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Editor’s Introduction

HU FU
University of British Columbia

This July I took over from Shaddin Dughmi as the editor of SIGecom Exchanges.
My predecessors have laid a solid base for this newsletter as a playground for vivid
communications on research activities in Economics and Computation. I will do
my best to continue this great tradition, and welcome ideas on both the contents
and innovations in the form or scope of the newsletter, in the hope for even more
active engagement with the community.

In this issue, apart from four letters on recent research progress, we have a
very informative survey by Shaddin Dughmi on Algorithmic Information Structure
Design, an area which has seen exciting progress in recent years. We also have a
letter by Nikhil Devanur, reporting on the First Workshop on the Economics of
Cloud Computing. As the program chair of the workshop, Nikhil summarized each
keynote and contributed talk at the workshop.

I would like to thank Shaddin Dughmi for his help with the transition, and Felix
Fischer for putting the issue together.

Author’s address: hufu@cs.ubc.ca
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Algorithmic Information Structure Design:
A Survey

SHADDIN DUGHMI
University of Southern California

Information structure design, also sometimes known as signaling or persuasion, is concerned with
understanding the effects of information on the outcomes of strategic interactions (the descriptive
question), and in characterizing and computing the information sharing strategies which optimize
some design objective (the prescriptive question). Both questions are illuminated through the lens
of algorithms and complexity, as evidenced by recent work on the topic in the algorithmic game
theory community. This monograph is a biased survey of this work, and paints a picture of the
current state of progress and challenges ahead.

We divide information structure design into single agent and multiple agent models, and further
subdivide the multiple agent case into the public channel and private channel modes of information
revelation. In each of these three cases, we describe the most prominent models and applications,
survey the associated algorithms and complexity results and their structural implications, and
outline directions for future work.

Categories and Subject Descriptors: F.0 [Theory of Computation]: General
General Terms: Algorithmic, Economics, Theory

Additional Key Words and Phrases: Signaling, Persuasion, Information Structures

1. INTRODUCTION

There are two primary ways of influencing the behavior of self-interested agents:
by providing incentives, or by influencing beliefs. The former is the domain of
traditional mechanism design, and involves the promise of tangible rewards such as
goods and/or money. The latter, the focus of this survey and the subject of a recent
flurry of interest in both the computer science and economics communities, involves
the selective provision of payoff-relevant information to agents through strategic
communication. Such “sweet talk” was estimated by [McCloskey and Klamer 1995]
to account for a quarter of all economic activity in the United States in 1995, and
the estimate has since been revised to 30% [Antioch 2013]. This is emblematic of the
emergence of large-scale social and economic networks, with countless transactions
and interactions among asymmetrically-informed parties occurring daily.

The primary object of interest in this topic is the information structure of a game
of incomplete information. Informally, the information structure determines “who
knows what” about the payoff structure of the game, and in doing so determines
the set of equilibria. More formally, an information structure maps the state of
nature @ — a parameter or set of parameters which determines the payoff function
of the game — to a signal for each agent in the game. The map is typically ran-
domized, and therefore reveals partial and noisy information regarding the payoffs

Author’s address: shaddin@usc.edu. Supported by NSF CAREER award CCF-1350900 and NSF
Grant CCF-1423618.
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3 : S. Dughmi

of various strategies. Like traditional incentive mechanisms, information structures
can be studied either descriptively or prescriptively. The latter concerns the task
faced by a principal who can control agents’ access to information and wishes to
optimize some objective function at the resulting equilibrium. Also like in mech-
anism design, the prescriptive question is naturally algorithmic, and studying it
with the computational lens both provides structural insights and paves the way
towards application. The task of optimizing the information structure in order to
further an objective is often referred to as information structure design, signaling,
or persuasion. In this survey, we refer to an information structure as a signaling
scheme when we wish to think of it as a randomized algorithm — implemented by
the principal — which takes as input a state of nature and outputs a signal for each
agent.

1.1 The Basic Model and Assumptions

We use O to denote the family of states of nature, and assume 6 € © is drawn from
a common knowledge prior distribution . In all models we consider in this survey,
the order of events for a game with n agents is as follows:

(1) The principal commits to a signaling scheme .
(2)
(3) Signals (61,...,0,) ~ ¢(f) are drawn, and agent i learns o;.
(4)

Nature draws 6 ~ p.

Agents select their strategies, and receive payoffs as determined by the game
and the state of nature.

This survey adopts the perspective of the principal who has an objective in mind,
and we focus on the optimization task faced by the principal in Step (1). A few notes
on this general setup are in order. First, we note that signals are best thought of
not as meaningful strings, but rather as abstract objects. Indeed, a rational agent
interprets a signal by virtue of how it is used by the scheme ¢, and therefore it
has no intrinsic meaning beyond that. Second, it might seem unrealistic that the
principal has the power to implement an arbitrarily informative signaling scheme.
However, as pointed out in [Kamenica and Gentzkow 2011], this is without loss of
generality: we can simply interpret the most informative signal the principal can
access as the state of nature. Third, the reader might have noticed that we made
no mention of information received by the agents which is out of the control of —
and perhaps even unknown to — the principal. This is mostly for simplicity, and
in fact some applications of the models we describe do involve agents who receive
an exogenous signal, often referred to as the agent’s type. Fourth — and this is
related to the previous point — we restricted our attention to a one-step protocol
of information revelation. In games where agents are privately informed, it might
in fact be in the principal’s interest to engage in a multi-round protocol where
the principal and the agents exchange information piecemeal. The study of such
protocols and settings is interesting in its own right, yet beyond the scope of this
survey.

Last but not least, we justify what might at first appear as the most controver-
sial assumption employed in most of the recent literature on information structure
design. This is the commitment assumption: we assume that the principal has the
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Algorithmic Information Structure Design: A Survey : 4

power to credibly commit to the signaling scheme before realization of the state of
nature. Without the power of commitment, the model becomes one of cheap talk
(see [Crawford and Sobel 1982; Sobel 2010]). As is common in the recent litera-
ture on information structure design, we argue that the commitment assumption
is not as unrealistic as it might first seem. One argument, mentioned in [Rayo
and Segal 2010], is that commitment arises organically at equilibrium if the game
is played repeatedly with a long horizon. This is because in such settings, the
principal maximizes his long-term utility by establishing a reputation for credibil-
ity. A somewhat different argument, particularly suited for the algorithmic view of
information structure design, is that any entity deploying an automated signaling
scheme is likely to have a contractual service agreement with the agents, or other-
wise have a vested interest in being perceived as a trusted authority. Trusting such
an entity with the provision of information is not too unlike trusting an auctioneer
to faithfully implement the rules of an auction, or trusting a certificate authority to
properly issue digital certificates. In the case of signaling, commitment can involve
publishing the source code of the signaling scheme used by the entity; agents can
then verify the commitment over time through the use of statistical tests or audits.
Additional justifications of the commitment assumption can be found in [Kamenica
and Gentzkow 2011].

1.2 Structure of This Survey

We focus on three models, which to our knowledge capture or come close to captur-
ing most recent work on information structure design. In Section 2 we consider the
single-agent information structure design problem, also known as Bayesian persua-
sion. This is a special case of the next two models. In Section 3 we consider multiple
agents, but a principal constrained to a public communication channel. The third
model, considered in Section 4, affords the most power to the principal by permit-
ting private communication between the principal and the individual agents. For
all three of these models, we describe the mathematical setup, present structural
characterizations (typically of a geometric nature) of the optimal information struc-
ture, discuss the state-of-the-art in algorithmic and complexity-theoretic work in
that setting, and present open questions. We close this survey by briefly describing
variations and extensions of these models in Section 5, and present some concluding
thoughts in Section 6.

2. PERSUADING A SINGLE AGENT

Specializing information structure design to the case of a single agent yields the
Bayesian Persuasion model proposed by [Kamenica and Gentzkow 2011], general-
izing an earlier model by [Brocas and Carrillo 2007]. This is arguably the simplest
model of information structure design, and the most applied. Indeed, the Bayesian
persuasion model has been applied to a number of domains such as bilateral trade
[Bergemann et al. 2015], advertising [Chakraborty and Harbaugh 2014], security
games [Xu et al. 2015; Rabinovich et al. 2015], medical research [Kolotilin 2015],
and financial regulation [Gick and Pausch 2012; Goldstein and Leitner 2013], just
to mention a few. In addition to being interesting in its own right, the Bayesian
persuasion model serves as a building block for more complex models of information
structure design, and illustrates many of the basic principles which we will refer to

ACM SIGecom Exchanges, Vol. 15, No. 2, January 2017, Pages 2-24



5 : S. Dughmi

in future sections of this survey.

2.1 The Model and Examples

In Bayesian persuasion, we adopt the perspective of a sender (the principal) looking
to persuade a receiver (the single agent) to take an action which is desirable to the
sender. There is a set A of actions, and the payoff of each action a € A to both
the sender and the receiver is determined by the state of nature § € ©® — we use
s(0,a) and r(a, 0) to denote those payoffs, respectively. We assume 6 is drawn from
a common prior distribution p, and the sender must commit to a signaling scheme
v : © — A(X), where ¥ denotes some set of signals and A(X) denotes the family
of distributions over . To illustrate this model, we look at a pair of examples.

EXAMPLE 2.1 (ADAPTED FROM [KAMENICA AND GENTZKOW 2011]). Consider
an academic adviser (the sender) who is writing a recommendation letter (the sig-
nal) for his graduating student to send to a company (the receiver), which in turn
must decide whether or not to hire the student. The adviser gets utility 1 if his
student is hired, and 0 otherwise. The state of nature determines the quality of
the student, and hence the company’s utility for hiring the student. Suppose that
the student is excellent with probability %, and weak with probability % Moreover,
suppose that the company gets utility 1 for hiring an excellent student, utility —1 for
hiring a weak student, and utility O for not hiring. Consider the following signaling
schemes:

—No information: Given no additional information, the company mazimizes its
utility by not hiring. The adviser’s expected utility is 0.

—Full information: Knowing the quality of the student, the company hires if and
only if the student is excellent. The adviser’s expected utility is %

—The optimal (partially informative) scheme: The adviser recommends hiring
when the student is excellent, and with probability just under 0.5 when the student
1s weak. Otherwise, the adviser recommends not hiring. The company maximizes
its expected utility by following the recommendation, and the adviser’s expected
utility is just under %

EXAMPLE 2.2 (ADAPTED FROM [DUGHMI AND XU 2016]). Ezample 2.1 can be
generalized so that the receiver has many possible actions. The adviser has a num-
ber of graduating students, and the company must choose to hire one of them. The
qualities of the different students are i.i.d.; specifically, each student is equally likely
to be weak (W), a short-term achiever (S), and a long-term achiever (L). The com-
pany derives utility 0 from hiring a W student, utility 1+ € for hiring an S student,
and utility 2 from hiring an L student. The adviser, on the other hand, is up for
tenure soon and derives utility 1 if the company hires an S student and 0 otherwise.
Consider the following signaling schemes:

—No information: All students appear identical to the company, which chooses
arbitrarily. The hired student is of type S with probability %, and therefore the
adviser’s expected utility is %

—Full information: Knowing the quality of all students, the company hires a student
of type L whenever one is available. As the number of students grows large, the
adwiser’s utility tends to 0.
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Algorithmic Information Structure Design: A Survey : 6

maximize Y pce #(0) 2 ,cq ©(0,a)s(0,a)

subject to
>o (0)p(8,a)(r(8,a) —r(6,a’)) >0, for a,a’ € A.
Dacap(d,a) =1, for 6 € ©.
»(0,a) >0, for € ©,a € A.

Fig. 1. Linear Program for Optimal Bayesian Persuasion

—The optimal (partially informative) scheme: When at least one student has type
S, the adviser recommends one of the S students uniformly at random. Otherwise,
he recommends a student uniformly at random. Using the fact that the company
prefers a student of type S to an equal mizture of types W and L, a simple
calculation using Bayes’ rule reveals that the company maximizes its expected
utility by following the adviser’s recommendation. As the number of students
grows large, the adviser’s utility tends to 1.

2.2 Characterization of the Optimal Scheme

The reader might notice that, in both Examples 2.1 and 2.2, the signals of the
optimal scheme correspond to the different actions, and can be thought of as rec-
ommending an action to the receiver. Moreover, when the receiver is recommended
an action a, this recommendation is persuasive in the sense that a maximizes the
receiver’s expected payoff with respect to the posterior distribution of the state of
nature 6 induced by the signal a. This is not a coincidence: as observed by [Ka-
menica and Gentzkow 2011], an argument similar to the revelation principle shows
that every signaling scheme is equivalent to one which recommends an action sub-
ject to such persuasiveness — i.e., we may assume without loss that ¥ = A.!
This dimensionality-reduction holds not only in this single-agent setting, but also
in multi-agent settings when the agents are sent private signals (more on this in
Section 4).

Given this characterization, it is not hard to see that the sender’s optimal sig-
naling scheme — i.e., the scheme maximizing his expected utility — is the solution
to a simple linear program (Figure 1). This LP has a variable ¢(0, a) for each state
of nature 6 and action a, corresponding to the conditional probability of recom-
mending action a given state 6. Solving this LP is impractical unless the prior
distribution p is of small support and given explicitly, but it nevertheless serves
as a useful structural characterization. The LP maximizes the sender’s utility, in
expectation over the joint distribution of 8 and a, subject to persuasiveness. An-
other way to visualize the feasible region of this LP is instructive: the probability
of signal a is Prla] = >, u(0)¢(0,a), and the posterior distribution i, on states
of nature induced by signal a is given by p,(6) = %ﬁ’a). Therefore, a feasible
solution of the LP can be thought of as a distribution over posteriors — one per
signal — whose expectation equals the prior p. In other words, if the prior pu is
represented by a point in the probability simplex A = A(©), then the signaling
scheme corresponds to a way of writing x4 as a convex combination of posterior

I Persuasiveness has been referred to as obedience or incentive compatibility in the prior literature
on persuasion.
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Fig. 2. A Signaling Scheme with Three Signals

distributions in A, as illustrated in Figure 2. Persuasiveness is equivalently stated
as the constraint that action a is favored by a rational receiver facing the posterior
distribution on 6 induced by the signal a.

This geometric / LP interpretation reveals some structural properties of optimal
signaling schemes. Each posterior distribution u’ € A is associated with a preferred
action a = a(y') for the receiver — this is the action maximizing the receiver’s
expected utility Eg. ./ r(6,a).? This allows us to plot the sender’s utility as a
function f : A — R of the posterior: f(u') = Egpr s(6,a(p)). Let 7 be the concave
closure? of f; our geometric interpretation implies that the optimal signaling scheme
achieves sender utility equal to f(u) by optimally decomposing u into posterior
distributions. In other words, optimal signaling can be thought of as computing
the concave closure of f (This was observed by [Kamenica and Gentzkow 2011]).
This task is nontrivial only when f is neither convex nor concave. If f is concave
then the optimal scheme reveals no information (i.e., recommends the receiver’s
ex-ante preferred action regardless of the state of nature). Whereas if f is convex
the optimal scheme reveals all information (i.e., recommends the receiver’s ex-post
preferred action for each state of nature). For example, f is convex when sender
and receiver utilities are always equal, and concave when they sum to zero. In
general, this geometric interpretation yields a different bound on the number of
signals via Caratheodory’s theorem: the optimal scheme needs no more signals
than the number of states of nature.

2.3 Independent Distributions and the Connection to Auctions

In mechanism design, the salient properties of optimal policies are often revealed
when the underlying uncertainty admits a simple structure. The prime example of
this is Myerson’s characterization [Myerson 1981] of the optimal single-item auction:
when bidder values are independent, the optimal auction maximizes what is known

2In case of ties, we break them in favor of the sender.
3The concave closure of a function f is the pointwise smallest concave function upperbounding f,
obtained by taking the convex hull of the points beneath the plot of f.
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Algorithmic Information Structure Design: A Survey : 8

as the virtual welfare, and when they are i.i.d. this optimal auction is furthermore a
second-price auction with a reserve price. This characterization leads to an efficient
algorithm implementing the optimal auction when bidders’ distributions are inde-
pendent and given explicitly. The analogous questions in the Bayesian Persuasion
model are the following: Is there an efficient algorithm for optimal persuasion when
actions are independent or i.i.d.? Can this algorithm be captured by a simple “rule
of thumb” a la virtual welfare mazimization?

The situation for persuasion turns out to be more nuanced than in the case of
auctions. An efficient optimal algorithm exists in the case of i.i.d. actions (as in
Example 2.2), but there is evidence that it might not exist in the case of independent
non-identical actions. To be precise, when we say actions are independent we
mean that s(a) = s(6,a) and s(a’) = s(6,a’) are independent random variables for
different actions a # a’, and the same for r(a) = r(,a) and r(a’) = r(6,a’). In this
case, the distribution p is fully specified by the marginal distribution of the pair
(s(a),r(a)) for each action a. We assume that each action’s marginal distribution
has finite support, and refer to each element of this support as a type. We prove
the following in [Dughmi and Xu 2016]; n denotes the number of actions and m
denotes the number of types for each action.

THEOREM 2.3 [DUGHMI AND XU 2016]. There is a polynomial-time (in n and
m) algorithm implementing the optimal scheme for Bayesian persuasion with i.i.d.
actions.

THEOREM 2.4 [DucHMI AND XU 2016]. Unless P = #P, there is no polynomial-
time (in n and m) algorithm for evaluating the sender’s optimal utility in Bayesian
persuasion with independent actions.

Theorem 2.3 relies on a connection to auction theory, and in particular to Bor-
der’s characterization of reduced-form allocation rules for a single-item auction.
The analogy to a single-item auction is as follows: each action corresponds to a
bidder, the types of an action correspond to the types of bidders, and recommend-
ing an action corresponds to selecting the winning bidder. In this analogy, the joint
distribution of recommended action and its type is simply what is known as the
reduced-form allocation rule of a single-item auction. The space of reduced forms
has been characterized by [Border 1991; 2007], and has since been observed to be
a polytope admitting an efficient separation oracle [Cai et al. 2012; Alaei et al.
2012]. Therefore, computing the optimal scheme reduces to linear optimization
over this polytope, augmented with persuasiveness constraints instead of auction
incentive-compatibility constraints. We show that in the i.i.d. setting, persuasive-
ness constraints are linear in the reduced form, and the resulting linear program can
be solved efficiently. This leads to the reduced form allocation rule associated with
the optimal signaling scheme, and the optimal scheme can be implemented from
that using Bayes’ rule. Notably, whereas this algorithm is efficient, it arguably lacks
the simplicity of Myerson’s optimal auction — the difference is due to replacing the
auction incentive-compatibility constraints with persuasiveness constraints.

Theorem 2.4 shows that, unlike in the case of auctions, the tractability of per-
suasion in the i.i.d. setting does not appear to directly extend to the independent
setting. The culprit yet again are the persuasiveness constraints: unlike in the i.i.d.
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9 : S. Dughmi

setting, these can no longer be expressed as linear constraints in the reduced form.
Moreover, our result shows that no generalization of the reduced form works either,
ruling out a generalized Border’s theorem for persuasion, in the sense of [Gopalan
et al. 2015]. That being said, we note that this result rules out exactly computing
the principal’s optimal utility from signaling in polynomial time, yet does not rule
out efficiently sampling the output of the optimal signaling scheme “on the fly”,
input by input.

2.4 General Black-Box Distributions

The previous subsection illustrates how simplifying the input model and using com-
putation as a lens can lead to structural insights into optimal schemes. Another
approach, common when computer scientists seek unifying and simplifying algorith-
mic and structural results, is the following: fix an input model which is as general
as possible, and design an algorithm which succeeds regardless of the details of the
setting. In Bayesian persuasion, the most general model permits an arbitrary joint
distribution of sender and receiver payoffs from the various actions, allowing arbi-
trary correlations between the payoff-relevant variables. To be precise, there are 2n
payoff-relevant random variables in total, where n is the number of actions: each
action is associated with a payoff to both the sender and the receiver. In [Dughmi
and Xu 2016], we assume that this joint distribution can be sampled from, and
moreover that all the variables lie in a bounded interval (without loss of generality
[0,1]), and prove the following.

THEOREM 2.5 [DUGHMI AND XU 2016]. For general payoff distributions pre-
sented as a sampling black box, an e-optimal and e-persuasive scheme (in the ad-
ditive sense) for Bayesian persuasion can be implemented in time polynomial in n
and % Moreover, this bi-criteria loss is inevitable in the worst case: an optimal
scheme must be Q(1) far from being persuasive, and a persuasive scheme must be
Q(1) far from optimality.

The positive statement in Theorem 2.5 concerns a simple scheme based on Monte-
Carlo sampling: When our signaling scheme is queried with a state of nature 6 € ©,
it additionally samples polynomially many times from the prior i to get a set S C O,
solves a relaxed variant of the LP in Figure 1 on the empirical distribution S U {6},
and produces a recommendation as suggested by the LP for 6.

Reflecting on Theorem 2.5 and the associated scheme, we can conclude that
Bayesian persuasion admits an efficient, approximately-optimal, and approximately-
persuasive scheme in arbitrarily general settings. Moreover, this scheme is simple:
additional samples S are procured in order to place the query 6 “in context” of the
prior distribution pu, and the algorithm “pretends” that the prior distribution is the
uniform distribution on SU{#}. Naturally, this succeeds due to convergence of the
LP solution to the optimal solution. The LP in Figure 1 is modified by relaxing
the persuasiveness constraints, as it so happens that this prevents “overfitting” to
the sample. The negative statement in Theorem 2.5 shows that this relaxation is
inevitable for information-theoretic reasons: one can construct examples where the
sender — having only imprecise sampling knowledge of the prior distribution —
can not be certain whether his preferred recommendation is persuasive to a receiver
who has full knowledge of the prior.
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2.5 Future Work and Open Questions

We now mention three open questions of an algorithmic flavor pertaining to the
Bayesian persuasion model.

OPEN QUESTION 2.6. Consider Bayesian persuasion with n independent actions,
each having a marginal distribution supported on m types. Is there a polynomial-
time (in n and m) implementation of the optimal signaling scheme? If so, what
does this algorithm reveal about the structure of the optimal policy?

Recall that Theorem 2.4 rules out efficiently computing the optimal expected sender
utility, yet does not preclude sampling ¢* (6) for each input 6, where ¢* is an optimal
scheme. This is a subtle point, but is not unprecedented: [Gopalan et al. 2015]
exhibit simple auction settings in which the optimal revenue of the auctioneer is #P
hard to compute, and yet Myerson’s optimal auction can be efficiently implemented
input-by-input. Theorem 2.4 implies that an optimal signaling scheme cannot be
efficiently computed using linear-programming approaches a la Border’s theorem.
Therefore, if a similar phenomenon occurs here, the algorithm implementing the
optimal signaling scheme would likely reveal some important structure of optimal
persuasion, a la Myerson’s famous characterization of optimal auctions as virtual-
welfare maximizers [Myerson 1981]. This leads right into our next open question.

OPEN QUESTION 2.7. Can optimal Bayesian persuasion be described by a simple
“rule of thumb” policy, a la virtual welfare mazimization from auction theory?

The results of [Dughmi and Xu 2016] do not answer this question, even in the
simplest case of i.i.d. actions. Indeed, the result in Theorem 2.3 invokes Border’s
theorem to compute the entire reduced form for the optimal scheme, rather than
provide a simple input-by-input rule such as virtual welfare maximization.

Our final question concerns moving beyond an explicitly-given list of actions. In
a number of natural applications of persuasion, the receiver’s action is naturally
multidimensional — say a path in a network, a point in space, or an allocation
of resources among different projects. In such settings, the actions lie in a vector
space, and the receiver faces an optimization problem — say, encoded as a linear or
convex program — when choosing their optimal action. When the state of nature
determines the objective function of both the sender and the receiver, can we solve
for an approximately-optimal signaling scheme in time polynomial in the natural
parameters of the problem? Say, in the number of variables and constraints of the
linear program rather than the number of its vertices (the possible actions)?

OPEN QUESTION 2.8. Consider Bayesian persuasion with multidimensional ac-
tions. In what settings can an optimal or near-optimal signaling scheme be com-
puted in time polynomial in the dimensionality of the receiver’s optimization prob-
lem?

3. MULTIPLE AGENTS: PUBLIC SIGNAL

Information structure design can get much more intricate when multiple players
are involved, particularly if they have heterogeneous beliefs, or if a scheme induces
heterogeneous beliefs through revealing different information to different players.
In this section, we examine a model which simplifies away such considerations:
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Coop Defect
—1+6 0
Coop +
—1+90 —5+6
Defect —5+6 -4
0 -4

Fig. 3. An incomplete information variant of the prisoners’ dilemma.

all players (including our principal) share the same common prior on the state of
nature, and we constrain our principal to a public communication channel — i.e.,
all players in the game receive the same information. This public signal model
underlies much of the work on multi-agent information structure design, such as
[Emek et al. 2012; Bro Miltersen and Sheffet 2012; Guo and Deligkas 2013; Dughmi
et al. 2014] in the context of auctions, and [Alonso and Cmara 2016a; 2016b] in the
context of voting.

3.1 The Model and Examples

An n-player game of incomplete information specifies a set A; of actions for each
player i, a set © of states of nature, and a payoff function G : ©x Ay x...x A, — R™,
where G;(0,a1,...,a,) is player i’s payoff when the state of nature is § and each
player j plays action a;. The game may be represented explicitly via its normal
form, or via some implicit representation permitting evaluation of the function G.

We assume that the state of nature 6 is distributed according to a common
prior distribution pu € A(®). A principal must commit to a signaling scheme
¢ : O — A(X), where ¥ is some set of signals. We interpret the (random) output
o ~ ¢(0) as a public signal which is received by all players in the game, say through a
public communication channel. The payoff function G, the prior u, and the signaling
scheme ¢ then define a Bayesian Game in the classical game-theoretic sense. We
naturally assume that players react by playing a Bayesian Nash Equilibrium in this
game, possibly according to some domain-specific equilibrium selection rule in the
case of multiple equilibria.

We adopt the perspective of the principal, looking to maximize some function
in expectation over the realized state of nature and action profiles. At its most
general, the principal’s utility function is of the form F: © x A; x ... A, — R. We
present some examples below to make this model concrete.

ExXAMPLE 3.1 [DuGHMI 2014]. An incomplete information variant of the clas-
sical prisoners’ dilemma is shown in Figure 8. The game’s payoffs are parametrized
by a state of nature 0. When 6 = 0, this is the traditional prisoners’ dilemma in
which cooperation is socially optimal, yet the unique Nash equilibrium is the one
where both players defect, making both worse off. Assume, however, that 6 is uni-
formly distributed in [—3, 3], and assume the principal wishes to maximize the social
welfare. Consider the following public signaling schemes:

—No information: The players, being risk neutral, play as if 0 equals its expectation
of 0. Defection dominates and the social welfare is —8.
—Full information: Defection dominates when 0 < 1 yielding welfare —8, and
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Fig. 4.  An incomplete-information Routing Game

cooperation dominates when 6 > 1 yielding welfare 20 — 2. The expected social
welfare is —1—;.

—The optimal (partially informative) scheme: When 6 > —1 signal High, and
otherwise signal Low. Given signal High, which is output with probability %,
both players’ posterior expectation of 0 is 1, and therefore cooperation dominates.

Defection dominates when the signal is Low. The expected social welfare is —%.

EXAMPLE 3.2. In a non-atomic selfish routing game (see [Nisan et al. 2007]),
there is continuum of selfish agents looking to travel from a source s to a sinkt in a
directed network, and each edge of the network is labeled with a congestion function
measuring the cost incurred by each agent as a function of the total fraction of
flow using that edge. Consider the incomplete-information routing game depicted
in Figure 4, in which the congestion functions are determined by a state of nature
0 = (01,02,03). This network consists of a variant of the Braess paradox network
(see [Nisan et al. 2007]), followed by a pair of parallel edges feeding into the sink.

Suppose that the three components of 8 are i.i.d. random variables, each uniformly
distributed on [0,1]. Suppose also that the principal wishes to minimize the social
cost, i.e. the average congestion experienced by the agents, at equilibrium, assuming
agents are risk neutral. Consider the first portion of the journey, from s to r; As
in Braess’s paradoz, the equilibrium routing from s to r is suboptimal when agents
believe that the expectation of 61 is less than 0.5, and optimal otherwise. Therefore,
it behooves the principal to reveal no information about 61 — this can be thought of
as an informational Braess’s paradox. In contrast, for the final hop of the journey
from r to t the principal optimizes the social cost by revealing 05 and 03, as this
assists all agents in choosing the lower congestion edge.

To summarize, the optimal scheme reveals some components of the state of nature
and withholds others.

ExXAMPLE 3.3. In a probabilistic single-item auction, an item with a priori un-
known attributes is being auctioned to a set of bidders. This arises in online ad-
vertising, where advertisers must bid on an impression, and this impression is as-
sociated with a web user drawn from a population of web users. [Emek et al. 2012]
and [Bro Miltersen and Sheffet 2012] study optimal public signaling policies by a
revenue-maximizing auctioneer in this setting, assuming the second-price auction
format is fived. In some settings — such as when bidders have similar preferences
and the market is highly competitive — the optimal policy reveals all information
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about the item for sale. In other settings — such as when bidders have idiosyncratic
preferences and markets are “thin” — withholding much of the information about
the item can increase competition and drive up prices. In general, optimal policies
reveal partial information. We refer the reader to [Emek et al. 2012; Bro Miltersen
and Sheffet 2012] for a more detailed discussion.

3.2 Characterization of the Optimal Scheme

As in the case of a single agent, we can identify a signaling scheme ¢ : © — A(X)
with a way of writing the prior distribution p as a convex combination of posterior
distributions {u, : o € £} (See Figure 2), where p, is the posterior distribution on
the state of nature given the signal ¢. Unlike in the case of a single agent, however,
we can no longer identify signals with actions. Indeed, each signal ¢ € ¥ induces a
subgame in which the common prior on the state of nature is p,, and players might
play a mixed Nash equilibrium in this subgame.

Fixing an equilibrium selection rule and denoting A = A(O), like in the single-
agent case we get an objective function f : A — R mapping posterior distributions
to the principal’s expected utility for the resulting equilibrium. Like in the single-
agent case, we can therefore also interpret the optimal scheme as evaluating the
concave closure f of f by optimally decomposing the prior p into posterior distri-
butions. Whereas we can no longer bound the number of signals by the number of
actions, the bound from Caratheodory’s theorem still holds: the optimal scheme
needs no more signals than the number of states of nature.

3.3 Negative Results

Recall that in the single-agent setting of Section 2, a simple linear program ex-
presses the optimal signaling task. Moreover, this LP is of size linear in the normal
form of that game — i.e., linear in the number of (state of nature, action) pairs.
This simplicity is largely a consequence of the dimensionality-reduction property in
the single-agent case, and underlies the positive algorithmic and structural results
outlined in Section 2.

It is natural to ask how quickly this structure deteriorates as we move beyond
a single agent. The answer for the public signal model: very quickly. A series of
works [Dughmi 2014; Bhaskar et al. 2016; Rubinstein 2015] examines signaling in
2-player zero-sum games, and culminates in the following.

THEOREM 3.4 [BHASKAR ET AL. 2016; RUBINSTEIN 2015]. Consider a 2- player
Bayesian zero-sum game with payoffs in [0, 1], presented via its normal form, and a
principal interested in maximizing the utility of one of the players. The principal’s
signaling problem is NP-hard [Bhaskar et al. 2016], and moreover does not admit
an additive PTAS* assuming either the planted clique conjecture [Bhaskar et al.
2016] or the exponential time hypothesis [Rubinstein 2015].

These impossibility results have significant bite: they hold in a setting where equi-
librium selection and computation are a non-issue — all equilibria of a 2-player
zero-sum game are equivalent to the efficiently-computable minimax equilibrium.

4A Polynomial-Time Approximation Scheme (PTAS) is an algorithm which, given any constant
€ > 0, computes an e-approximately optimal solution in time polynomial in the size of the instance.
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Moreover, maximizing one player’s utility can be shown to be no harder than other
natural choices of objective function, such as the social welfare (weighted or un-
weighted).5 An arguably reasonable reading of these results is that a simple and
general characterization of optimal public signaling is unlikely to exist even in the
simplest of multiagent settings.

We mention two other impossibility results in specific game domains which re-
inforce this message. [Emek et al. 2012] show that revenue-maximizing public
signaling in the second price auction (& la example 3.3) is NP-hard, and [Bhaskar
et al. 2016] show that welfare-maximizing public signaling in selfish routing with
linear congestion functions (& la example 3.2) is NP-hard to approximate to within
a multiplicative factor better than 4 — this is the price of anarchy in this setting,

3
and is trivially achievable by the fully-informative scheme.

3.4 Positive Results: Exploiting “Smoothness”

The impossibility results stated in Theorem 3.4 involve constructing games where a
near-optimal signaling scheme must reveal much — but not all — of the information
contained in the state of nature. For example, the reductions in Theorem 3.4 feature
a state of nature which is a random node in an n-node graph, and a near-optimal
scheme must essentially partition the nodes into equivalence classes of size roughly
V/n, in effect revealing roughly half of the bits of information. Informally, this
induces a combinatorial search problem which searches for the “right” half of the
bits to reveal. It is not entirely surprising, therefore, that this problem can be
intractable.

One might wonder if there are natural classes of games in which we can get away
with revealing much less information. This would simplify the search problem,
making it more computationally tractable. This idea is explored by [Cheng et al.
2015], who identify two “smoothness” properties which seem to govern the com-
plexity of near-optimal signaling schemes. Suppose that each state of nature § € ©
is a vector of N “relevant parameters” in a bounded interval — for example, in a
probabilistic single-item auction N may be the number of different bidder types,
and 6; € [0,1] may be the item’s value for bidders of type ¢. Moreover, suppose
that the equilibrium of the game, and therefore the principal’s utility, depend only
on the posterior expectation of each of the relevant parameters. This is the case
in the auction setting (Example 3.3), where risk-neutral bidders bid their expected
value for the (random) item being sold. Finally, suppose that the game is “smooth”
in two respects:

—a-Lipschitz continuity in L*: If each relevant parameter changes by at most ¢,
then the principal’s utility does not decrease by more than ce.

—-Noise stability: Suppose that an adversary corrupts (i.e. changes arbitrarily)
a random subset R of the relevant parameters, where no individual parameter is
in R with probability more than e. The principal’s utility does not decrease by
more than fSe.

51t is clear how this is a special case of weighted welfare. Moreover, multiplying player 2’s utility by
a small constant approximately reduces the problem of maximizing player 1’s utility to maximizing
the unweighted social welfare.
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THEOREM 3.5 [CHENG ET AL. 2015]. Suppose that a game is a-Lipschitz and
B-noise stable in its relevant parameters, and let ¢ > 0 be an approximation pa-
rameter. There is an e-approzimately optimal signaling scheme (in the additive
sense) where each posterior belief is a uniform distribution over (%)? log(g) states
of nature. When a and B are constants, such a scheme can be computed in time
polynomial in the number of states of nature and the number of relevant parameters,
yielding an additive PTAS.

This theorem implies a PTAS for revenue-maximizing signaling in the probabilistic
second-price auction, since the second-price auction is 1-Lipschitz and 2-stable.
For the former, observe that changing bids by no more than e can only change the
second price by at most e. For the latter, if each bid is corrupted to an arbitrary
value with probability at most €, then with probability at least 1 — 2¢ the top two
bids are untouched and the revenue does not decrease.

These two conditions, Lipschitz continuity and noise stability, imply that “small”
posterior beliefs suffice for a near-optimal public signaling scheme. The proof of
this portion of Theorem 3.5 proceeds by decomposing each posterior belief u, of
the optimal scheme into “small” posterior beliefs by sampling; i.e., p, is written as
the average of empirical distributions sampled from it. Sampling from a distribu-
tion over states of nature leads to (a) high-probability small errors in the relevant
parameters, the effect of which is bounded using Lipschitz continuity of the objec-
tive; and (b) low-probability large errors, the effect of which is bounded using noise
stability of the objective.

Once we can restrict attention to small posteriors, the computational task be-
comes tractable. Specifically, computing a near-optimal scheme reduces to a brute
force search over small posterior distributions, using linear programming in order
to assemble the convex decomposition of the prior distribution.

In addition to probabilistic second-price auctions, these ideas have been applied
in [Cheng et al. 2015] to signaling in the voting setting of [Alonso and Cmara
2016a] yielding an approximation scheme, and to derive a quasipolynomial-time
approximation scheme for signaling in normal-form games.

3.5 Future Work and Open Questions

We mention one direction for future work, concerning the extent to which the
restriction to public signals is binding.

OPEN QUESTION 3.6. In what classes of games and objectives is a public signal-
ing policy optimal or near optimal, when evaluated against the optimal policy which
can send private signals?

In other words, when does moving to private signals — which we discuss in Section 4
— not buy the principal additional power? An answer to this question in the special
class of games with no inter-agent externalities and binary actions is provided by
[Arieli and Babichenko 2016] (we discuss their model in detail in Section 4.3).

4. MULTIPLE AGENTS: PRIVATE SIGNALS

We now examine a model which affords the principal the most power, allowing him
to tailor his signal to individual players. As in Sections 2 and 3, we still assume
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that the principal and all the agents share the same common prior on the state
of nature. However, since the principal reveals different information to different
agents, the agents’ posterior beliefs will differ.® Though information structure
design with private signals has not been very thoroughly explored, particularly
algorithmically, most recent applications of private signaling fall under the model
we outline in this section. Specifically, we mention the work of [Taneva 2015]
who characterizes optimal information structures in two-agent two-action games,
[Bardhi and Guo 2016] who study persuading voters in a unanimity election, and
[Arieli and Babichenko 2016; Babichenko and Barman 2016] who study persuading
multiple agents facing a binary action with no inter-agent externalities.

4.1 The Model and Examples

As in Section 3, we have an n-player game of incomplete information G : © x A; X
... X A, — R™ a common prior distribution p € A(©) over states of nature, and
an objective function F : © x A; x ... A, — R. We again adopt the perspective
of a principal who designs and commits to a signaling scheme with the goal of
maximizing F in expectation, but unlike Section 3 this signaling scheme is of the
form ¢ : © = A(X; x ... x X,), where X; is a set of signals intended for player i.
The output of ¢ is a random signal profile (o1, ..., 0y, ), where o; is sent to payer i
via a private channel. Together, G, 1 and ¢ define a Bayesian game.

We present two examples to illustrate the model, and to show how private sig-
naling affords more power to the principal than does public signaling.

EXAMPLE 4.1 (ADAPTED FROM [ARIELI AND BABICHENKO 2016]). As in Fz-
ample 2.1, consider an academic adviser who is writing a recommendation letter
for his student. However, now the student has applied to two fellowship programs,
each of which must decide whether or not to award the student a fellowship funding
part of his graduate education. Suppose that the student can accept one or both
fellowship awards. The adviser, who has enough grant funding for most (but not
all) of his student’s education, gets utility 1 if his student is awarded at least one
fellowship, and 0 otherwise. As in Example 2.1, the student is excellent with proba-
bility 1/3 and weak with probability %, and a fellowship program gets utility 1 from
awarding an excellent student, —1 from awarding a weak student, and 0 from not
awarding the student. Naturally, a fellowship program makes an award if and only
it believes its expected utility for doing so is nonnegative.

Consider the following signaling schemes:

—No Information: Neither program makes the award, and the adviser’s utility is 0.

—Full information: Both programs make the award if the student excellent, and
neither makes the award if the student is weak. The adviser’s expected utility
is 1/3.

—Optimal public scheme: If the student is excellent, the adviser publicly signals
“award”. If the student is weak, the adviser publicly signals “award” or “don’t
award” with equal probability. This scheme is the same as the optimal scheme
for the single-receiver version of this example (Example 2.1), extended to both

6Equally importantly, their higher order posterior beliefs regarding each other are different and
nontrivial.
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Fig. 5. Adapted Pigou Example

recetvers via publicizing the recommendation letter. Therefore, both programs are
simultaneously persuaded to award the student the fellowship with probability 2/3,
and neither makes the award with probability 1/3. The adviser’s expected utility
is 2/3.

—Optimal private scheme: If the student is excellent, the adviser recommends
“award” to both fellowship programs. If the student is weak, the adviser rec-
ommends “award” to one fellowship program chosen uniformly at random, and
recommends “don’t award” to the other. Notice that, from an individual pro-
gram’s perspective this is the same as the previous scheme, the difference being
that the recommendations are anticorrelated when the student is weak. The result
1s that both fellowship programs make the award when the student is excellent,
and exactly one of the programs makes the award when the student is weak. This
yields utility 1 for the adviser.

EXAMPLE 4.2 [CHENG AND XU 2016]. This example concerns non-atomic self-
ish routing, as in Example 3.2. Consider the adaptation of the Pigou routing net-
work (see [Nisan et al. 2007]) depicted in Figure 5. The optimal routing evenly
splits the agents between the x and 1 edges leading to a social cost of %, whereas
the full-information equilibrium routing sends all agents along the x edge leading
to a social cost of 1. Suppose that nature applies a cyclic permutation to the tuple
of congestion functions (x,1,00) — i.e. there are three states of nature. The prin-
cipal can influence the routing by revealing information about the state of nature.
Consider the following signaling schemes.

—No information: The average congestion is 0o, since one third of the agents will
end up using the co edge.

—Full information: The agents avoid the oo edge, and arrive at an equilibrium
routing for the remaining Pigou network. At equilibrium, all travelers use the x
edge, leading to a social cost of 1.

—Optimal public scheme: Though it takes proof, it can be shown that no public
signaling scheme can do better than revealing full information. Intuitively, the
principal’s signal must identify at least one of the non-co edges with certainty,
lest any of the agents use the oo edge.” If both non-oo edges are identified, then
this fizes the cyclic permutation and is equivalent to revealing full information.

"By this we mean that the principal’s signal must allow agents to conclude with certainty that
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If, however, exactly one of the non-0o edges is identified, all agents will use that
edge in order to avoid the oo edge, leading to a social cost of 1 as well.

—Optimal private scheme: The principal identifies one of the non-oo edges to half
the agents, and the other non-oo edge to the other half. In other words, the
principal privately recommends the x edge to a random half of the agents and
privately recommends the 1 edge to the other half, without revealing whether the
recommended edge has congestion function x or 1. FEach agent is persuaded to
follow the recommendation, since deviating from the recommendation lands them
on the oo edge with probability % This is the optimal routing for this network,
and yields a social cost of %.

4.2  Characterization of the Optimal Scheme

In both examples 4.1 and 4.2, the optimal private scheme recommends an action
to each agent, and correlates these recommendations in a manner that optimizes
the principal’s objective. As in the single agent case (Section 2), this is not a
coincidence: a revelation-principle-style argument reveals any signaling scheme is
equivalent® to one which makes persuasive recommendations. In this multi-agent
context, we say a recommendation scheme is persuasive if the agent maximizes his
expected utility by always choosing the recommended action, assuming all other
agents follow the recommendation. Equivalently, a scheme ¢ is persuasive if the
strategy profile where each agent follows the recommendation forms a Bayes-Nash
equilibrium of the Bayesian game (G, u, ).

The above discussion might remind the astute reader of the correlated equilib-
rium. In fact, the joint distribution of action profile and state of nature induced
by a signaling scheme at equilibrium forms what [Bergemann and Morris 2016]
call a Bayes Correlated Equilibrium (BCE). Conversely, every BCE is induced by
some persuasive scheme. Given a game of incomplete information G and a prior
distribution p on states of nature, one way to think of a BCE is as follows: It is
a correlated equilibrium of G when we interpret nature as a player in the game,’
endow the nature player with a trivial (i.e., constant everywhere) payoff function,
and constrain the nature player’s marginal strategy to be equal to p. Therefore,
like in the case of the correlated equilibrium, the space of BCEs can be expressed
by a set of linear inequalities, and optimization over BCEs — equivalently, over
signaling schemes — can be written as a linear program.

The LP for optimizing over BCEs is shown in Figure 6. Here, a ranges over action
profiles, a_; ranges over action profiles of players other than ¢, and 6 ranges over
states of nature. This LP generalizes the single-agent persuasion LP in Figure 1,
modulo a simple change of variables. More interestingly, this LP is the same as the
LP for optimizing over correlated equilibria (see e.g. [Papadimitriou and Rough-
garden 2008]) with the exception of two differences: (a) the nature player has no
incentive constraint, (b) the nature player’s marginal distribution is constrained to

a particular edge does not have congestion function oco; the signal may, however, provide no
information on whether that same edge has congestion function z or 1.

8We say two signaling schemes are equivalent if they induce the same joint distribution of action
profile and state of nature at equilibrium.

9Under this interpretation, G becomes a game of complete information
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max ., ,z(0,a)F(0,a)

s.t.
Zeﬂ_i z(0,ai,a—)[Gi(0,ai,a—;) — Gi(0,a;,a_;)] > 0, fori € [n],a; € Aj,a} € A;.
> e x(0,a) = u(8), for 6 € ©.
z(0,a) >0, for0 € ©,a € A1 X ... X Ap.

Fig. 6. Linear Program for Finding the Optimal Bayes Correlated Equilibrium

equal the prior distribution. A solution z to this LP (a BCE) corresponds to the
persuasive private signaling scheme which, given a state of nature 6, recommends
action profile a with probability zﬁ?ét;)'

This characterization in terms of the Bayes correlated equilibrium exposes the
dual role of an information structure: (1) informing players, which in effect allows
them to correlate their actions with the state of nature, and (2) coordinating players

by serving as a correlating device (as in the correlated equilibrium).

4.3 The Case of No Externalities and Binary Actions

To our knowledge, there has not been much algorithmic work on the use of private
signals to influence agent behavior in multiagent settings. The recent exception is
the private Bayesian persuasion model introduced by [Arieli and Babichenko 2016]
and explored via the computational lens by [Babichenko and Barman 2016]. This
model restricts information structure design to games with two simplifying features:
(1) One agent’s action does not impose an externality (positive or negative) on the
other agents, and (2) each agent has a binary choice of action. The no-externality
assumption implies that each agent’s utility can be written as a function of just
the state of nature € and that particular agent’s action, without any dependence
on the actions of others. The principal’s objective, on the other hand, may depend
arbitrarily on the joint action profile of all the agents (as well as the state of nature).
Since each agent’s action is binary, without loss A; = {0, 1}, the principal’s objective
can be equivalently described by a set function f, where f(S) is the principal’s
utility if S is the set of agents taking action 1. In most natural examples, action
1 corresponds to adoption of an product or opinion, and 0 corresponds to non-
adoption.

This model is illustrated by Example 4.1. The no-externality assumption implies
that the principal faces n different Bayesian persuasion problems, one per agent,
each with a binary action space. However, solving these problems separately can
be suboptimal due to the non-modular dependence of the principal’s objective on
the agents’ actions. In fact, the signaling problem can often be thought of as how
to optimally correlate the solutions to the n (single-agent) Bayesian persuasion
problems in order the maximize the principal’s expected utility. This is indeed the
case for Example 4.1: as a result of the adviser’s submodular objective function, the
optimal scheme anti-correlates the fellowship programs’ actions as much as possible,
subject to maximizing the marginal probability of a fellowship award in both cases.

More generally, the results of [Arieli and Babichenko 2016] demonstrate that a
submodular objective function encourages anticorrelating the agents’ recommen-
dations (as in Example 4.1), and a supermodular objective function encourages
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correlation.!® As an example of the latter, consider changing the adviser’s util-
ity function in Example 4.1 so that the adviser gets utility 1 if both fellowships
are awarded and 0 otherwise; some thought reveals that the public scheme which
persuades both fellowship programs to simultaneously award with probability %
becomes optimal. If the principal’s objective function is modular (a.k.a. linear) in
the set of persuaded agents, such as if the adviser’s utility equals the number of
fellowships awarded, then it is optimal to solve the n Bayesian persuasion prob-
lems separately — i.e., correlation in agents’ actions does not affect the principal’s
utility.

[Babichenko and Barman 2016] go on to examine computing or approximating
the principal’s optimal signaling policy. In the case of a binary state of nature,
they show that the problem of optimally correlating agents’ actions is equivalent to
that of computing the concave closure of the principal’s objective, viewed as a set
function. This makes a lot of sense, since the concave closure of a set function f
maps a profile of marginal probabilities — in our case a probability of persuading
each agent to take action 1 — to the maximum expected value of f for a random
set .S respecting those marginals — in our case, S is the random set of “persuaded”
agents, and the optimal choice correlates or anticorrelates agents’ actions in order
to maximize the expectation of f(S). It is known that the concave closure of a
supermodular function can be computed efficiently (see e.g. [Dughmi 2009]), and it
is shown in [Babichenko and Barman 2016] that the concave closure of a submodular
function can be efficiently approximated to within a factor of —£;, and this is the
best possible assuming P # N P. This connection leads to the following Theorem.

THEOREM 4.3 [BABICHENKO AND BARMAN 2016]. Consider the private Bayesian
persuasion model with a binary action space and binary state of nature. If the prin-
cipal’s objective function is supermodular (or modular), then there is a polynomial-
time optimal signaling scheme. If the principal’s objective function is submodular,
then there is a polynomial-time <5 -approrimately optimal signaling scheme, and
this is the best possible assuming P # N P.

4.4 Future Work and Open Questions

With the exception of the work described in Section 4.3, the computational aspects
of information structure design with private signals remain largely unexplored terri-
tory. For one, [Babichenko and Barman 2016] leave open the natural generalization
of their algorithmic questions to a non-binary state of nature. More generally, it
remains to explore the algorithmics of private signaling in games with inter-agent
externalities and non-binary action spaces.

OPEN QUESTION 4.4. When does private signaling admit simple and computa-
tionally efficient schemes which are optimal or near optimal?

Since the optimal private signaling scheme is the solution to a large linear program
(Figure 6), this question is most interesting when the game is described via some
succinct representation, or given implicitly as an oracle for evaluating the payoff

10Though these characterization results are only formally stated for a binary state of nature, the
conceptual message seems to hold more generally.
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function. One class of games which seems to capture the challenges involved is
the class of non-atomic routing games of incomplete information, illustrated in
Example 4.2.

5. ADDITIONAL MODELS AND EXTENSIONS

This survey attempted to summarize the dominant models in information struc-
ture design, particularly as it relates to recent work which explores computational
aspects of the question. However, we inevitably cannot capture the full breadth of
work in this area. This section briefly describes a selection of models beyond the
three we focus on in this survey.

Motivated by specific applications, a number of works in the computer science
community have explored variants and extensions of the basic models from a com-
putational perspective. A pair of papers consider optimal signaling subject to a
constraint on the amount of communication (i.e., the number of signals): [Dughmi
et al. 2014] consider public signaling subject to a communication constraint in an
auction context, and [Dughmi et al. 2016] study Bayesian persuasion subject to
a communication constraint both in general and in the context of bilateral trade.
Motivated by recommender systems on the Internet, [Kremer et al. 2014; Man-
sour et al. 2015] consider a multi-armed bandit setting and a principal seeking to
persuade a sequence of agents to balance exploration with exploitation over time.
This can be viewed as a repeated game which combines information revelation with
information acquisition, and the principal’s interaction with each individual agent
can be viewed as a Bayesian persuasion problem. Motivated by applications to
security games, [Conitzer and Korzhyk 2011; Xu et al. 2016] consider a Stackelberg
setting where the leader commits to both a mixed strategy and a signaling scheme.
The role of the signaling scheme is to reveal different information to different fol-
lowers about the realization of the leader’s strategy, and in doing so to improve the
leader’s utility.

We restricted attention to a state of nature drawn from a common prior, and a
principal who simply discloses information to agents without soliciting information.
Two recent works have explored relaxing these assumptions for the Bayesian per-
suasion model described in Section 2. [Alonso and Camara 2014] characterize the
optimal signaling scheme when the sender and receiver have different prior distri-
butions. [Kolotilin et al. 2015] consider a privately-informed receiver, and a sender
who first solicits the agent’s information and then selectively signals his own infor-
mation. Under some assumptions, they characterize the optimal combined policy.
To our knowledge, neither of these two generalizations of the Bayesian persuasion
model has been explored algorithmically.

Finally, we mention that a number of related, but importantly different, models
have a long history in the economics community, yet to our knowledge have not been
explored from a computational perspective. Most notably, the literature on cheap
talk does away with the power of commitment, and much of that work analyzes
the equilibria of cheap talk games. Also, the literature on wverifiable information
restricts the principal to signals which are meaningful and “honest” in a precise
sense. We refer the reader to the survey by [Sobel 2010] which compares and
contrasts a variety of these models.
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6. CONCLUSIONS

The past few years have seen an explosion of interest in understanding the effects
of information on strategic interactions. Since information structure design, like
traditional mechanism design, is fundamentally algorithmic, it was inevitable that
computer science would have much to say on the topic. This survey illustrates
how asking computational questions has led to new structural insights in this area.
Moreover, we believe that information structure design has grown into a deep theory
waiting for an application, and simple and efficient algorithms will pave the way
for such impact.

In addition to the open problems mentioned in Sections 2 through 4, there is much
work to be done beyond the three basic models. Specifically, Section 5 suggests a
number of related or more expressive models which have not been subjected to
rigorous examination through a computational lens. We also believe there is room
for experimental work to test the predictive power of this theory. Specifically, to
what extent is signaling effective when deployed against human agents? [Azaria
et al. 2015] examine this question in a single-agent setting (a slight variant of the
Bayesian persuasion model from Section 2), and their findings are encouraging in
the pair of domains they consider. More experimental validation of the predictions
of information structure design, both in single and multiple agent settings, remains
to be done.
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A Report on the Workshop on the Economics of
Cloud Computing

NIKHIL R. DEVANUR
Microsoft Research

This is a report on the first Workshop on the Economics of Cloud Computing, which was held in
conjunction with the ACM conference on Economics and Computation (EC).

1. INTRODUCTION

The digitization of the world’s businesses, and the movement of this digitization into
the cloud is akin to the industrial revolution. It is speculated that cloud computing
will be to businesses what mobile computing has been to consumers. This raises
a whole slew of questions in economics, most of which are deeply entangled with
computer science topics. A half-day workshop on the economic aspets of cloud
computing was held in conjunction with the ACM conference on Economics and
Computation (EC) 2016 in Maastricht. The goal of the workshop was to be the
premier platform to raise the most important research questions, to announce the
latest results, to exchange ideas, to learn and to get feedback on the state-of-the-art
research in this area. The topics of interest for this workshop were broadly set out
to be as follows.

Mowing to the Cloud. How are current businesses impacted by moving to a cloud
enabled world?

New Markets. What new markets emerge as a result of a cloud enabled world?
What new economic models come into play?

Cloud Pricing. What are the different pricing or auction mechanisms to sell cloud
computing resources, and the pros and cons of each?

Cloud provisioning. What are best practices in the process of provisioning all the
requirements for building a datacenter? What economies of scale can be exploited
in running large data centers?

Fair allocation. How should one allocate cloud resources in a fair manner in a
shared multi-tenant system?

There were 2 keynote speakers, Noam Nisan and Simon Wilkie, and 6 contributed
talks. A call for papers for the contributed talks was circulated, and the following
program committee decided which papers are to be presented.

—Nikhil R. Devanur (Program Chair)
—FEric Friedman

—Preston McAfee

—Noam Nisan

Author’s address : nikdev@microsoft.com
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—Eva Tardos

—Adam Wierman

All the details about the workshop can be found at http://wecc.azurewebsites.net/.
We now present short descriptions of the keynote and the contributed talks.

2. TALKS
2.1 Keynotes

Noam Nisan:ERA: A Framework for Economic Resource Allocation for the Cloud.
Noam Nisan from the Hebrew University at Jerusalem opened the talk with his def-
inition of the cloud as a shared computational resource, which is typically a virtual
machine at a remote data center. A well designed cloud system should make the
most efficient use of the shared resources. For instance, flexible jobs should run dur-
ing low congestion times, and the most “valuable” jobs must be run during periods
of over demand. Simple schemes such as pay-as-you-go and dedicated hosts have
obvious inefficiencies. Overcoming these shortcomings requires skills from various
disciplines such as computer systems, algorithms, and economics.

The Economic Resource Allocation (ERA) project is a prototype system that is
meant to expose cloud design issues at the intersection of all these three disciplines.
It is a system for scheduling, reserving and pricing cloud resources. It provides
friendly APIs for two interfaces: one user-facing that accepts requests for reserva-
tions, which are either accepted at a given price, or rejected; the other interfaces
with an existing cloud system and provides it with jobs to run at any point of time.
In between these two interfaces sits the ERA algorithm. The system allows plug-
ging and playing with different algorithms, making it easy to compare and contrast
them.

The prototype was used to provide a proof of concept for the benefits of com-
bining insights from systems, algorithms, and economics. It showed how a simple
economically aware algorithm can significantly improve the efficiency of the system.
It provides a unified simulator and a platform over various cloud systems on which
to test algorithms; this is a useful tool for future research. The main algorithmic
challenges are in predicting future job requests from data, and in making optimal
scheduling decisions from these predictions.

Simon Wilkie: The Price of Privacy in the Cloud, or The Economic Conse-
quences of Mr. Snowden. Simon Wilkie from Microsoft Research spoke about esti-
mating the effect of the Snowden revelations on cloud adoption for US based cloud
providers. The adoption of the cloud among businesses has been on an upward tra-
jectory ever since the inception of large scale cloud providers in the late 2000s. And
then, Snowden’s revelations about NSA’s spying program in 2013 made consumers
who cared about the privacy of their data wary of adopting US cloud providers.
What was the effect of this? How much revenue was lost?

Simon and his co-author (Hyojin Song, Microsoft Research) find answers to these
intriguing questions by using a global panel dataset of cloud revenues. They build
a behavioral model for cloud adoption from the data, and use the non-US based
providers as the “control”. This then lets them estimate the magnitude of the
negative demand shock on US providers due to Snowden. They estimated that
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the growth rate of US providers decreased by about 11%; this equalled about 18
billion USD in lost revenues. The US providers reacted to this decreased demand
by reducing prices, which led to a “price war”. An interesting side effect of this
price war was that the market share of US providers eventually went up.

2.2 Contributed Talks

Cloud Pricing: The Spot Market Strikes Back. The decision on which model to
use for selling cloud resources is a very real and important one for the providers.
[Dierks and Seuken 2016] consider whether offering both a fixed price and a dynamic
(spot) price can increase profits over offering either of these alone. Previous work
by [Abhishek et al. 2012] showed that the answer is that it doesn’t, but based on
an assumption that the provider has access to an infinite pool of resources. This
paper considers the cost of procuring resources, and shows that a hybrid model can
indeed be better for profit. The demand is modeled as a stochastic process similar
to the queueing theory models. The system is assumed to be at an equilibrium
where the supply (the number of servers provisioned) is equal to the demand. (The
expected waiting time of a job is below some threshold.) In the current model,
the idle instances of the fixed price market cannot be sold on the spot market.
Utilizing such idle instances is one of the main attractions of the spot market, and
incorporating this into the model seems an important step.

On-Demand or Spot? Selling the Cloud to Risk-Averse Customers. [Hoy et al.
2016] consider essentially the same quesion as the previous talk, but focus on a risk
averse model of a consumer. A concave curve determines the utility of a consumer
as a function of her surplus. A dual market with both fixed and spot prices works
as follows: bidders first decide whether to reserve an instance using the fixed price
market. The available supply is then sampled from a given distribution. Any
excess supply that remains after allocating all the reserved instances is then sold
through an auction resulting in a spot price. They show how this model explains
the existence of such a dual market by showing increased revenue/welfare/efficiency
compared to markets with a single option.

An alternate direction to tackle this issue of two markets versus one is to consider
time sensitivity of consumers. Consumers whose jobs are time sensitive tend to opt
for a reservation market while others would prefer the lower prices in a spot market.
Another interesting question is how the conclusion is affected by the presence of
competitors who sell imperfect substitutes.

Approzimately Efficient Cost Sharing via Double Auctions. [Fischer et al. 2016]
propose jointly solving the problems of pricing and procurement for cloud resources.
This makes sense since any reasonable objective (welfare/revenue) depends on both
the demand as well as the cost. Solving each of them separately (assuming the
other as fixed), as is done currently, can be sub optimal. They model this as a
cost sharing problem and consider a twist to the standard guarantees by allowing
an additive as well as a multiplicative term for approximating efficiency. They
present a mechanism that is inspired by the double auction of [McAfee 1992]. In
a large market setting, this mechanism attains strategyproofness, budget balance
and approximate (additive 4+ multiplicative) efficiency, thus bypassing previous
impossibility reults. The result is interesting more generally for other cost sharing
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problems as well.

Pretium: Dynamic Pricing and Traffic Engineering for Timely Inter-Datacenter
Transfers. [Jalaparti et al. 2016] consider pricing schemes for data transfers between
data centers. The current standard practice for such transfers is to have a fixed
price per unit of data, but this is inefficient due to the large temporal variation in
the requests. Moreover, it is shown via a survey that customers are quite receptive
to the idea of time-of-use pricing and trading off the timing of their transfers for
the cost of transfers. The paper shows that a dynamic pricing combined with
traffic engineering can significantly increase the efficiency of these systems. The
methodology is empirical: they uses traces of data transfer from a large data center
and replay them under the different schemes. The prices are calculated using the
requests from a reference time window from the past; the optimal dual variables
of a welfare maximizing linear program give market clearing prices. The process
is also shown to limit the users from gaming the system by showing that certain
types of gaming don’t help (both theoretically and empirically). This paper is an
excellent demonstration that simple economic insights can have significant impact
on real systems.

Congestion Games with Mized Objectives. In allocating a shared network band-
width among many users, two different objectives have beens studied: latency, and
bandwidth. In any large data center there are heterogeneous users among whom
some care more about latency (video gaming) while others more about bandwidth
(media streaming). (While latency is typically additive, bandwidth is a min or a
max.) [Feldotto et al. 2016] consider congestion games where the users have differ-
ent utility functions of these two cost measures. They show that when the agent
preferences satisfy a certain monotonicity assumption, a pure Nash equilibrium
always exists. Moreover, a lazy best response dynamics converges to it. In the
absence of this assumption, pure Nash may not exist and finding one is NP-Hard.
Best response dynamics may cycle. An interesting direction for future research
would be to incorporate uncertainties, in preferences as well as realized costs.

Dynamic Games for Market Dominance in the Cloud. Traditionally, providing
an online service involved a big fixed cost for setting up the IT infrastructure and
almost zero marginal cost thereafter. Cloud computing flipped this cost structure
so that it is almost all marginal cost and no fixed cost. Standard competitive
models in economics suggest that this lowers the cost of entry and hence lead
to the market being shared by many competitors. Often, one sees the market
in the technology sector being dominated by one or two companies, contrary to
this prediction. [Conley 2016] seeks to explain this discrepancy by considering the
presence of venture capital funding. The strategies for a venture capital funded
firm and a publicly traded firm differ in that the venture capital funded firm can
be way more aggressive in spending money on advertisements and promotions than
a publicly traded firm. This is because once a venture capitalist commits to a
funding, it becomes rational for the company to spend as much of it as possible
to gain market share, whereas a similar strategy would be irrational for a publicly
traded firm.

The paper introduces an interesting model of competition among firms, and there
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is an opportunity to extend it further to capture other aspects of the real markets.
For instance, while there are a large number of firms entering the market, there
are fewer firms competing for consumers ex post because of either network effects
resulting in a winner-take-all situation, or because their exit strategy is to get
acquired by a bigger firm.

3. CONCLUSION

With cloud computing fast becoming the de facto way for businesses to handle their
IT infrastructure, we expect research into the economic aspects of cloud computing
to grow. Given sufficient interest from the community, the workshop could become
an annual or a biennial fixture at EC, alongside similar workshops such as the one
on ad auctions.
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Bounded and Envy-free Cake Cutting
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Although a finite envy-free cake-cutting protocol has been known for more than twenty years, it
had been open whether a protocol exists in which the number of steps taken by the protocol is
bounded by a function of the number of agents. In this letter, we report on our recent results on
discrete, bounded, and envy-free cake-cutting protocols.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; 1.2.11 [Distributed Artificial Intelligence]:
Multiagent Systems; J.4 [Computer Applications|: Social and Behavioral Sciences—FEconomics

General Terms: Theory, Algorithms, Economics
Additional Key Words and Phrases: Fair allocation, Solutions Concepts, Multiagent resource
allocation, Computational Complexity

1. INTRODUCTION

The cake cutting problem is a fascinating and fundamental mathematical problem
in which the cake is a heterogeneous divisible resource represented by the unit
interval [Brams and Taylor, 1996, Robertson and Webb, 1998]. Each of the n
agents have additive and non-negative valuations over segments of the interval.
The challenge is to query agents about their valuations in an efficient way to find
a fair allocation. Originally formalized by Polish mathematician Hugo Steinhaus
in the 1940’s, the problem has attracted considerable attention in mathematics,
computer science and economics. One of the most important criteria for fairness
is envy-freeness. An allocation is envy-free if no agent would prefer replacing her
allocation with another agent’s. A cake cutting protocol is termed envy-free if
each agent is guaranteed to be non-envious if she reports her real valuations. If a
protocol is envy-free, then an honest agent will not be envious even if other agents
misreport their valuations.

The most famous envy-free cake cutting protocol is Divide and Choose for two
agents: one agent is asked to divide the cake into two equally preferred pieces. The
other agent is then asked to pick her most preferred piece whereas the cutter gets
the remaining piece. In the 1960’s, John Selfridge and John Conway independently
proposed an envy-free protocol for three agents that requires at most five cuts on
the cake. In the early 1990’s, Steven Brams and Alan Taylor invented a general
finite envy-free cake cutting protocol [Brams and Taylor, 1995]. The protocol can
require arbitrary number of steps and cuts on the cake even for four agents. It has
been an open problem whether a four-agent bounded envy-free protocol exists or
not [Brams and Taylor, 1995, Procaccia, 2013, 2016].

This year we presented a four agent envy-free protocol that requires 203 cuts on

Authors’ addresses: haris.aziz@data61l.csiro.au, simonm@andrew.cmu.edu
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the cake and a total of 584 queries [Aziz and Mackenzie, 2016a].! We have now
generalized the protocol to any number of agents [Aziz and Mackenzie, 2016b,c].
In this letter, we give an overview of some of the ideas and building blocks of the
general protocol.

2. ABIRD'S EYE VIEW OF THE PROTOCOL

In a nutshell, the protocol allocates a large enough portion of the cake in an envy-
free manner. After that, it tries to add some small portions of the unallocated cake
to the allocated part in a structured and envy-free manner with the goal to reduce
the problem to envy-free allocation for a smaller number of agents.

A crucial building block of our protocol is the Core Protocol. The Core Protocol
asks one of the n agents—the cutter—to divide the cake into n equally preferred
pieces. It then uses the recursive SubCore Protocol to obtain a neat allocation for
the other agents. In a neat allocation, each agent gets a part of exactly one of the
pieces, one agent gets a full piece, and the agents are not envious of each other or of
the unallocated pieces. The cutter then gets one of the unallocated and untrimmed
pieces.

The SubCore is a general protocol that takes as input agents and pieces of cake
where the number of agents is at most the number of pieces. We order the agents
and find a neat envy-free allocation for an expanding set of agents. Say that we
have found a neat allocation for m — 1 agents. In that case, m — 2 pieces could be
partially allocated but the other pieces are untrimmed. If the m-th agent thinks
that one of the unallocated full pieces is her most preferred, then she is simply given
such a piece. Otherwise, we have a situation where m agents are interested in m —1
‘contested’ pieces. In such a situation one of the m agents has to be given a most
preferred uncontested piece. In order to find such an agent as well as reallocate the
m — 1 contested pieces, we have to do more work and may have to call SubCore
recursively for a smaller number of agents.

In the Core Protocol, the cutter agent gets a full piece. Another agent also gets
a full piece. So from the cutter’s perspective at least 2/n of the cake is allocated by
one call of the Core Protocol. If we call the Core Protocol with a different cutter
each time to further allocate the unallocated cake, we just need n calls of the Core
Protocol to obtain an envy-free allocation in which each agent thinks she gets 1/n
value of the whole cake. This answers an open problem posed by Segal-Halevi et al.
[2015] which asks whether there exists a bounded algorithm that returns envy-free
partial allocation that is proportional (gives each agent value at least 1/n of the
whole cake).

Continuing to call the Core Protocol on the updated remaining cake gives no
guarantee that the cake will be allocated fully even in finite time. Hence, we need
to use other protocols. Throughout the overall protocol, we maintain an envy-free
allocation as well as keep track of the updated unallocated cake.

Since the Core Protocol by itself is not powerful enough to allocate all the cake
in bounded time, we rely on the idea of domination. An agent ¢ dominates another
agent j if she is not envious of j even if the unallocated cake is given to j. The

IWalter Stromquist observed that both the number of cuts and queries can be halved by a simple
adjustment.
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other protocols are used with the following objective in mind: find a set of agents
N\ A C N such that each agent in the set dominates each agent in A C N. In order
to ensure that each agent in some set N \ A dominates each agent in A requires
changing the current allocations of the agents as well as the unallocated cake. While
we make changes to the allocation, we ensure that the current partial allocation
remains envy-free. By identifying such a set N\ A, we reduce the problem to envy-
free allocation for a smaller number of agents. The agents in N \ A are not envious
whatever the unallocated cake is allocated among agents in V.

3. CONCLUSIONS AND OPEN PROBLEMS

In this letter, we provided a very high-level overview of our bounded envy-free
protocol. The protocol has an upper bound that is a power tower of six n’s. In the
other direction, any envy-free protocol requires at least Q(n?) queries [Procaccia,
2016].2 There is a lot of work to be done to close the gap between the current upper
and lower bound.

We additionally show that even if we do not run our protocol to completion, it
can find in at most n calls of the Core Protocol a partial allocation of the cake that
achieves proportionality (each agent gets at least 1/n of the value of the whole cake)
and envy-freeness. It also adds further evidence to the idea popularized by Segal-
Halevi et al. [2015] that wasting some resource can lead to much faster fair division
algorithms. If we allow for partial allocations, an interesting open problem is the
following one: can envy-freeness and proportionality can be achieved in polynomial
number of steps? Finally we mention that it is still open whether a bounded and
envy-free cake cutting protocol exists for the case of where agents have negative
valuations.
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In this letter, we briefly summarize two recent works from our group that use observational
data to study the mechanisms used by two large markets. First, we examine Uber’s surge price
algorithm, and observe that its incentive model may not be effective at changing driver behavior.
Second, we study the adoption of dynamic pricing strategies by sellers on Amazon Marketplace,
and investigate how these strategies interact with Amazon’s “Buy Box” matching algorithm. We
make our data available to the research community.

Categories and Subject Descriptors: K.4.4 [Computing Milieux]: Computers and Society—
Electronic Commerce; J.4 [Computer Applications]: Social and Behavioral Sciences—FEco-
nomics

General Terms: Observational Study, Market Design, Pricing
Additional Key Words and Phrases: Empirical, Amazon, Uber, Ridesharing, Dynamic Pricing

1. INTRODUCTION

Much of the classic literature in economics deals with mechanism design, i.e., the
construction of markets that maximize some useful quantity like revenue or wel-
fare. As commerce has moved online, it has become easier to directly apply these
ideas from economic theory in practice. One obvious example of this are online
advertising auctions, but more broadly, many companies are now experimenting
with differential [Mikians et al. 2012; 2013; Hannak et al. 2014] and dynamic pric-
ing [Chen 2016] strategies in contexts ranging from retail to ridesharing.

Although academics are beginning to propose models for modern e-commerce
platforms [Banerjee et al. 2015; Fang et al. 2016], we lack a comprehensive empir-
ical understanding of the actual mechanisms adopted by companies in their mar-
ketplaces. The opacity surrounding widely used platforms raises fundamental ques-
tions for researchers and consumers: what objectives are these systems optimized
for, and are they achieving these objectives? What features do they consider? Are
the markets fair, and if so, for what definition of fairness?

In our recent work, we attempt to answer these questions through empirical
measurements of major online markets. Using observed data, we quantify the basic
properties of markets over time, such as number of participants and prices. In
some cases, we must develop novel data gathering methodologies to acquire this
information. We then leverage this raw data to infer implementation details of the
markets themselves, e.g., the weights of key features, or how algorithms discretizes
prices across time and physical space. Finally, we examine the implications of
deployed mechanisms on market participants.
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In this letter, we briefly overview two of our recent observational studies of major
online marketplaces:

(1) In [Chen et al. 2015], we examined Uber’s dynamic pricing algorithm, which is
known as “surge pricing”. Using 43 emulated copies of the Uber smartphone
app, we blanketed midtown Manhattan and downtown San Francisco for about
one month in order to collect data about available supply of rides, fulfilled
demand, prices, and estimated wait times. This data enabled us to quantify
the sensitivity of surge prices to fluctuations in supply and demand, as well as
analyze the impact of surges on rider and driver behavior.

(2) In [Chen et al. 2016], we study two types of algorithms on Amazon Market-
place. First, we investigate Amazon’s “Buy Box” algorithm, which determines
the default seller that will fulfill orders for each product in the market. It is
estimated that ~80% of purchases on Amazon go through the Buy Box [Taft
2014], so understanding this algorithm is key to being competitive on Ama-
zon Marketplace. Second, we examine the dynamic pricing strategies adopted
by individual sellers. Although we find that only a small fraction of sellers
have adopted dynamic pricing (and that their strategies are relatively unso-
phisticated), we also observe that algo sellers have a significant competitive
advantage versus non-algo sellers, especially with respect to winning the Buy
Box.

Overall, we view our empirical work as being complementary to theory. Our
data can be used to refine existing models, bound their parameters, or evaluate
their behavior under realistic conditions. More broadly, our observations about the
strategies adopted by businesses in practice can potentially motivate the design
of new models. We make the data and code from many of our studies publicly
available (additional data is available by request) at: http://personalization.
ccs.neu.edu.

2. PEEKING BENEATH THE HOOD OF UBER

In this work [Chen et al. 2015], we examined Uber’s surge pricing system, which
aims to balance the demand for rides with the available supply by varying price
dynamically. In the literature these ridesharing systems are conceptualized as tradi-
tional two-sided platforms [Banerjee et al. 2015; Fang et al. 2016] serving passengers
and drivers. However, in terms of implementation, these systems are untraditional:
rather than having an open marketplace and allowing the two parties to converge
towards equilibrium, ridesharing companies have adopted centralized algorithms
that attempt to balance supply and demand. The closed nature of these rideshar-
ing platforms raises questions about whether the dynamic pricing mechanisms are
efficient and fair.

2.1 Methods and Data Collection

To collect data for our study, we emulated 43 copies of the Uber smartphone ap-
plication. By default, Uber’s app requests fresh data from Uber’s servers every 5
seconds, including: 1) the eight closest available cars to the user (based on GPS
coordinates), 2) the current surge multipliers, and 3) the Estimated Wait Times
(EWTs) for cars. By carefully spoofing the GPS coordinates for our 43 emulated
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A
Fig. 1: Uber measurement points in downtown

San Francisco. Fig. 2: Uber surge area map for the Bay Area.

users, we were able to place them in a grid throughout a target city, thus enabling
us to passively collect data that covered the entire area. Figure 1 shows the mea-
surement grid we used to collect data from downtown San Francisco. Furthermore,
we were able to observe when each car became unavailable, which implies that ei-
ther the driver had logged-off from Uber, or that they accepted a ride request. This
enabled us to place an upper-bound on fulfilled demand.

Using our methodology, we collected data from midtown Manhattan between
April 3-17, 2015, and from downtown San Francisco between April 18-May 2,
2015. Additionally, before collecting data at scale, we performed trials to make
sure that our emulated users did not induce surge pricing. In these tests, we placed
all 43 emulated users at a single, remote GPS coordinate late at night, and did not
observe any surge pricing for one hour. We repeated this trial many times at many
locations, and never observed surge prices.

2.2 Surge Pricing Algorithm

Based on our observed data, we are able to draw several conclusions about Uber’s
surge pricing mechanism. The system divides each city into areas (that we suspect
are statically defined by human operators), and updates the surge multiplier for
each area at five minute intervals. Figure 2 shows the surge areas for a subset of
the San Francisco Bay Area.

If we treat surge prices as a time series and calculate the cross-correlation versus
other variables, we observe statistically significant correlations between surge prices,
available supply, and fulfilled demand at a time delta of -5 minutes. This suggests
that Uber’s algorithm calculates the surge price s;(a) at time ¢ in area a using the
supply and demand from area a measured over the previous five minute interval.
While this demonstrates that Uber’s dynamic pricing algorithm is highly responsive,
it also means that surge prices are quite noisy (60% of surges last <10 minutes in
our data).

2.3 Incentives

One of our most interesting findings concerns the incentives of the surge pricing
system. Recall that Uber’s goal is to equalize supply and demand by increasing
the former (by incentivizing drivers with high prices) and decreasing the latter.
To understand if drivers and customers are responding to these incentives in the
expected way, we model the behavior of each Uber driver as a discreet-time Markov
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Fig. 3: Example Buy Box from Fig. 4: Observed algorithmic seller that consistently underprices
Amazon Marketplace. other sellers by several cents.

chain, where the state of a driver at time ¢ + 5 minutes is determined by its state
at t. In this model, “state” encompasses the physical location of the car and the
surge prices in all areas containing and surrounding the driver. Possible state
transitions include remaining stationary, accepting a ride request, or driving into
an adjacent area. Using this model, we calculate the probability of state transitions
at times when all areas have equal surge prices and when exactly one area of the
city has surge multiplier >0.2 higher than all other areas (i.e., drivers have a strong
monetary incentive to travel to the surging area).

Our results paint a complicated picture of Uber’s dynamic pricing system. As
expected, we find that high surge multipliers reduce demand. Bookings decrease
by 7% on average in the surging area (compared to when it is not surging), while
drivers that do not get booked increases by 14%. However, we also find that drivers
are 13% less likely to drive into the area that is surging (compared to times when
all surge multipliers are equal); in fact, the number of drivers who leave the surging
area increases by 14%! These results suggest that the surge mechanism is not
effective at incentivizing drivers. Our findings echo qualitative findings by Lee et
al. who interviewed Uber drivers, and found that veteran drivers find it futile to
“chase the surge” [Lee et al. 2015]. Our results also stand in contrast to Uber’s
own with respect to the benefits of the surge system [Hall and Krueger 2015].

3. ALGORITHMIC PRICING ON AMAZON MARKETPLACE

In this study [Chen et al. 2016], we examine two separate types of algorithms
on Amazon Marketplace. First, we examine Amazon’s Buy Box algorithm. This
algorithm determines, for each product in the Marketplace, which seller’s offer price
will be shown to customers (and consequently, which seller makes the sale when the
product is purchased). Figure 3 shows an example of the Buy Box for a product.
In essence, the Buy Box algorithm functions as a matching mechanism between
buyers and sellers in the Marketplace, and therefor it must balance the interests of
customers (low prices, good service), third party sellers (revenue), and Amazon itself
(revenue, overall health of the platform). However, despite the critical importance
of the Buy Box algorithm, little is known about it beyond online folk wisdom.
Second, we investigate dynamic pricing strategies adopted by sellers on Amazon
Marketplace. Amazon offers APIs that allow sellers to track competitors’ prices
in real-time and respond with their own price changes. Theoretically, sellers may
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also adopt strategies that increase their chances of winning the Buy Box. Although
subscription-based tools like Feedvisor and Sellery have made dynamic pricing tools
widely available to third party sellers on Amazon, it is unclear how widely dynamic
pricing has been adopted, or what strategies are used by sellers.

3.1 Data Collection

To bootstrap our study, we crawled roughly four months of data from Amazon
Marketplace. We chose 1000 best-selling products that were each offered by >1
seller, and crawled them every 25 minutes. Each time the crawler visited a product,
it recorded the seller and price in the Buy Box, as well as up-to two additional pages
of sellers offering that product (each page contains up-to 10 sellers, sorted roughly
from low-to-high price). We chose to wait 25 minutes between crawls and limit
the number of seller pages visited as a tradeoff between recency and completeness:
Amazon implements strict rate limits, so more frequent visits (or more pages per
visit) would have forced us to crawl fewer products overall. Furthermore, we could
not use Amazon’s APIs to collect data since the only way to get price updates for
products is to list them for sale. We crawled data in two phases, between September
15-December 8, 2014, and between August 11-September 21, 2015.

3.2 The Buy Box

To investigate the features behind the Buy Box algorithm, we trained a Random
Forest (RF) classifier to predict Buy Box winners (given a list of offers for a specific
product). The intuition behind this process is that if we can train an accurate
predictor, then it is likely that the feature weights in our model correspond closely
to those used by the actual Buy Box algorithm. We input seven features into RF
classifier, including each sellers’: offer price relative to the lowest offer for the given
product, average customer rating, positive feedback percentage, and enrollment in
the Fulfilled By Amazon (FBA) program.

After performing 10-fold cross validation, we found that our RF classifier was able
to predict Buy Box winners with 75-85% accuracy (depending on the total number
of offers for a given product). In contrast, a simple predictor that always chooses the
seller with the lowest offer only achieves 50-60% accuracy. This demonstrates that
our RF classifier does a reasonable job of approximating the Buy Box algorithm,
and that price alone is not the sole feature used by the true algorithm. Indeed,
by examining the Gini coefficients associated with features in our RF model, we
find that while the price feature has the highest weight, customer feedback also has
significant weight.

3.3 Dynamic Pricing

To identify sellers on Amazon that use dynamic pricing, we look for sellers whose
offer prices have high correlation over time with a specific target price time series.
Example targets include the lowest overall price for a given product, or Amazon’s
offer price for that product. Intuitively, this methodology attempts to identify
sellers whose offer price is pegged to an observable benchmark over time.

Using this methodology, we identify XXX sellers who we are confident have
adopted dynamic pricing. Although this only represents 2.4% of the sellers in
our dataset, their listings cover 51% of the products we crawled. 70% these algo
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sellers choose to peg their offer price within $1 above the lowest available price for
each product. However, despite setting higher prices than competitors, we observe
that algo sellers much more likely to win the Buy Box than non-algo sellers. This
clearly demonstrates that sellers who adopt automation are at a competitive ad-
vantage versus sellers who do not. Finally, we note that algo sellers are responsible
for the vast majority of price and Buy Box changes on Amazon Marketplace; we
even observe a small number of products with thousands of price changes over the
course of a month.

4. CONCLUSION

As commerce moves online, the opportunities to construct fluid, dynamic market-
places increase. In some cases, like online display advertising, the structure and
mechanisms in these new markets are relatively well understood. However, in other
cases, like ridesharing and e-commerce, the algorithms being adopted by industry
are opaque.

The overarching goal of our work is to increase the transparency of algorithms
in online markets. This can help consumers and producers make more informed
choices about how to best optimize their behavior on these platforms. We also
hope that our work is beneficial to the theory community, as a starting point for
evaluating existing models, or even motivating new designs.
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We study the dynamic pricing problem faced by a firm selling differentiated products. At each
period, the firm receives a new product, which is described by a vector of features. The firm needs
to choose prices, but it does not know a priori the market value of the different features. We first
consider an algorithm that we call POLYTOPEPRICING, but prove that it incurs worst-case regret
that scales exponentially in the dimensionality of the feature space. We then consider a closely
related algorithm, ELLIPSOIDPRICING, and show it incurs low regret with regards to both the time
horizon and the dimensionality of the feature space. For more details, we refer the reader to our
full paper.

1. INTRODUCTION

In this letter, we briefly survey the results of our recent paper, [Cohen et al. 2016].
We also discuss recent developments in the literature surrounding our paper.

We consider an online market where a firm sells highly differentiated products
to its buyers. In each period, a new product arrives and the selling firm must set
a price for it. Each product is characterized by a vector of features (or contexts)
that determine its market value. The firm knows the features of the products,
but it does not know a priori the value of the different features. Our paper aims
to understand what is a good pricing policy for balancing learning and earning in
such a contextual setting.

Our problem is motivated by online markets such as Airbnb and the market for
online ads. In these markets, every product is unique in its attributes. In the
case of Airbnb, a product is a stay in a particular listing on a specific date. The
features therefore represent both characteristics of the listing, such as location and
amenities, as well as the check-in/check-out dates. In the market for online ads,
a product is an impression which is sold to potential advertisers. The features
that determine the market value of an impression include the IP address and the
relevant cookie data, which might contain information such as gender, age and
browsing history.

Authors’ addresses: maxime.cohen@stern.nyu.edu, ilobel@stern.nyu.edu,
renatoppl@google.com
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2. THE MODEL

Consider a seller that receives products in an online fashion. At every period
t =1,...,T, a new product arrives with a set of features z; € X C R? such that
[|z]|]2 < 1. The market value of each feature is given by v; = €'z, where 6 is
a d-dimensional vector unknown to the seller. The seller chooses a price p; as a
function of z;. If the seller chooses a price below or equal to vy, a sale occurs and
she earns p;. If the seller chooses a price p; above v;, no transaction occurs.

The seller knows initially only that 6 belongs to a bounded convex set K7, where
[10]]2 < 1. If a sale occurs at time ¢, the seller updates her uncertainty set according
to Ky1=K;N{0 €R?: ¢'z; > p;}. Similarly, if a sale does not occur at time ¢,
the seller updates her uncertainty set following K;,; = K; N {0 € R?: 0z, < p;}.
The seller’s problem is to choose a pricing policy that minimizes her worst-case
regret, which is given by:

T
/ /
REGRET = 961?11?){(%} ; {9 xy — pe {0’z > pt}] (1)
Our model assumes that both 6 and the feature vectors {z;} are chosen adversarially
by nature. Good policies under this metric would therefore be robust to changes
or seasonal fluctuation in the pattern of arrival of the feature vectors over time.

The model as described above assumes a linear deterministic relationship between
the features and the market values. We also briefly discuss below how to address
more general market value functions, including both noisy valuation models and
some commonly used nonlinear models.

3. CONTEXTUAL PRICING ALGORITHMS

If the seller knew the value of 6, she could maximize her revenue by simply choosing
py = 0'x; at each period. However, since the seller does not know the value of 0,
she must balance exploration and exploitation. Since the optimal decision at each
period depends on a context vector x;, our problem is a special case of a contextual
bandit problem ([Auer 2003]). We could therefore use an off-the-shelf algorithm
for contextual bandits, such as [Agarwal et al. 2014]. Such an algorithm would
have suboptimal performance (polynomial rather than logarithmic regret in T)
since it does not take advantage of the underlying linear structure of our pricing
problem. Consequently, our aim is to construct an algorithm for this problem with
good performance with respect to both the time horizon T and the dimensionality
d. Our first attempt is a multidimensional version of binary search that we call
POLYTOPEPRICING.

The PolytopePricing Algorithm. At each period ¢, we have access to the vector
of features x; and we know that 8 € K;. A natural first question is to ask whether
we can predict the value v; = 6’x; with reasonable accuracy. The lowest and highest
possible values of v; are given by:
b, = min 02, and by = max 0 ;.

bek, beK,
For a given accuracy parameter € > 0, we can say that we know the value of v;
with e-accuracy if and only if by — b, <e.
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This gives rise to a parameterized algorithm POLYTOPEPRICING (€). If b;—b, < e,
then we should choose an exploit price since we know the market value of product
t with e-accuracy. The natural choice for an explore is p; = b, since no price above
this level guarantees a sale. If by — b, > ¢, then we should use an explore price. A
natural explore price is the one inspired by binary search: p; = (b; + b,)/2.

Unfortunately, as shown in Theorem 1 below, this algorithm does not scale well
with the dimensionality of the feature space. This algorithm becomes problematic
in high dimensions because the explore price might remove too small a fraction of
the uncertainty set.

THEOREM 1. For any parameter e > 0, the algorithm POLYTOPEPRICING suffers
worst-case regret 2(1.29).

The EllispoidPricing Algorithm. A natural follow-up question is whether we
can “fix” POLYTOPEPRICING by ensuring that we remove a sufficiently large volume
of the uncertainty set per explore period. A way to accomplish this objective is
to borrow ideas from the ellipsoid method from optimization theory ([Khachiyan
1979)).

The ELLISPOIDPRICING algorithm works exactly as the POLYTOPEPRICING, ex-
cept it has an additional step. At the end of each period ¢, we replace our convex
set K; by its Lowner-John ellipsoid E;. The Lowner-John ellipsoid of a convex
set is the smallest ellipsoid that contains that set. It turns out that this simple
modification to the algorithm is sufficient to ensure a good regret performance.

THEOREM 2. The worst-case regret of the ELLIPSOIDPRICING algorithm with
parameter € = d?/T is O(d*In(T/d)).

To prove Theorem 2, we combine two ideas. From the work of Khachiyan, we
know that an algorithm that iteratively cuts an ellipsoid and then replaces the
remaining half-ellipsoid by its own Léwner-John ellipsoid yields an exponentially
fast volume reduction. This idea alone is not sufficient to prove our result since
our theorem requires us to control the radii of the ellipsoid too, not merely the
volume. Note that bounding the radii of the period ¢ ellipsoid allows us to bound
the difference by — b,, and thus determines the accuracy of our knowledge of the value
of v;. This now brings us to the second part of the proof. Building on the linear
algebra machinery of [Wilkinson 1965], we prove that the radii of our ellipsoids
never become too small. This follows from the fact that our algorithm never uses
an explore price in a direction that is already small; it uses an exploit price instead.

The ELLIPSOIDPRICING algorithm not only has a good worst-case regret guaran-
tee, it is also computationally efficient. Both key operations — optimizing a linear
function over an ellipsoid and finding the Lowner-John ellipsoid of a half-ellipsoid
— require only matrix-vector multiplications.

Nonlinear and noisy market values. The model above assumes the market
value is a deterministic linear function of the feature vector. Our algorithm can be
extended to more general models. If the market value function can be expressed
as vy = f(0'P(xy)), where f is a non-decreasing Lipschitz continuous function and
[lo(-)|]2 < 1, then Theorem 2 still applies up to the Lipschitz constant.

If the market value is a noisy function of the feature vector, i.e., vy = 6’z +§; for
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a noise term d;, then we need to slightly modify the ELLIPSOIDPRICING algorithm
before applying it. The key idea here is to add a safety margin when updating the
uncertainty set. Instead of cutting the ellipsoid through its center, we can cut the
ellipsoid in a way that leaves more than half of the original volume. This is called
a shallow cut. In [Cohen et al. 2016], we show the details of how shallow cuts can
be used to handle both bounded adversarial noise and i.i.d. Gaussian noise.

4. RECENT DEVELOPMENTS IN THE LITERATURE

There is a large body of literature on dynamically adjusting prices both with and
without contextual information. We refer to [Cohen et al. 2016] for an extensive
discussion. Here, we focus on papers that have appeared in the last few months
and modify the model of [Cohen et al. 2016] in interesting new directions.

Lower bound. One natural question is whether our ELLIPSOIDPRICING algorithm
has optimal regret. The answer is no. [Kleinberg and Leighton 2003] showed that
in a one-dimensional (non-contextual) version of our problem, the optimal regret is
O(InlnT). The best known lower bound for our problem is thus Q(dInlnT).

In recent work, [Lobel et al. 2016] make progress towards closing this gap by
showing that there exists an algorithm that incurs O(d1n(dT")) worst-case regret.
This algorithm also runs in polynomial time, but is far more complex and harder to
implement than ELLIPSOIDPRICING. It requires computing approximate centroids
of high-dimensional sets as well as projecting and cylindrifying polytopes.

Stochastic versions. Another direction is to consider a stochastic version of
our model, as opposed to our adversarial framework. This approach harks back
to [Amin et al. 2014], who proposed using stochastic gradient descent. Recently,
different authors have taken this problem in very different directions. [Javanmard
and Nazerzadeh 2016] show that a regularized maximum likelihood algorithm can
be used to solve this problem and obtain strong performance bounds as a function
of the sparsity of the feature space. In a different direction, [Qiang and Bayati
2016] show that a method as simple as greedy least squares regression performs
well since the contexts (or covariates in their paper) ensure the seller performs
sufficient exploration.
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Settling the Complexity of Computing
Approximate Two-Player Nash Equilibria

AVIAD RUBINSTEIN
UC Berkeley

In our recent paper [Rubinstein 2016] we rule out a PTAS for the 2-Player Nash Equilibrium
Problem. More precisely, we prove that there exists a constant € > 0 such that, assuming the
Exponential Time Hypothesis for PPAD, computing an e-approximate Nash equilibrium in a two-

player n x n game requires time nlog’°Mn This matches (up to the o (1) term) the algorithm
of Lipton, Markakis, and Mehta [Lipton et al. 2003].

Categories and Subject Descriptors: F.2 [ANALYSIS OF ALGORITHMS AND PROB-
LEM COMPLEXITY]:

General Terms: Algorithms; Economics, Theory

Additional Key Words and Phrases: Nash equilibrium; Computational complexity; PPAD

Introduction

Equilibrium is a ubiquitous assumption for modeling non-cooperative game, as
well as markets, traffic, biospheres, and many other systems. Once players are
at equilibrium they have no incentive to deviate. But how do they arrive at an
equilibrium in the first place? This question has been studied by economists for
over half a century (e.g. [Brown 1951; Robinson 1951; Lemke and Howson 1964;
Scarf 1967]), but a general recipe is yet to be found. In recent decades, it was
considered under the Lens of Computation by looking at the surrogate: “is there
an efficient algorithm for computing an equilibrium?” Breakthrough results of
[Daskalakis et al. 2009] and [Chen et al. 2009] proved that such an algorithm does
not exist (assuming PPAD # P). Furthermore, if a central, specially designed
algorithm fails to find an equilibrium, it is even less likely that distributed, selfish
agents will naturally converge to one. This puts the entire solution concept in
doubt.

For the past decade, the main open question in this field was whether the com-
putational intractability results extend to approximate equilibria. We had good
reasons to hope that they don’t, i.e. that two-player Nash admits a PTAS: there
was a series of improved approximation factors in polynomial time [Kontogiannis
et al. 2009; Daskalakis et al. 2009; 2007; Bosse et al. 2010; Tsaknakis and Spirakis
2008] and several approximation schemes for special cases [Kannan and Theobald
2007; Daskalakis and Papadimitriou 2009; Alon et al. 2013; Barman 2015]. Yet
most interesting are two inefficient algorithms for two-player Nash:

—the classic Lemke-Howson algorithm [Lemke and Howson 1964] finds an exact
Nash equilibrium in exponential time; and
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—a simple algorithm due to [Lipton et al. 2003] finds an e-Approximate Nash

Equilibrium in time n©Ucgn)

Although the Lemke-Howson algorithm takes exponential time, it has a special
structure which places the problem inside the complexity class PPAD [Papadim-
itriou 1994]; i.e. it has a polynomial time reduction to the canonical problem
ENDOFALINE:

Definition 1 (ENDOFALINE [Daskalakis et al. 2009]). Given two circuits S and
P, with m input bits and m output bits each, such that P (0™) = 0™ # S (0™),
find an input z € {0,1}" such that P (S (z)) # z or S (P (z)) # x # 0™.

Proving hardness for problems in PPAD is notoriously challenging because they
are total, i.e. they always have a solution, so the standard techniques from NP-
hardness do not apply. By now, however, we know that exponential and polynomial
approximations for two-player Nash are PPAD-complete [Daskalakis et al. 2009;
Chen et al. 2009], and so is e-approximation for games with n players [Rubinstein
2015b].

e-approximation for two-player Nash is unlikely to have the same fate: otherwise,
the quasi-polynomial algorithm of [Lipton et al. 2003] would refute the Exponential
Time Hypothesis for PPAD:

HypoTHESIS 2 (ETH FOrR PPAD [BABICHENKO ET AL. 2016]). Solving END-
OFALINE requires time 2(™) 1

Thus the strongest hardness result we can hope to prove (given our current
understanding of complexity) is a quasi-polynomial hardness that sits inside PPAD,
and this is precisely the main result of [Rubinstein 2016]:

THEOREM 3 (2 PLAYERS [RUBINSTEIN 2016]). There exists a constant € > 0
such that, assuming ETH for PPAD, finding an e-Approximate Nash Equilibrium

) . ) i-o(1)
in a two-player n x n game requires time T (n) = n'°® ",

Quasi-fine-grained Complexity

Two-player Nash equilibrium belongs to a growing class of fundamental prob-
lems that admit a quasi-polynomial time approximation algorithms, and also have
matching conditional lower bounds on the running time. Those include problems
of relevance to the SIGecom community, such as e-best e-Nash equilibrium [Braver-
man et al. 2015; Deligkas et al. 2016], Densest k-subgraph [Braverman et al. 2017;
Manurangsi 2016], signaling in a zero-sum game [Rubinstein 2015a; Bhaskar et al.
2016], and community detection [Rubinstein 2017].

For all of those problems, the birthday repetition framework [Aaronson et al.
2014] gives a reduction size of N ~ 2V Assuming the exponential time hypothesis
(ETH) [Impagliazzo et al. 2001], approximating 3-SAT requires time T' (n) ~ 2" ~
N'"°&N: hence the quasi-polynomial lower bound. The same blowup in instance size
occurs in the proof of Theorem 3.

Unfortunately, it is not clear how to apply the birthday repetition framework
to Nash equilibrium because we don’t have an equivalent of the PCP Theorem for

1As usual, n is the size of the description of the instance, i.e. the size of the circuits S and P.
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PPAD. (But recently [Babichenko et al. 2016] conjectured what a “PCP for PPAD”
could look like - and proving it remains an important open problem.) The actual
proof of Theorem 3 in [Rubinstein 2016] circumvents this obstacle and does not ex-
plicitly use birthday repetition. As a result, it is quite involved and requires tools
from the studies of PCP, locally decodable codes, pseudorandomness, etc. In par-

ticular, this is the first time that such ideas are used for hardness of approximation
inside PPAD.

Can almost everyone be almost happy?

An e-Approximate Nash Equilibrium (e-ANE) is a (mixed) strategy profile for which
each player plays an e-best response; i.e. she can gain at most (an additive) e by
deviating. This is the standard and most-studied notion of approximate Nash
equilibrium, and it is indeed very natural for two-player games. However, for some
settings with many players, requiring that the e-best response condition holds for
every player may be too restrictive. Recently, [Babichenko et al. 2016] introduced a
more relaxed notion of (e, §)-WeakNash Equilibrium, where we only require that a
(1 — §)-fraction of the players play e-best response, while the remaining J-fraction
may play arbitrarily.

En route to proving Theorem 3 we obtain impossibility results for the latter
WeakNash relaxation:

THEOREM 4 (n PLAYERS [RUBINSTEIN 2016]). There exist constants €,§ > 0
such that finding an (e, 6)-WeakNash Equilibrium...

Query Complexity. requires 22" oracle calls to the payoff tensor; and

Computational Complexity. is PPAD-hard given a succinct description of the
payoff tensor.

We note that the former result on query complexity resolves an open question posed
by Hart and Nisan [Hart and Nisan 2013], Babichenko [Babichenko 2016], and Chen
et al. [Chen et al. 2017]. Furthermore, in subsequent joint work with Babichenko
[Babichenko and Rubinstein 2016], we extend this result to a lower bound on com-
munication complexity (where each player knows her own utilities).
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