude in §7.

2. Background and Related Work
In this section, we provide more details on LLMI applica-
tions and why they are not well supported by prior work.

2.1 Long-lived mostly-idle applications
Long-lived, mostly idle applications are typically network-
based services, such as personalized email servers, individ-
ual users’ web servers, IRC/XMPP chatting servers, or nodes
in decentralized applications [3, 9, 53]. These LLMI appli-
cations all have several common characteristics:

• Long-lived: The applications typically provide network-
based services, and often run for long periods of time.

• Mostly idle: The applications are largely I/O-bound, and
spend most of the time waiting for incoming messages.

• Short response time: The applications may have latency
requirements to responding to incoming messages (e.g.,
web servers or chat servers), meaning incoming mes-
sages should not be queued for long periods of time.

• Low per-request processing: The time required to pro-
cess an individual message or event is typically short; the
applications do not become CPU-bound for long.

There is no obvious PaaS-style “platform” or constrained
API upon which to base all LLMI applications; some bind
to multiple ports (such as an HTTP/HTTPS server) or fork
many processes (such as BIND and vsftp). Therefore, ide-
ally, any arbitrary binary application could be run in an
LLMI fashion. Moreover, to reduce resource consumption
for cloud providers (and cost for users), LLMI applications
would ideally consume as few resources as possible while
they are not actively running. Picocenter provides these two
features by drawing from a wide range of prior work.

2.2 Related work
We review prior work in the areas of virtualization, contain-
ers, other work that seeks to extend PaaS applications, and
migrating and checkpointing VMs and processes.

Hardware virtualization Typical hardware virtualization
solutions such as Xen [4], VMWare ESX Server [56], or
KVM [39] allow users to run operating systems and applica-
tions of their choice. Despite this, many cloud applications
today only run one service (e.g., Apache or MySQL) in a
virtual machine (often to simplify management and isolate
failures). As a result, several prior systems have sought to
reduce the overhead of running a full-fledged OS for a sin-
gle application. For example, OSv [31] and unikernels [43]
(e.g., Mirage [42]) improve resource utilization by reducing
guest operating system size, providing a library-OS-like en-
vironment for user programs. However, these systems do not
provide easy support for swap ins. The closest work on sup-
porting swap ins for unikernels is Jitsu [41], which demon-
strated that unikernels can be started in a matter of millisec-
onds. However, Jitsu assumes that the applications are state-
less and that new ones can be spawned when requests arrive;
with Picocenter, we aim to support the swapping of stateful
applications and provide fast restore times.

Operating system containers Operating system containers
serve as a lightweight method of virtualization compared
to hardware virtualization; examples include Docker [14],
LXC [40], VServer [52], BSD Jail [28], and Solaris
Zones [49]. This technique modifies the hosting operat-
ing system kernel, using kernel-level isolation techniques
to make it appear to process groups that they have the ma-
chine to themselves. Picocenter leverages containers in or-
der to provide isolation between client processes while al-
lowing backward compatibility with existing applications;
Picocenter extends Linux containers with support for check-
point/restore as well as partial swap ins.

Dedicated runtime Picocenter is distinguished from PaaS
systems like Amazon Lambda [1] and Google App En-
gine [20] in that it permits arbitrary applications written
in arbitrary languages. PaaS services typically require that
clients write code using a limited subset of managed lan-
guages (e.g., Java, Go, or Python); this likely simplifies the
provider infrastructure necessary to support these services,

but also greatly limits the kinds of services that PaaS sys-
tems can support. Another recent trend is hosting applica-
tions in a virtual machine; ZeroVM [61], for instance, uses
Google’s Native Client [59]. However these techniques are
not designed to run applications from multiple users, and do
not handle resource allocation or swapping.

In parallel, other researchers have developed picopro-
cesses [27], a “stripped-down virtual machine without em-
ulated physical devices, MMU, or CPU kernel mode” [15].
Essentially, picoprocesses are process-like objects that use a
small interface to access various hardware resources (net-
work, memory, etc). Picoprocesses have been previously
used in the context of redesigning the architecture of Web
(in the Embassies [26] project), moving from a Web based
on HTML and Javascript to one based on the picoprocess
interface [47]. We experimented with a Picocenter design
based on picoprocesses, but found them to have significantly
higher overhead than our eventual (CRIU-based) approach.

Pre-paging and migration Our ActiveSet algorithm builds
on a long line of research on Pre-Paging [54] and VM live
migration [11, 25, 45, 50] which predict and prefetch work-
ing sets using historical information. Other work [6] has
explored consolidating desktop machines onto centralized
hardware, and migrating the working set of each VM to
the user’s machine. Yet others [17, 60] have explored ap-
proaches to process migration that lazily copies memory in a
similar manner as our reactive page faulting techniques. Un-
like these approaches, our execution environment provides
us with sufficient visibility into memory access-patterns and
allows us to determine working sets at a much finer gran-
ularity. This finer granularity reduces the size of data and
transfer times. Other approaches to migrating virtualized
resources such as networks of VMs and other infrastruc-
ture [21, 29, 46] take on the order of minutes to hours to
complete, unfortunately the interactive nature of the set of
Picocenter’s target applications demand faster techniques.

Checkpoint and restore Our work extends the study of pro-
cess checkpoint and restore [2, 23, 36], which retrieve states
of processes in operating systems and restore processes from
the saved states. Picocenter leverages this work by using
the Checkpoint/Restore in Userspace for Linux project [38],
while extending CRIU to be able to restore processes with
memory loading on-demand, and to also be able to make in-
cremental checkpoints of Linux containers.

Other work has explored full virtual machine checkpoint
and restore, including DreamServer [32] and Sloth [33]. In
these systems, idle VMs (e.g., VMs with no incoming re-
quests for 30 seconds) are suspended, and are restored when
they receive an incoming request (typically within 2 sec-
onds). While Picocenter shares many goals with these ap-
proaches, our underlying approach is fundamentally differ-
ent; Picocenter deals with sets of processes, while Dream-
Server deals with entire VMs. Thus, Picocenter is signifi-

cantly more lightweight (our restore times are an order of
magnitude lower), and it also relieves clients of the burden
of VM management.

Code offloading In parallel with the work above, there has
been a line of research investigating the potential for of-
floading computation from less-powerful devices to more-
powerful devices (e.g., from mobile devices to the cloud).
Notable examples include UCoP [16] (targeting laptop de-
vices) and MAUI [13] (targeting mobile devices). While
these share some similarities with Picocenter, the set of as-
sumptions they make and challenges they face are quite dif-
ferent. For example, such offloading systems typically must
develop techniques to efficiently divide code between local
and remote resources, but are not concerned with swapping
idle applications to cloud storage.

3. Picocenter Architecture
In this section, we present the design of Picocenter’s archi-
tecture and describe its components.

3.1 Interface to cloud tenants
We begin by describing what Picocenter looks like to cloud
tenants. To begin using Picocenter, a tenant should provide:1

• Tarball A filesystem containing any executables, config-
uration files, and libraries the application needs, as a tar
file. Picocenter provides a base Linux image, so the ten-
ant only needs to provide any missing or modified files.

• Initial process The initial process within the provided
filesystem that should be executed, and its arguments;
this process is free to launch any child processes, etc.

• Pico-configuration A list of the external protocols and
ports the application will bind to.

For example, the application binary might be a web server
such as Nginx, and the filesystem image would contain the
binary and the set of documents Nginx should serve (along
with Ngnix’s configuration /etc/nginx.conf), and the list
of external portocols and ports would be: TCP port 80. It is
important to note that the tenant can specify particular ports
or simply a number of ports (if a specific port is not needed).

If Picocenter accepts the tenant’s application, it will begin
executing the application and will return to the tenant a
unique DNS name where the application can be reached (on
the ports specified at submission time). If the application
becomes idle, Picocenter may swap the application (and its
filesystem) to either local disk or remote cloud storage (e.g.,
Amazon’s S3) in order to allow for other active applications
to be run. We refer to applications that are swapped out as
inactive applications. However, Picocenter will maintain the
illusion to the tenant that the application is always running:
when the tenant attempts to access the application again in

1 Our requirements are similar to what is contained inside of a Docker [14]
image.

the future, or a long-lived timer in the application expires,
Picocenter will transparently retrieve it from disk or cloud
storage and restore the application where it left off. We refer
to this as reviving the application.

Thus, to a tenant of Picocenter, it appears that their appli-
cation is alive and running the entire time, but during its life-
time, it may in fact be swapped out and swapped back in on a
different physical machine. The tenant is primarily billed for
the time when the application is actively running, so LLMI
applications are likely to be significantly more affordable
when compared to an always-running VM approach.

3.2 Challenges
Next, we motivate our design decisions by discussing the
challenges with a process-based cloud computing model.

Transparent checkpoint and restore Lowering operational
costs for the cloud provider allows for savings to be passed
on to clients. Picocenter will need to be able to support
application checkpointing and swapping, and later restoring
on a potentially different machine. This can happen both
as the set of active applications changes, as well as when
the load on different hosting machines varies. To ease the
burden on cloud tenants, migration must be transparent to
application processes.

Backwards compatibility Picocenter needs to work with
the rich set of applications that exist today, and not require
any source code modifications or recompilation.

Partial swap ins Since applications are swapped-out to
cloud storage, downloading an applications’s entire memory
image before resuming it would likely carry a large latency
penalty. Instead, Picocenter must support partial swap ins,
where the hosting machine can restore the application with
only a portion of its memory having been downloaded.

Application storage Applications are presented with a pri-
vate filesystem, consisting of a base image, user-provided
data, and application-created files. This filesystem must be
maintained as the application is swapped to cloud storage
and restored (potentially on a different hosting machine).

3.3 Architecture overview
We present an overview of the Picocenter architecture in Fig-
ure 2, detailing the interactions between Picocenter and ex-
ternal entities. There are two external entities: the applica-
tion owners, tenants, who deploy services in Picocenter and
clients, who interact with the applications hosted on Pico-
center using existing applications and devices.

At a high level, Picocenter is internally composed of two
components. The first is a logically centralized component
called the hub that performs global resource allocation, de-
cides where to push new applications and where to route
packets for swapped-in applications (e.g., the location of ac-
tive applications, as well as metadata about inactive appli-

Hub Worker
Tenants

Clients

Submit app

Domain name
of app

DNS lookup Assigned
Worker IP

Cloud Storage (e.g., S3)

...

Assign app

Notify of swap out

Interact with apps

Swap apps
in and out

App memory/
FS image

App memory/
FS image

App memory/
FS image

App
assignments

DNS
entries

NAT

Linux container

Running app
Linux container

Running app
Linux container

Running app

1

3

2
5

4

Figure 2: Overview of Picocenter, with Picocenter components shown in red. Tenants submit applications via the hub and receive a DNS
name À; the hub then assigns these applications to be run on workers Á. Clients lookup a Picocenter domain via the hub Â and then interact
with applications Ã. Workers may swap out inactive applications to cloud storage Ä, and swap them in again later when requests arrive.

cations). The hub serves as a central point of management
control in Picocenter.

The second is a virtualization layer akin to a modern
hypervisor called the worker, that actually hosts the tenant’s
applications. There are multiple workers that work with the
hub, and each worker performs local resource allocation.
The worker is assigned with applications to run by the hub,
but determines when to swap out running applications and
performs optimizations to ensure that active applications
maintain a short response time.

3.4 Hub
The hub manages global resources within Picocenter: allo-
cating IP addresses and ports, assigning domain names, and
assigning applications (both new and revived) to workers. To
do this, the hub must be informed of any new applications
to be launched as well as when applications are swapped
to cloud storage: it receives requests from tenants to de-
ploy new applications, it receives DNS requests from clients,
and it receives updates from workers when applications are
swapped out to cloud storage.

In the discussion below, we describe the hub as a single
physical machine, as this is how it is implemented in our pro-
totype. However, all of the functionality of the hub could be
easily parallelized across multiple machines for both redun-
dancy and scalability. In essence, the function of the hub in
Picocenter is both as a cluster manager (similar to Borg [55],
Omega [51], and Mesos [24]) as well as a load balancer (sim-
ilar to HAProxy [22]). While we did not implement our hub
prototype using any of these systems, some of the functional-
ity could likely be outsourced to them. We leave a full explo-
ration of a parallelized hub implementation to future work.

New applications As shown in Figure 2, the hub interfaces
with the tenants and accepts new tenant applications sub-
ject to the constraints specified in the application’s config-
uration file. The hub searches for a public IP address with
the appropriate ports free and for a worker with sufficient
resources.2 For example, if the tenant requests port 80, the

2 This process is similar to systems that provide cluster management and
orchestration functionality like Kubernetes [35], except that the hub in

hub searches through all IP addresses owned by Picocenter,
for one whose port 80 is unassigned. If no available IP ad-
dress can be found, the hub either launches a new worker or
refuses to accept the application.

To guide its decisions of which worker to assign the ap-
plication to, the hub maintains state for each worker: what
IP addresses it offers, what applications it is currently run-
ning, and whether or not the machine has asserted that it is
capable of accepting new applications. This information is
used by the hub’s scheduler to determine which worker is
available to accept new tasks. The hub’s scheduler can sup-
port a range of scheduling disciplines from LRU to Lottery
Scheduling [57] when deciding which available worker to
pick for a task.

Assuming the hub does find an available IP address and
a worker with sufficient free resources, it generates a unique
DNS name; stores the mapping between the name and the
public IP address; informs the worker that it should begin
swapping in the application; and returns the DNS name (and
any requested, unspecified ports) to the tenant.

To ensure that future incoming requests are always routed
to the appropriate worker, the hub contains a DNS resolver
that responds to DNS queries. Any network traffic to the
application will thus be routed directly to the appropriate
worker, and do not need to transit the hub. The TTLs for
the DNS responses are set to the minimum amount of time
that an application must reside on a worker before being
swapped-out. We set this value to one minute in our pro-
totype; while it may seem unlikely that today’s cloud-based
applications would be idle for more than one minute, recall
that we are targeting LLMI applications that are, by defini-
tion, idle for long periods of time.

Picocenter swaps a new application in when it is accepted
(rather than immediately storing it in cold storage) so that
the application can perform its own initialization, such as
listening on sockets and starting timers.

Picocenter is managing at the level of applications and network ports;
typical cluster management systems manage at the level of containers, and
therefore simply need to assign a unique IP address to each container. In
Picocenter, multiple applications may be assigned the same IP address as
long as their port reservations do not conflict.

Hub WorkerClient Cloud Storage
DNS Lookup

IP address

TCP SYN

TCP SYN/ACK

Revive application

Fetch memory/FS image
 Restore process

DNS Lookup

IP address

TCP SYNA
ct

iv
e

ap
pl

ic
at

io
n

In
ac

ti
ve

 a
pp

lic
at

io
n

TCP SYN/ACK

Accept job

Figure 3: Timeline for serving incoming requests for applications,
both inactive and active. Inactive applications are revived while
the DNS response is sent to the client; all network traffic for the
application goes directly to the worker.

Reviving applications Applications can be revived from
cloud storage in one of two ways: when an application timer
expires, or when a packet arrives for the application.

In both situations, the hub needs to revive the application
by assigning it to a worker. To do this, the hub needs to
know where the application is stored in cloud storage and
which worker to swap the application to. The hub makes
these decisions using the same mechanism as when a new
application is launched: the hub looks for a worker that
has sufficient free resources and has an IP address with the
application’s used ports free. Similar to the case above, if no
workers are available to accept a recently invoked task, then
the hub spins up a new worker (or drops the request).

3.5 Worker
The worker is responsible for running the tenant’s applica-
tions, swapping in and swapping out applications, perform-
ing address translation for incoming traffic, and monitoring
application resource utilization for billing purposes.

To accomplish these goals, the workers interact with the
hub as follows. The hub informs the workers of new appli-
cation assignments. In turn, the workers inform the hub peri-
odically as to whether or not they have sufficient capacity to
accept new applications, and they also inform the hub when
they have swapped out an application they were previously
assigned to cloud storage (thereby releasing the application
to be assigned to another worker).

Initially, all workers are willing to accept new applica-
tions. When an application needs to be run (either a new ap-
plication, or an application to be revived), the hub chooses
a worker (as described above) and provides it the required
information for running the application. Namely, the appli-

cation’s network configuration, the location of the applica-
tion’s data in cloud storage, and the Pico-configuration. Us-
ing this information, the worker is able to successfully run
the application and route its network traffic.

We provide more details on the worker implementation
and hosting infrastructure in §5.

4. Quickly Swapping in Processes
Picocenter provides the abstraction that all registered appli-
cations are running all the time by providing low response
time to client requests, even if the application has been idle
for months or longer. However, so as not to unnecessarily
waste cloud resources, Picocenter does not keep all regis-
tered applications running or even resident on worker ma-
chines at any given time; most of the time, an LLMI appli-
cation’s memory state is “swapped out” to long-term cloud
storage, such as Amazon’s S3. Picocenter maintains this ab-
straction by swapping in processes from long-term storage to
execution on a worker quickly: to appear to always be run-
ning, our target is to swap in processes on the order of a few
client’s round-trip-times (RTTs)—the time it takes for the
DNS response to reach the client, and for the client to send
the request to the application. This way, in the time it takes
for the client to receive the DNS response and initiate a TCP
handshake, the process would have been loaded (Figure 3).

Challenges While swapping processes and memory pages
has received extensive prior study across a wide range of
domains, including VM migration [6, 11, 25, 45, 50], “just
in time” unikernels [41] and process migration [17, 60],
the LLMI applications we consider represent a unique set
of challenges: First, whereas most work in VM migration
involves moving a running VM from one machine to another,
we seek to pull a frozen process into a running state quickly
enough to remain unnoticeable to users. Second, unlike most
prior work in PaaS and unikernels, we do not constrain the
size or type of user applications, and thus we must support
applications that can fork and listen on multiple ports. To
meet both of these ends, we extend prior work on partial
migration [6] to quickly load precisely what a process needs
to begin handling a request based on a given port.

4.1 Swapping out applications
The workers are responsible for judiciously swapping out
enough applications in order to keep sufficient resources
free for active applications. To this end, the worker con-
stantly monitors its load (e.g., memory pressure, CPU uti-
lization, or bandwidth consumption; in our implementation,
we use memory pressure, but some combination thereof may
be most suitable in practice). When a machine’s load goes
above a high watermark, the worker informs the hub that it
can no longer accept new applications, and it begins swap-
ping out the most idle applications to cloud storage in an
LRU manner. When the load drops below a low watermark,
the worker then informs the hub that it can again accept new

applications, and stops swapping out applications. By main-
taining a separation between high and low watermarks, we
ensure that workers do not oscillate between these two states.

Recall that when an application is assigned to a worker,
the worker agrees to be responsible for the application for
a fixed period of time (one minute in our prototype). This
agreement is reflected in the DNS TTL that is returned to the
client, mapping the application’s DNS name to that worker.
At times, a worker may discover that its memory pressure is
too great, but that it cannot swap any applications to cloud
storage due to this restriction.

In order to allow a worker to relieve its memory pressure
without violating this agreement, we allow workers to also
swap applications to their local storage instead of cloud stor-
age. The mechanism for doing so is identical to swapping to
cloud storage, except that the worker does not inform the
hub that it has swapped out the application. As a result, in-
coming network traffic may arrive at the worker for a locally
swapped-out application. In this case, the worker revives the
application from local disk, rather than cloud storage.

4.2 Swapping in applications
Picocenter swaps in applications as a result of an invoca-
tion event, such as an incoming DNS query for the given
application’s hostname, or a triggered timer the application
registered. Because applications register timers with work-
ers (and with the hub, should a worker swap an application
to cloud storage), we can easily predict timer events and sim-
ply swap in applications before they fire, so that the applica-
tion is ready to run precisely when it needs to be. Incoming
packets, however, are more difficult to predict, such as an in-
coming email to a personalized email server; to maintain our
abstraction, we must react and swap in the relevant applica-
tion quickly enough to avoid human perception.

Let us take a step back and ask: how quickly does an
application need to be swapped in to be unnoticeable to an
external client?

Recall that each application is given a public-facing DNS
name, but we may change which public IP address it is
NAT-ed to as it moves between being active and inactive.
Therefore, the first step a client must take to initiate a new
connection is often to issue a DNS query for the hostname.
Once the hub selects a worker to revive the application, we
have roughly the RTT to the client before there will be any
external input to the application. We can leverage this time—
typically on the order of tens to hundreds of milliseconds—
to begin swapping in (similar to the way TCP handshake
offloading is used in some hypervisors [41]), but even this
is not enough to swap in the entire memory space if the
application is on cloud storage.

Partial swap ins A crucial component to maintaining our
abstraction of “everything is always running” is swapping in
only the portions of the process’s memory that are needed.
For non-trivial applications, this is far less than the entire

memory space and it is often somewhat predictable. As a
motivating example, we instrumented the Nginx web server
in Picocenter to record memory reads and writes when serv-
ing uniform requests to a variety of files. We observed that
(a) on average, less than 1% of the valid memory space was
actually accessed on any request, and (b) the set of pages
accessed showed over 90% overlap across all requests.

Picocenter uses two mechanisms to efficiently load only
what a process needs: reactive faulting and prefetching.

Reactive page faulting Picocenter monitors all memory
pages that each application reads and writes to. When an
application tries to access a page that has not been loaded
into its runtime memory space, Picocenter captures this as
a “Picocenter-level fault,” pauses the thread that caused the
fault, downloads the data from storage, and resumes the
thread. Because handling a Picocenter-level fault involves
transferring a small amount of data from cloud storage to a
machine (4KB), it is a latency-bound operation. Thus, we
can swap in more than one page at a time without signif-
icantly impacting the overall performance: we segment the
data into sets of B pages, so that, given a page fault on page
p, we swap in pages B · bp/Bc to (B+1) · bp/Bc−1.

While these Picocenter-level faults are less expensive
than loading an application’s entire memory, they are far
more expensive than traditional OS page faults: the OS needs
only pull from local storage, while Picocenter may have to
pull from cloud storage, such as Amazon’s S3. Thus, Pic-
ocenter seeks to minimize the number of Picocenter-level
faults (to optimize runtime performance), while still loading
as few pages as possible (to optimize swap in performance).
To this end, Picocenter employs a preemptive component as
well.

Prefetching with ActiveSet When swapping out an appli-
cation, the local machine stores the page access informa-
tion in cloud storage, along with whatever kind of event
invoked the application in the first place (e.g., the port of
an incoming network connection or memory address of the
timer that fired). Over time, Picocenter develops a model of
which memory regions are often used for a given applica-
tion when processing different events. When swapping in an
application, Picocenter preemptively swaps in those mem-
ory pages that are most likely to be accessed as a result of
serving that request. In the Nginx example, preemptive, par-
tial swapping reduces the amount of application state that
needs to be transferred from cloud storage to a machine by
two orders of magnitude. Thus, tracking and predicting these
accesses in Picocenter is likely to provide significant perfor-
mance benefits.

Concretely, Picocenter maintains, for each application,
what we call the ActiveSet of memory pages: data that we
believe are most likely to be needed by that application
to handle a future invocation event. Workers monitor what
memory pages applications access, and use this to update

the ActiveSet. In our prototype, the ActiveSet consists of
all pages that have been accessed during the application’s
most recent invocation. When swapping the application in
from cloud storage, the worker first downloads an index file
describing which pages are in the application’s ActiveSet
and then prefetches those pages and makes them available
to the application. When swapping out an application, the
worker adds or removes pages from the process’s ActiveSet
as necessary and writes it to the application’s index file in
cloud storage.

The ActiveSet may have false positives (it believed a
page would be needed, but it was not) and false negatives
(it failed to anticipate that a page was going to be needed).
False positives can result in a slower swap in, as the worker
has to download more data from cloud storage than strictly
necessary, but do not affect the application as it is running.
Updating the ActiveSet over time mitigates false positives.
False negatives, on the other hand, result in an application
trying to access pages that we have not swapped in. For these
pages, we fall back on our reactive scheme.

Advanced ActiveSet Our approach permits more sophis-
ticated definitions of the ActiveSet, such as a dependency
graph among pages (encapsulating the notion of order of ac-
cesses), or pages that have been accessed k out of the last n
times the application was active (for parameters k ≤ n).

Because Picocenter supports applications that fork and
listen on multiple ports, such as an email server or a web
server handling HTTP (port 80) and HTTPS (port 443), it
may be beneficial to track page accesses as a function of port
number. For example, when processing an HTTP request,
Nginx accesses ∼100 memory pages; for HTTPS requests,
Nginx accesses these same pages, plus an additional ∼300
pages. Ignoring port numbers may result either in swapping
in more (for HTTP) or fewer (for HTTPS) pages than neces-
sary, resulting in slower processing times.

Picocenter could be extended to support multiple ports by
maintaining more than one ActiveSet for each application:
one for each listening port, and one that summarizes the
most common across all ports. When a DNS query arrives,
the worker would begin by loading the ActiveSet common
across all of the application’s ports, as it would not yet
know the port number—in the case of Nginx, this would
constitute the ∼100 pages common to HTTP and HTTPS
processing. When the first transport-layer packet arrives,
such as a TCP SYN packet, the worker would then swap in
the pages corresponding to that port’s ActiveSet. There are
several possible further extensions, such as estimating the
likelihood of a particular port being accessed, but we leave
this to future work.

5. Implementation and Discussion
Before presenting the evaluation of Picocenter, we describe
the implementation and deployment challenges that we ad-
dressed in Picocenter.

5.1 Implementation
We implemented the hub and worker on Linux. The hub
implementation consists of 757 lines of Python. The hub
also uses Twisted (a Python framework) to implement the
DNS functionality, and MySQL to store information about
where applications are running or are swapped out. The hub
maintains persistent TCP connections to all workers, used
for job assignment and load reporting.

The worker leverages Linux containers [40] (LXC) as a
basis for hosting client applications on workers. Containers
are an operating system-level approach to virtualization that
provides each container (essentially, a group of processes)
with a virtualized environment. Thus, with containers, pro-
cesses in different containers are unable to interact other than
via the network. Containers have been successfully used—
via projects like Docker [14]—as a basis for simplifying de-
ployment of applications to hosting machines.

Limitations Our prototype implementation of Picocenter
has a few important limitations. First, our prototype does not
keep track of application timers, and currently only revives
applications when network traffic arrives. Second, our pro-
totype does not implement per-port ActiveSet, and because
all of the applications in our evaluation were accessed over
a single port, it does not affect our evaluation’s conclusions.

5.2 Swapping implementation
We make use of several useful tools that have been built
on top of Linux containers to facilitate our implementation
of swapping. Clients’ memory changes over time; it would
be wasteful to copy down the entire memory space in or-
der to simply store it back to the cloud. Instead, we build on
the existing work of the Checkpoint/Restore from Userspace
(CRIU) project to revive processes such that they only re-
quire the downloading of pages that are accessed and to
only produce new data for subsequent restores for pages that
were modified. This, in effect, gives us the ability to provide
incremental checkpoints with on-demand loading of pages.
When swapping out a previously-revived process, our mod-
ified CRIU only writes out those pages that were modified
since the application was most recently revived. We store
the resulting checkpoint, which necessarily only contains a
page-level diff from the previous one, alongside the existing
image in cloud storage. This approach enables quick swap-
ping out of processes.

However, successfully leveraging containers for use in
Picocenter presented significant challenges. First, support-
ing ActiveSet in Picocenter requires the ability to (1) observe
the memory accesses (reads and writes) that clients make;
(2) partially load a client’s memory image; and (3) dynami-
cally load pages from cloud storage in the case of page faults.
We enabled support for all of these by leveraging Linux’s
Filesystem in User Space (FUSE) [19]. When restoring a
client, we invoke the modified CRIU and supply the FUSE-
mounted filesystem as the source for memory images. As

Worker Cloud Storage

App memory/
FS image

App memory/
FS image

App memory/
FS imageLinux container

Running app

User

Kernel

read(0x...)

VFS

FUSE

Picocenter FUSE
page server

Figure 4: Architecture for supporting partial swap ins, ActiveSet,
and on-demand memory loading in Picocenter. Processes are re-
vived with their memory image and filesystem on a FUSE filesys-
tem; as memory requests are made, they are handed to our FUSE
process which either serves them locally (for pre-fetched content)
or downloads them from S3.

CRIU runs and subsequently when the process is revived,
the operating system will load pages from this file whenever
a page fault occurs; since it is a FUSE file, our FUSE pro-
cess will be called whenever this occurs. At this point, our
process can fetch the appropriate memory pages from either
local disk or from cloud storage. Leveraging FUSE also al-
lows our process to monitor memory usage patterns (since
all pages read and written will result in a FUSE call the
first time they are accessed). When a client is being swapped
out to local or cloud storage, the set of pages accessed are
recorded along with the memory image of the process, al-
lowing us to implement ActiveSet. Our FUSE process rep-
resents 1,906 lines of C/C++ code, and a diagram of its op-
eration is provided in Figure 4.

Second, support for CRIU [38] with containers is still in
“beta” status, and completely implementing Picocenter re-
quired us to fix bugs, add basic support for FUSE filesys-
tems, and develop workarounds to enable pages to be lazily
loaded; we contributed these modifications back to the re-
spective projects. Overall, our modifications to CRIU com-
prise 683 lines of C, and, for the interested reader, we de-
scribe the details of these modifications in Appendix A.

Third, applications may write to local files, but we may
swap an application off of one machine and onto another.
We thus needed to implement support for each container to
maintain a consistent view, not only of its memory, but of
its own filesystem even as it is swapped in and out across
different machines. Picocenter efficiently provides each ap-
plication with a private filesystem based off of a predefined
Linux image by using btrfs [8]. In essence, btrfs allows
us to record all changes to the application’s filesystem, and
the worker stores this diff in cloud storage alongside the ap-
plication’s CRIU state. When reviving an application, the
worker first re-creates the application’s filesystem by replay-
ing the diff.

5.3 Deployment issues
Before presenting the evaluation of Picocenter, we briefly
discuss a few issues that a real deployment of Picocenter
would face.

Catching “early” packets One challenge that arises when
launching new applications (or reviving existing applica-
tions) is that client packets could arrive at the worker be-
fore the worker has completed launching (reviving) the ap-
plication. If not properly handled, the worker may drop the
packet or send back a RST, potentially confusing the client
or causing a timeout. To address this, our worker implemen-
tation uses the iptables NFQUEUE feature, which allows
us to enqueue arriving packets. Once the application is fully
alive, the worker releases all packets from the queue.

Resource accounting and billing One of the key benefits of
Picocenter is that applications are charged primarily when
they are active; this enables largely-idle processes to be sup-
ported in a cost-efficient manner. We envision that Pico-
center applications would be charged at two rates: Ra for
times when the application is active and Ri for times when
the application is inactive (on local or cloud storage), with
Ra � Ri. Similar to Amazon Lambda [1], we envision that
this rate would be charged per memory GB over time.3 Thus,
as an application’s memory demands change over time, it is
charged more or less. While we briefly estimate the cost of
running a few applications in § 6, we leave a full exploration
of accounting and billing to future work.

Applications Picocenter is designed to run most existing ap-
plications (including both multi-threaded and multi-process
applications), but there are certain types of applications that
Picocenter is a poor choice for hosting. Examples of such ap-
plications are computationally-intensive applications (scien-
tific computing, Bitcoin mining, etc). While our evaluation
focuses on LLMI applications, we note that there may be
applications in between these two extremes. We hypothesize
that there may be a class of applications, such as an email
server that typically services requests once every few min-
utes, that may be more cost-effectively served on an over-
provisioned machine that keeps the ActiveSet cached locally
(“warm” in our benchmarks). In the event that the machine
is unable to handle requests quickly enough, the tasks that
were idle the longest could be moved onto another machine.
In this case, tighter guarantees on response time can be pro-
vided and sold at an intermediate rate. We leave the explo-
ration of this space to future work.

There are a number of common applications that users
are likely to use often. Similar to the way existing cloud
provides support VM “images,” Picocenter can provide pre-
configured Picocenter images for these common applica-

3 Amazon Lambda has a simple single rate of $0.00001667 per GB-second
(as of this writing), because Lambda does not support swapping of inactive
applications.

 0.1

 1

 10

 100

 1000

write read gettime mmap munmap ping

L
a
te

n
c
y
 (

u
s
)

Operation

VM
VM+Containers

Figure 5: Microbenchmarks for our test application in Picocenter
(VM+Containers), compared to a native process running in an IaaS
VM. The error bars are standard deviations, and note the y-axis
is in log scale. Containers (and therefore Picocenter) show 1.4%
overhead across all tests, and 6.4% overhead on the UDP ping test.

tions. Doing so would relieve users of the burden of having
to create their own configurations for applications to be used
in Picocenter.

Competition for ports Because the hosting infrastructure
for Picocenter has a limited number of IP addresses, certain
ports may be in high-demand for applications (e.g., TCP port
80). We note that most applications today can support ap-
plications being run on non-standard ports (e.g., HTTP and
HTTPS), but there are a few applications that are required
to be run on specific ports (e.g., TCP port 25 for applica-
tions that need to interact with legacy SMTP servers). We
believe that this non-uniform value of ports can be addressed
by charging different rates Ra and Ri for applications that re-
quire such high-demand ports.

Security As Picocenter will be supporting applications
hosted by mutually distrusting tenants, Picocenter needs to
provide the same level of security and isolation between
applications as today’s cloud infrastructure does. Because
Picocenter relies on Linux containers, Picocenter inherits
the isolation between applications that containers provide
(which is the same way that Docker instances are isolated
from each other). Specifically, Picocenter relies on cgroups

to enforce resource usage limits, Linux namespaces to
provide isolated namespaces for each container and their
filesystems, seccomp to limit system call access, and kernel
NAT support to provide private network addresses to differ-
ent applications.

ActiveSet for filesystems As described so far, the ActiveSet
technique is limited to applications’ memory images; how-
ever, it could theoretically also be applied to applications’
filesystems. If this were done, it could speed up the time
required to revive an application by removing the need to
download the entire btrfs diff before reviving the applica-
tion. This could be accomplished by mounting the applica-
tion’s filesystem via FUSE (to monitor accesses and handle
faults), but doing so would require carefully indexing the
btrfs diffs so that the requested data could quickly be lo-
cated. We leave fully exploring this feature to future work.

6. Evaluation
We now present an evaluation of Picocenter. We frame our
evaluation around four key questions: (1) What is the low-
level overhead of running applications in containers in Pic-
ocenter? (2) How quickly can Picocenter revive real-world
processes from cloud storage? (3) How does the ActiveSet
technique help to reduce application reviving time? (4) How
does Picocenter perform with a challenging real-world ap-
plication that has somewhat unpredictable memory access
patterns?

6.1 Evaluation setup
We evaluate Picocenter on a real-world cloud provider,
Amazon EC2. We configure both the hub and worker ma-
chines to use c4.large instance types, with 3.75 GB of
memory. All application swapping is done to Amazon’s S3.

Unless otherwise stated, our prototype is parameterized
(as described in Section 3) to fetch blocks of B = 32 pages
on every page fault, and we add a page to an application’s
ActiveSet if it was read from or written to in its most recent
previous invocation.

We present results evaluating Picocenter on three differ-
ent, popular real-world applications: the lighttpd web server
(version 1.4.36) [37], the BIND DNS server (version 9.10.2-
P4) [7] and the PostFix email server (version 3.0.1) [48]. We
choose these three as they represent very different types of
applications that users may wish to run in Picocenter. Prepar-
ing these applications for use in Picocenter only required
preparing a tarball containing the binary, associated libraries,
and necessary configuration files (similar to the process for
preparing a Docker container).

6.2 Microbenchmarks
We begin by examining the low-level performance charac-
teristics of the hosting infrastructure in Picocenter. Since
Picocenter applications are implemented as processes run-
ning inside of Linux Containers, we refer to this setup as
VM+Containers. We also compare Picocenter to the same
application running as a normal Linux process in an EC2 vir-
tual machine, representing a prototypical IaaS deployment.
We refer to this setup as VM. We expect a slight performance
hit when compared to VM, due to the overhead of using con-
tainers; our goal is to quantify this overhead.

We examine the performance overhead of three broad
classes of computation tasks: running without requesting any
kernel resources (e.g., math operations and accessing mem-
ory), making system calls, and making network requests. To
measure these three, we implemented a simple application
which (a) reads/writes one 4KB page of memory in a byte
by byte fashion, (b) makes system calls for gettimeofday,
mmap, and munmap, and (c) performs a UDP ping to a ma-
chine on the same network, and waits for a reply. We mea-
sure how long each of the operations takes, and repeat the

Process request
(Application)

Restore
(CRIU)

Download
(S3)

VA OR DE JP VA OR DE JP VA OR DE JP

Figure 6: End-to-end client performance for different applications in “(h)ot” (application live and running on a worker), “(w)arm”
(application swapped out on a worker’s local storage), and “(c)old” (application swapped out to cloud storage) states. The hub and workers
are located in Virginia, and the clients are located in different locations around the world, with varying average ping times to the Picocenter
instance: Virginia (VA, 0.258 ms), Oregon (OR, 80.9 ms), Frankfurt (DE, 88.7 ms), and Tokyo (JP, 149 ms). Error bars represent the 5th and
95th percentiles of the overall time to complete the client’s request. Also shown are the times spent waiting on S3 (downloading checkpoints)
and CRIU (restoring the application). Overall, Picocenter provides good end-to-end application performance, with average restore times of
111 ms when applications are “warm” and 186 ms when applications are “cold.”

experiments 1,000 times. We run these experiments on EC2
machines.

The results of this experiment are shown in Figure 5, bro-
ken down by each experiment and system. We observe that
the overhead of using containers in Picocenter is quite low:
across all experiments, the average performance overhead
is only 1.4%, and in no experiment is the overhead statisti-
cally significant. This is consistent with prior work [58] that
has shown the overhead of running Linux containers is low.
Moreover, we observe that the action that has the highest
overhead in Picocenter is the UDP-level ping; this takes an
average of 174 us versus 162 us for the VM process (an over-
head of 6.4%). The reason for this somewhat higher over-
head is the virtual network device that the container uses,
necessitating extra processing in the kernel.

Overall, we observe that the usage of containers in Pic-
ocenter has very low overhead when compared to running
VM-based IaaS processes. Thus, the results indicate that
running applications in Picocenter has the potential to pro-
vide similar performance to running applications in tradi-
tional VMs. In the following section, we take a closer look
at end-to-end application performance to see if this holds
true for application-level benchmarks.

6.3 Swapping performance
We now turn to examine end-to-end application performance
in Picocenter. In these experiments, we set up and run each
of our three test applications. For lighttpd, we configure it
to serve pages of 1KB and request the pages using curl

on a separate machine. For BIND, we configure it to serve
DNS queries for a test domain, and request a DNS A record
using dig from a separate machine. Finally, for PostFix,
we configure it to accept mail for a test domain, and send
an email to a test account using Python’s smtplib from a
separate machine.

We want to explore how clients in different locations
perceive the latency of swapping in applications from cloud
storage, compared to accessing applications that are already
running. Thus, we run the hub and workers in EC2’s Virginia
datacenter, and run clients in EC2’s Virginia, Oregon, Tokyo,

and Frankfurt datacenters. We repeat each experiment 50
times and report the median, as well as the 5th percentile
and 95th percentile performance (shown as error bars).

Figure 6 presents our results from this experiment. For
each application, we compare the “cold”, “warm”, and “hot”
performance (recall that cold represents applications that are
stored on cloud storage and retrieved, warm represents appli-
cations that are stored on worker-local storage and retrieved,
and hot represents applications that are already running on a
worker). As a reference, we also include in the caption the
average ping times between clients in different regions and
our workers; we naturally expect that clients who are fur-
ther away will have slower end-to-end performance charac-
teristics in all applications due to the RTTs required by the
various protocols. For example, even when applications are
running, completing a PostFix transaction takes 750 ms for
the client located in Oregon, while it takes 1,375 ms for the
client located in Tokyo.

We make four key observations. First, we observe that
swapping in applications from cloud storage has a surpris-
ingly low performance penalty. Comparing the “hot” bar to
the “cold” bar, which represents Picocenter’s overhead of re-
viving an application, reveals swap in times between 140 ms
(lighttpd and BIND) and 200 ms (Postfix). The difference
in swapping times is due to the applications having differ-
ent numbers of processes, memory sizes and layouts, and
amounts of process state.

Second, we observe that this overhead can often be
dwarfed by the end-to-end performance of the protocol it-
self. For example, consider the case of PostFix with the
client located in Frankfurt. When the application is swapped
out to cold storage, sending an email to it takes 1,034 ms;
however, even if the applications was already running on the
worker, sending the same email would take 805 ms. Thus, in
this particular case, the relative client-perceived overhead of
swapping the process completely out to cloud storage is low.

Third, we note that there is significant variance in the
total restore time, evidenced by the 95th percentile error
bars on the cold and warm total bars. This high variability

 0.1

 1

 1 10 100 1000 10000

L
a
te

n
c
y
 (

s
)

Application Working Set Size (KB) (M)

Reactive paging only
Full checkpoint

ActiveSet

Figure 7: Response latency for our strawman application when
comparing Picocenter’s ActiveSet technique to two baselines:
fetching memory only with reactive paging from cloud storage
(without ActiveSet), and downloading full application checkpoints
every time. Our strawman application is configured with a 64 MB
memory size, and we vary the working set size between 4 KB and
8 MB. Note that both axes are log scale. The ActiveSet technique
significantly outperforms the baseline approaches.

is largely due to S3’s variance in fetching content; we found
that S3 fetch times can occasionally vary by up to an order
of magnitude or more, even when fetching data of the same
size from the same S3 bucket. Conversely, we found CRIU
restore times to be largely consistent.

Finally, we observe that when reviving applications from
cloud storage, Picocenter has about 70 ms of overhead not
accounted for by CRIU and S3 (these are most clearly seen
with the Virginia clients). This overhead is due to the setup
cost of the btrfs snapshot, which takes about 70 ms on
our Linux snapshot. This could potentially be reduced by
applying ActiveSet to the application’s file system, but we
leave this to future work.

Overall, these results show that Picocenter is able to
process application-level end-to-end requests quickly, even
when applications are swapped out completely to cloud
storage. In these experiments, Picocenter restores “cold,”
swapped-out processes in 158–219 ms and “warm” pro-
cesses in 101–122 ms. Recall that this overhead only occurs
when a client contacts an application that is swapped out;
once the application is restored, it is in the “hot” state until
it goes idle again and the worker eventually swaps it out.

6.4 ActiveSet
Next, we evaluate the impact that ActiveSet has on the per-
formance of swapping in an application from cold storage.
Recall that swapping in must be done quickly in order to
maintain the illusion to clients that all applications are run-
ning all the time, and that ActiveSet helps achieve this ab-
straction by transferring the pages that are predicted to be
needed to handle a request.

Strawman application To provide for controllable exper-
iments with ActiveSet, we implement a strawman applica-
tion. This application allocates a block of memory of N
pages. Each time it receives an incoming network request,
it accesses M < N of these and subsequently returns a re-

sponse to the client. The value of M represents the applica-
tion’s working set size. To allow for different access patterns
(and working set predictability), the application is also con-
figured to “shift” the pages it accesses by S pages on each
request. For example, if S = 0, the program will access the
same M pages every time it is revived; if S = 1, it will access
M−1 of the same pages it accessed previously, and one new
page; and when S = M, the process will access different sets
of pages on each request. We measure the client-side latency
for the application to respond.

ActiveSet performance We begin by exploring how Ac-
tiveSet improves the speed of reviving applications. To do
so, we create two baseline implementations of Picocenter:
First, we create a version of Picocenter that disables Ac-
tiveSet, and loads each memory page reactively. Second, we
create a version of Picocenter that performs a full download
of the application’s memory image before reviving it, obvi-
ating the need for reactive page faulting. We run an experi-
ment using our strawman application, configuring it to have
a fixed 64 MB memory size (N), and we vary the working
set size between 4 KB and 8 MB (M). For these experiments,
the application accesses the same set of memory pages each
time (i.e., S = 0). We repeat each experiment 20 times and
report the median latencies in Figure 7.

We make three observations from these results. First, we
observe that using ActiveSet provides significantly lower la-
tency than the other techniques. The latency does increase
with the size of the working set, but stays under 250 ms even
when the application has an 8 MB working set size. Second,
we observe that, as expected, the time to revive an appli-
cation using the full checkpoint download is independent of
the working set size; this is because there is no reactive fault-
ing to cloud storage. However, the cost of downloading and
restoring a full checkpoint is quite high: over 400 ms in this
experiment.

Third, we observe that the latency for using only reactive
paging performs between ActiveSet and full checkpoints for
small working set sizes, but eventually becomes more ex-
pensive than full checkpoint once our strawman’s working
set size grows beyond 2 MB. Reactive paging becomes ex-
pensive because the memory accesses end up generating a
number of sequential round-trips to cloud storage to fetch
all of the memory pages required. These results collectively
show the benefits of applying ActiveSet to quickly swap in
cold applications.

Errors in ActiveSet In the experiment above, the ActiveSet
prediction was always correct (i.e., the process always used
exactly the memory pages in its ActiveSet). Next, we explore
how ActiveSet performs when its prediction is incorrect. To
do so, we use the “shift” parameter (S) to vary the overlap
between the current working set and the set of memory in the
ActiveSet. Because our two baselines are not affected by this
shift, we examine only Picocenter with ActiveSet here. For

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.0001 0.001 0.01 0.1 1

L
a
te

n
c
y
 (

s
)

Fraction of Working Set missing from ActiveSet (S/M)

Figure 8: Response latency for our strawman application when dif-
ferent fractions of the application’s working set is missing from the
ActiveSet. Our strawman application is configured with a 64 MB
memory size and a working set of 8 MB. The latency remains low,
even when large fractions of the application’s memory have to be
fetched from cloud storage.

this experiment, we configure our strawman application with
a memory size of 64 MB and a working set size of 8 MB.

We vary ActiveSet’s prediction error from 0.5% to 100%,
and present the results in Figure 8. We can immediately ob-
serve that when ActiveSet’s prediction is accurate (the left
part of the graph), the response time is consistently low.
Once ActiveSet misses 10% or more of the true working set,
the response time increases linearly as the application is re-
quired to make multiple sequential requests to fetch memory
from cloud storage. Comparing these results to the previous
section’s baseline that downloads the entire checkpoint, we
note that it is better to download a full checkpoint once the
ActiveSet accuracy falls below 80%, for this strawman appli-
cation. These results collectively show that ActiveSet need
not have near-perfect prediction accuracy to significantly im-
prove performance over full or reactive-only checkpointing.

Extreme case: ClamAV As an example of a challenging
real-world application, we also evaluated the ClamAV anti-
virus application. ClamAV is a natural fit for Picocenter;
users can direct newly downloaded files to be scanned by
the application (thus requests are likely infrequent), and its
processing time is typically relatively short (on the order of
seconds). At the same time, however, ClamAV effectively
stress-tests our ActiveSet design; its memory footprint is
300 MB, and its ActiveSet is typically 54 MB (18% of the
total memory footprint). Moreover, as one asks it to scan
different files, the memory access patterns will likely differ
significantly as the application accesses different parts of its
internal index of malicious signatures.

We ran ClamAV in Picocenter on a machine in Virginia,
and have a client in Oregon serve files for it to scan. Each
time we query ClamAV, we randomly generate 10 files of
50 KB each for it to scan. We repeat the experiment 10 times
and report the median. Overall, we find that the latency to
scan all files is 5.16 seconds4 when ClamAV is actively run-

4 Recall that with ClamAV actively running, not all of its memory is nec-
essarily resident (some may still be swapped out to cloud storage, and

ning (“hot”) and is 7.49 seconds when ClamAV is swapped
out to cloud storage (“cold”). Thus, even with ClamAV’s
challenging memory access, Picocenter’s use of ActiveSet
largely hides the fact that the application was fully swapped
out to cloud storage (almost all of the additional latency for
the latter case is due to requests to cloud storage for mem-
ory pages that are not contained in the ActiveSet). Indeed,
if we resorted to using the full checkpoint approach (down-
loading the entire application before reviving it), we found
the latency for the same experiment would be 9.61 seconds.

Summary We note that the ultimate success of Picocenter
is a function not of how much memory the process allo-
cates in total, but of the process’s working set. In practice,
many VMs actively use a small fraction of their overall allo-
cation [6]; we have observed similar trends with individual
processes. These results show that Picocenter is able to swap
a process from cloud storage to running quickly enough to
be negligiable for most applications—even when the work-
ing set of the process is quite large. Moreover, we plan on
exploring additional techniques to improve the accuracy of
the ActiveSet predictions; the results shown here use only a
simple heuristic that predicts an application will use exactly
the memory pages it used in the previous request.

6.5 Cost
As a final point of evaluation, we briefly estimate the cost
to tenants of running applications in Picocenter. We con-
sider a strawman Picocenter provider that simply uses ex-
isting cloud services (e.g., Amazon’s AWS) to provide the
infrastructure for Picocenter, effectively acting as a reseller.
The actual cost will depend on a large number of factors, but
our goal here is to simply provide a rough estimate.5

We begin by estimating the charging rates for active and
inactive applications based on the EC2 and S3 costs of today
(i.e., we estimate the cost of leasing EC2 machines to the
Picocenter provider). To estimate Ra, the rate charged per
GB of memory for active applications, consider the c4 gen-
eration of EC2 instances on AWS: each of these present a
cost of $0.00052/GB-minute ($22.46/GB-month), so we ex-
pect Ra to be on this order of magnitude. To estimate Ri, the
rate charged per GB of memory for inactive applications, we
draw directly from the S3 costs of today, providing an ex-
pected Ri of $0.0000007/GB-minute ($0.03/GB-month).

The cost to a tenant would be dependent on the memory
size of the application, the size of its working set, and the
fraction of time that it is active. If we consider a user run-
ning an Nginx instance (average memory usage of 65 MB)
that is active 10% of the time and uses 10% of its mem-

will cause reactive Picocenter-level faults if accessed). For comparison, if
ClamAV is entirely memory-resident, we find that the latency to scan all
files is an average of 3.36 seconds.
5 In particular, our estimate does not account for many costs to the provider,
including development, personnel, and any profit margin, but the provider
would also likely be able to use techniques like Reserved Instances to obtain
much cheaper rates.

ory on each invocation, we can derive that the cost of run-
ning this application in Picocenter would be approximately
$0.0165/month. Compared with a dedicated VM (cheapest
cost of $9.36/month), this represents a 99.82% savings.6

7. Conclusion
In this paper, we presented a new approach for cloud com-
putation that is designed to support long-lived, mostly-idle
(LLMI) applications. Running such applications in today’s
IaaS cloud is economically inefficient, and prohibitive for
typical end-users, as they are charged disproportionately to
how much work their jobs perform. On the other end of
the spectrum, PaaS models restrain the set of applications
that may be run, precluding many useful LLMI applications,
such as a personalized email server or a personalized mobile
offloading application.

We presented Picocenter, a hosting infrastructure for
end user LLMI applications. Our evaluation on a real-
world cloud infrastructure shows that Picocenter represents
a unique operating point compared to existing service mod-
els. Compared to PaaS, Picocenter is not constrained to a
particular programming model—we showed that non-trivial
applications can be run by just using their off-the-shelf bi-
naries. Compared to IaaS, Picocenter is able to efficiently
swap applications to and from cloud storage—we showed
that Picocenter incurs low latency overhead when swapping
applications from cloud storage to running. LLMI applica-
tions in Picocenter thus consume fewer resources, allowing
users to be charged only for what they use, and allowing
cloud providers to accept more jobs.

This paper represents a promising first step towards a
new, finer-grained model for cloud computation; many ar-
eas of future work remain. Our results on swapping in the
ClamAV application demonstrate that, although ActiveSet
helps considerably, more optimization may be needed to
maintain our always-running abstraction for applications
with extremely large working sets.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Evan-
gelia Kalyvianaki, for their helpful comments. This research
was supported by NSF grants CNS-1409191, CNS-1319019,
CNS-1421444, CNS-1409426, CNS-1409249, and CNS-
1345284.

A. Supporting ActiveSet in CRIU
Picocenter uses CRIU for checkpointing and restoring con-
tainers. Ideally, swapping in a process would be as simple as
loading the process’s ActiveSet into memory and restoring
the container. Unfortunately, CRIU can only restore a con-

6 Current IaaS providers charge by the hour; should they move to a usage-
based charging model we believe that these IaaS services will still be a poor
fit for LLMI due to operational overheads of maintaining/managing VMs.

tainer after all of its pages written during a previous check-
point are populated into memory. To modify CRIU to sup-
port ActiveSet, it was essential that not every page of mem-
ory was read before the process was restored.

To restore, stock CRIU spawns a new process and per-
forms a “premap” whose size corresponds to each virtual
memory area (VMA) that was a part of the previously check-
pointed process. It subsequently reads data from the check-
point data file to restore the data for these mappings. To sup-
port ActiveSet, rather than creating an anonymous mapping
and then filling it with data, we perform a file-backed mmap

with the appropriate offset and length in the checkpoint data
file. For pages that were occupied, this conceptually consists
of merely changing a read into a mmap each time the CRIU
process attempted to read pages into the VMA. However,
we were obligated to retain the unoccupied pages, so we still
performed the initial premapping for every VMA. Each time
we came across a memory area that traditionally would be
read off of consecutive bytes on disk, we perform the file-
backed mmap over this potential subset of the memory re-
gion. The Linux kernel will automatically split the VMA, if
necessary, into anonymous unoccupied areas and consecu-
tive file-backed areas. Since CRIU stores consecutive allo-
cations on disk consecutively, the result is few regions.

Since each of these mappings are private, the region is
essentially initialized with the contents of the file whenever
a fault occurs, whereas private mapping semantics ensures
that written pages are no longer associated with the backing
file. In these cases, the written pages will be persisted as part
of a subsequent checkpoint.

Once all of the memory maps have been completed, as
the nascent process finishes restoration, each memory area
must be remapped to the memory location it occupied be-
fore the previous dump. To accomplish this, stock CRIU per-
forms a mremap over each original memory area. However,
when the VMA data is sent to the CRIU parasite code [12],
which runs in the context of a protean form of the restored
process, we no longer have access to all book-keeping (and
individual sub-mappings) done in the original restore pro-
cess. While this could be rectified with additional informa-
tion passing, our understanding of the mappings is especially
confounded because some of these splits took place in the
kernel, occassionally in surprising ways. We cannot simply
perform a mremap over the entire original memory area, be-
cause mremap is not capable of remapping VMAs that span
more than one mapping. To rectify this, we query the kernel
to find all extant mappings for the process, which now in-
cludes areas that were internally split, and perform mremap

calls for each area as it exists in the kernel that form subsets
of the original mapping data.

The result is we were able to extend CRIU to support
checkpoint/restore of containers while simultaneously al-
lowing lazy loading of memory pages as the process runs.

References
[1] Amazon lambda. http://aws.amazon.com/lambda/.

[2] J. Ansel, K. Aryay, and G. Coopermany. DMTCP: Transpar-
ent checkpointing for cluster computations and the desktop. In
Proccedings of the IEEE International Symposium on Parallel
& Distributed Processing (IPDPS’09), 2009.

[3] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and
D. Starin. Persona: an online social network with user-defined
privacy. In Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication (SIGCOMM’09),
2009.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art
of virtualization. ACM SIGOPS Operating Systems Review,
37(5):164–177, 2003.

[5] S. Bazarbayev, M. Hiltunen, K. Joshi, W. H. Sanders, and
R. Schlichting. Pscloud: a durable context-aware personal
storage cloud. In Proceedings of the 9th Workshop on Hot
Topics in Dependable Systems (HotDep’13), 2013.

[6] N. Bila, E. de Lara, K. Joshi, H. A. Lagar-Cavilla,
M. Hiltunen, and M. Satyanarayanan. Jettison: Efficient Idle
Desktop Consolidation with Partial VM Migration. In Pro-
ceedings of the 7th ACM European Conference on Computer
Systems (EuroSys’12), 2012.

[7] BIND DNS Server. https://www.isc.org/downloads/

bind/.

[8] btrfs. https://btrfs.wiki.kernel.org/index.php/

Main_Page.

[9] S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta. PeerSoN:
P2P Social Networking—Early Experiences and Insights. In
Proceedings of the International Workshop on Social Network
Systems (SNS’09), 2009.

[10] E. Chen, S. Ogata, and K. Horikawa. Offloading Android
applications to the cloud without customizing Android. In
Proceedings of the 2012 IEEE International Conference on
Pervasive Computing and Communications Workshops (PER-
COM Workshops’12), 2012.

[11] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In Proceedings of the 2nd conference on Symposium on Net-
worked Systems Design & Implementation (NSDI’05), 2005.

[12] CRIU parasite code. https://criu.org/Parasite_code.

[13] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. MAUI: Making Smart-
phones Last Longer with Code Offload. In Proceedings of
the 8th International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys’10), 2010.

[14] Docker. https://www.docker.com.

[15] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leveraging
Legacy Code to Deploy Desktop Applications on the Web.
In Proceedings of the 8th USENIX conference on Operating
Systems Design and Implementation (OSDI’08), 2008.

[16] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. The
Utility Coprocessor: Massively Parallel Computation from the
Coffee Shop. In Proceedings of the USENIX Annual Technical
Conference (USENIX’10), 2010.

[17] F. Douglis and J. Ousterhout. Transparent process migration:
Design alternatives and the sprite implementation. Software:
Practice and Experience, 21(8):757–785, July 1991.

[18] Easy way to prevent heroku idling? http:

//stackoverflow.com/questions/5480337/

easy-way-to-prevent-heroku-idling.

[19] Filesystem in Userspace. http://fuse.sourceforge.net.

[20] Google App Engine. https://developers.google.com/

appengine.

[21] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a
scalable and flexible data center network. In Proceedings of
the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM’09), 2009.

[22] HAProxy: The Reliable, High Performance TCP/HTTP Load
Balancer. http://www.haproxy.org.

[23] P. H. Hargrove and J. C. Duell. Berkeley lab checkpoint/restart
(blcr) for linux clusters. Journal of Physics: Conference
Series, 46(1):494, 2006.

[24] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica. Mesos: A plat-
form for fine-grained resource sharing in the data center. In
Proceedings of the USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI’11), 2011.

[25] M. R. Hines and K. Gopalan. Post-copy Based Live Vir-
tual Machine Migration Using Adaptive Pre-paging and Dy-
namic Self-ballooning. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE’09), 2009.

[26] J. Howell, B. Parno, and J. R. Douceur. Embassies: Radi-
cally Refactoring the Web. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementa-
tion (NSDI’13), 2013.

[27] J. Howell, B. Parno, and J. R. Douceur. How to Run POSIX
Apps in a Minimal Picoprocess. In Proceedings of the
USENIX Annual Technical Conference (USENIX’13), 2013.

[28] P.-H. Kamp and R. N. Watson. Jails: Confining the omnipotent
root. In Proceedings of the 2nd International SANE Confer-
ence (SANE’00), 2000.

[29] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford. Live migra-
tion of an entire network (and its hosts). In Proceedings of the
11th ACM Workshop on Hot Topics in Networks (HotNets’12),
2012.

[30] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: a
computation offloading framework for smartphones. In Pro-
ceedings of the EAI International Conference on Mobile Com-
puting, Applications, and Services (MobiCASE’12), 2012.

[31] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti,
and V. Zolotarov. OSv—Optimizing the Operating System
for Virtual Machines. In Proceedings of the USENIX Annual
Technical Conference (USENIX’14), 2014.

[32] T. Knauth and C. Fetzer. DreamServer: Truly on-demand
cloud services. In Proceedings of International Conference
on Systems and Storage (SYSTOR’14), 2014.

[33] T. Knauth, P. Kiruvale, M. Hiltunen, and C. Fetzer. Sloth:
SDN-enabled activity-based virtual machine deployment. In
Proceedings of the Third workshop on Hot Topics in Software
Defined Networking (HotSDN’14), 2014.

[34] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang.
Thinkair: Dynamic resource allocation and parallel execution
in the cloud for mobile code offloading. In Proceedings of
the IEEE International Conference on Computer Communi-
cations (INFOCOM’12), 2012.

[35] Kubernetes: Container cluster manager from Google. https:
//github.com/kubernetes/kubernetes.

[36] O. Laadan and J. Nieh. Transparent Checkpoint-Restart of
Multiple Processes on Commodity Operating Systems. In
Proceedings of the USENIX Annual Technical Conference
(USENIX’07), 2007.

[37] lighttpd Web Server. http://www.lighttpd.net.

[38] Linux Checkpoint/Restore In Userspace. http://criu.org.

[39] Linux kernel based virtual machine. http://www.

linux-kvm.org.

[40] Lxc. https://linuxcontainers.org/.

[41] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire,
D. Sheets, D. Scott, R. Mortier, A. Chaudhry, B. Singh, and
J. Ludlam. Jitsu: Just-in-time summoning of unikernels. In
Proceedings of the USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI’15), 2015.

[42] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft. Uniker-
nels: Library Operating Systems for the Cloud. In Proceed-
ings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS’13), 2013.

[43] A. Madhavapeddy and D. J. Scott. Unikernels: Rise of the
virtual library operating system. ACM Queue, 11(11), 2013.

[44] A. Mohaisen, E. Y. Vasserman, M. Schuchard, D. Foo Kune,
and Y. Kim. Secure encounter-based social networks: re-
quirements, challenges, and designs. In Proceedings of the
ACM Conference on Computer and Communications Security
(CCS’10), 2010.

[45] B. Nicolae, F. Cappello, et al. Towards efficient live mi-
gration of i/o intensive workloads: A transparent storage
transfer proposal. In Proceedings of the ACM Symposium
on High-Performance Parallel and Distributed Computing
(HPDC’12), 2012.

[46] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: a scalable fault-tolerant layer 2 data center network
fabric. In Proceedings of the Conference of the ACM Spe-
cial Interest Group on Data Communication (SIGCOMM’09),
2009.

[47] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and
G. C. Hunt. Rethinking the library OS from the top down.

ACM SIGPLAN Notices, 46(3):291–304, 2011.

[48] Postfix Email Server. http://www.postfix.org.

[49] D. Price and A. Tucker. Solaris Zones: Operating System Sup-
port for Consolidating Commercial Workloads. In Proceed-
ings of the 18th USENIX Conference on System Administra-
tion (LISA’04), 2004.

[50] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,
and M. Rosenblum. Optimizing the migration of virtual com-
puters. ACM SIGOPS Operating Systems Review, 36(SI):377–
390, 2002.

[51] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for large com-
pute clusters. In Proceedings of the 8th ACM European Con-
ference on Computer Systems (EuroSys’13), 2013.

[52] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Pe-
terson. Container-based operating system virtualization: A
scalable, high-performance alternative to hypervisors. In Pro-
ceedings of the ACM SIGOPS/EuroSys European Conference
on Computer Systems (EuroSys’07), 2007.

[53] tent.io. http://tent.io.

[54] K. S. Trivedi. On the paging performance of array algo-
rithms. IEEE Transactions on Computing, 26(10):938–947,
Oct. 1977.

[55] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management at
google with borg. In Proceedings of the Tenth ACM/EuroSys
European Conference on Computer Systems (EuroSys’15),
2015.

[56] C. A. Waldspurger. Memory resource management in
vmware esx server. ACM SIGOPS Operating Systems Review,
36(SI):181–194, 2002.

[57] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flex-
ible proportional-share resource management. In Proceedings
of the USENIX conference on Operating Systems Design and
Implementation (OSDI’94), 1994.

[58] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto,
T. Lange, and C. A. De Rose. Performance evaluation of
container-based virtualization for high performance comput-
ing environments. In Parallel, Distributed and Network-Based
Processing (PDP), 2013 21st Euromicro International Con-
ference on, pages 233–240. IEEE, 2013.

[59] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A sand-
box for portable, untrusted x86 native code. In Proceedings
of the IEEE Symposium on Security and Privacy (S&P’09),
2009.

[60] E. Zayas. Attacking the process migration bottleneck. In
Proceedings of the Eleventh ACM Symposium on Operating
Systems Principles (SOSP’87), 1987.

[61] Zerovm. https://www.zerovm.org/.

