
Interactive Proof System Variants and Approximation Algorithms for
Optical Networks

by

Ravi Sundaram

B. Tech., IIT Madras India (1991)
S.M., MIT Cambridge USA (1993)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1996

@ Massachusetts Institute of Technology 1996. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

May 03, 1996

Certified by....
Michael Sipser

Professor of Mathematics
Thesis Supervisor

Accepted by ... -,, ,,... - V...-1. 5."- --------..- --* .. *..

F. R. Morgenthaler
Chai artment Committee on Graduate Students

M,ASSACH'USEfTS NsWI-,
OF TECHN;ILOr'GY

JUL 16 1996

LIBRARIES

Interactive Proof System Variants and Approximation Algorithms for Optical

Networks

by

Ravi Sundaram

Submitted to the Department of Electrical Engineering and Computer Science
on May 03, 1996, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The discovery of a surprising connection between interactive proof systems and nonapproximability of com-
binatorial optimization problems has given great impetus to the field of theoretical computer science. In this
thesis we focus on the class of optimization problems arising from the design and use of optical networks and
some alternate models of interactive proof systems.

Optical networks are increasingly coming to be regarded as the technology of choice for the next gen-
eration of wide-area backbone networks. The two issues of algorithmic importance that arise here are: (a)
designing good networks, and (b) (once the network has been designed) devising good routing algorithms.

Optical networks must be designed to minimize the total cost of fiber. The network must also satisfy the
additional constraint that every site is serviced, i.e., every site is within a prespecified distance of an optoelec-
tronic access node. We propose a general and robust bicriteria network design framework for modeling and
solving such multiobective optimization problems e.g., diameter-constrained minimum-cost Steiner tree prob-
lem, service-constrained minimum-cost Steiner tree problem, etc. We give efficient approximation algorithms
and corresponding hardness of approximation results. These results also have applications to the problem of
designing networks capable of carrying multimedia traffic in a multicast environment.

We consider routing algorithms that conserve bandwidth both at a local and a global level. All-optical
wavelength-division multiplexed networks employ Latin routers for assigning wavelengths to routes. We
present fast algorithms for maximizing wavelength utilization at Latin routers. We also consider the problem
of wavelength conservation on topologies such as trees and fixed networks.

The hardness of approximation results we obtain for the above problems derive from standard interactive
proof systems. In an attempt to develop superior lower bounds, we study alternate models of interactive proof
systems. The standard model posits a situation in which the provers collaborate in their attempt to convince the
verifier. We consider a variant to this situation - one in which the provers compete against each other. There
are two possible models here: (a) an informationally symmetric model, and (b) an informationally asymmetric
model. We study both these models and obtain characterizations of the language classes accepted by them in
terms of more standard classes.

Thesis Supervisor: Michael Sipser
Title: Professor of Mathematics

Acknowledgments

'1ihe time has come," Mike Sipser said
"To talk of many things

Papers, postdocs and making tracks
Fiber-optics and rings

And why the job market is tgqht
And the money it brings."

"'Your advice, your guidance," I cried
"'Deeply grateful for that.

9Your insight, your intuition -
I just take off my hat.

And though Igraduate, I hope
W4e continue to chat."

Alea, I wilf miss you the most.
Squash games, our daily run,

Tihe problems solved, papers written,
Foreign trips - so much fun;

Eight peaks over eight thousand metres.
Wte wif climb at least one.

I thank Steve, Adi, Eric, Andrew Chou,
Woof, and Marcos Kiwi,

Mike KfCugerman, Ravi CKumar.
Other friends you do not see.

Onfy those names you read above
That with this rhyme agree.

Madhav, Achla, little Darrburr,
Nooks, Satyan, Anu, and pSki

R. Ravi, Chaks, and Mauricio -
I thank - Ron and Shafi

Although busy, agree they did
To be on my committee.

Appa, Amma, and Radha - thanks
CYou support a/f I do.

"0 Reader - this acknowledgement
I did write just for you.

The rest of this boring thesis
4Wif make you turn blue."

Contents

1 Introduction 13

1.1 Optical Networks 13

1.1.1 Design 14

1.1.2 Routing 15

1.2 Approximations and Nonapproximability: A Brief History 15

1.3 Competing Provers 16

1.4 Summary of Thesis 17

2 Bicriteria Network Design Problems 19

2.1 M otivation 19

2.2 Summary of Results 20

2.2.1 General Graphs 21

2.2.2 Treewidth-Bounded Graphs 23

2.3 Previous Work 23

2.3.1 General Graphs 23

2.3.2 Treewidth-Bounded Graphs 24

2.4 Hardness results 25

2.5 Bicriteria Formulations: Properties 26

2.5.1 Robustness 27

2.5.2 Generality 29

2.6 Parametric Search 30

2.7 Diameter-Constrained Trees 32

2.8 Treewidth-Bounded Graphs 36

2.8.1 Exact Algorithms 37

2.8.2 Fully Polynomial-Time Approximation Schemes 38

2.8.3 Near-Optimal Broadcast Schemes 41

2.9 Concluding Remarks 42

3 Service-Constrained Network Design Problems

3.1 Motivation

3.2 Summary of Results

3.3 Previous Work

3.4 Different Cost Functions

3.4.1 Hardness

3.5 Identical Cost Functions

3.5.1 Approximation Algorithm

3.5.2 Hardness

3.6 Diameter and Bottleneck

3.7 Service-Constrained Generalized Steiner Forest

3.8 Concluding Remarks

4 Optical Routing

4.1 Latin routers: Local Bandwidth Conservation

4.1.1 Motivation

4.1.2 Summary of Results

4.1.3 Previous Work

4.1.4 Preliminaries

4.1.5 Greedy Algorithms

4.1.6 Approximation Algorithms Based

4.1.7 Branch and Bound Algorithm .

4.1.8 Experimental Results

4.1.9 Extending Blocked PLSs

4.1.10 Concluding Remarks

4.2 Network: Global Bandwidth Conservation

4.2.1 Motivation

4.2.2 Summary of Results

4.2.3 Previous Work

4.2.4 Preliminaries

4.2.5 Constant Size Graphs

4.2.6 Constant Degree Trees

4.3 Concluding Remarks

on Matching

. . . , ,

5 Asymmetric Alternation in Interaction

5.1 M otivation

5.1.1 Summary of Results

.
: : : : : :

' ' '

5.2 Previous Work

5.3 Two-Alternating-Prover Proof Systems for NP . .

5.3.1 The Robust Simulation Protocol

5.4 Two-Alternating Randomized Prover Proof Systems

5.5 Alternating-Oracle Proof Systems for EP

5.6 Feige and Kilian lemmas

5.7 Alternating-Prover Proof Systems for EP

5.7.1 Achieving Low Error Rates . . .

5.7.2 Fixing the Quantifiers

5.7.3 Comments

5.8 Concluding Remarks

6 Symmetric Alternation

6.1 Motivation

6.2 Summary of Results

6.3 Previous Work ...

6.4 Containment Results

An Oracle Separating

Concluding Remarks

......................

......................

......................

.....
Monotone Sp and Monotone EP n II .

°.....................°

.

.

.

.

79

81

83

85

87

89

90

91

97

100

101

103

103

103

104

104

107

110

List of Figures

1-1 Example of an all-optical wavelength routing network 13

1-2 Example of optical switch and port assignment 14

1-3 A 4 x 4 LS . 15

2-1 Reduction from the PARTITION problem to (Diameter, Total cost, Spanning tree) for series

parallel graphs 25

2-2 Reduction from the MIN SET COVER problem to (Diameter, Total cost, Steiner tree) prob-

lem. 27

3-1 Optoelectronic switches linked by a network. 46

3-2 Database copies linked by a network. 46

3-3 Skeleton-graph with the c-costs indicated above the edges and the d-costs indicated below. . 53

4-1 A 4 x 4PLS ... 60

4-2 A4x4LS 60

4-3 BlockedPLSs with n entries 63

4-4 BlockedPLSswith [--] entries 64

4-5 A worst-case scenario for the matching algorithm 68

4-6 Experimental evaluation of the algorithms 70

4-7 Performance of algorithms when initial density = 50% 70

4-8 Reduction to a binary directed tree 75

Chapter 1

Introduction

1.1 Optical Networks

Developments in fiber-optic networking technology using wavelength division multiplexing (WDM) have fi-

nally reached the point where it is considered the most promising candidate for the next generation of wide-

area backbone networks. These are projected to be highly flexible networks capable of supporting tens of thou-

sands of users and providing capacities on the order of gigabits-per-second per user [CNW90, Gre92, Ram93].

Figure 1-1: Example of an all-optical wavelength routing network

The WDM optical network is a pure data transmission medium. All the computing and processing contin-

ues to be done in the electronic world. The typical optical network consists of routing nodes interconnected

by point-to-point fiber-optic links (See Fig. 1-I). The large bandwidth available in these fiber-optic links is

utilized by partitioning it into several channels each at a different optical wavelength [BH92, CNW90, IEE93,

IK92]. A point-to-point channel between two nodes on a specific wavelength (e.g., the channel between A

and B on wavelength 1 in Fig.1-1) is referred to as a lightpath. The routing nodes or optical switches (See

Fig. 1-2 are capable of setting up these lightpaths employing photonic switching [CB95, CGK92, ZA94].

The dynamic assignment of wavelengths, from an incoming port to an outgoing port of an optical switch, is

controlled electronically.

The deployment of fiber-optic technology on a large scale for use in long-haul wide-area networks has

brought into sharp relief questions related to the design and use of these networks.

Output Ports
Switch S 1 2 3 4

1

2

4

Figure 1-2: Example of optical switch and port assignment

1.1.1 Design

The design of optical networks is an issue of great algorithmic importance. Standard network design algo-

rithms fail to provide effective solutions since the design of optical networks for wide-area backbones often

involves the simultaneous minimization of multiple measures under different cost functions. Network design

problems where even one cost measure must be minimized are often NP-hard [GJ79a]. We illustrate the na-

ture of these multicriteria problems by providing two specific examples.

An important issue in interfacing these two worlds - the electronic and the optic - is that of designing the

optical network subject to location-based constraints imposed by the electronic world. Given a set of sites in a

network we wish to select a subset of the sites at which to place optoelectronic switches and routers [KRS96b].

The major requirement is that every site should be within a prespecified distance (under one cost measure)

from an optoelectronic access node and the chosen sites should be connected together using fiber-optic links

as a minimum cost tree (under another cost measure).

The carrying of multimedia (both audio and video) traffic is one of the primary uses of these wide-area

networks. Our second example is motivated by this application. The total cost of the fiber is an important

measure that must be minimized. In addition, since multimedia data needs to be delivered in real time, the

point-to-point transmission delay must be minimized. As argued in [KPP92a], one of the popular solutions to

this problem involves tree construction where two optimization criteria - (a) the minimum worst-case trans-

mission delay, and (b) the minimum total cost - are sought to be minimized.

Motivated by the above examples, we consider a general and robust framework in which to study both

multicriteria optimization problems as well as the quality of approximation algorithms.

1.1.2 Routing

Bandwidth is a very valuable resource in WDM optical networks. The problem of finding an optimal assign-

ment of wavelengths to requests is of fundamental importance in bandwidth utilization. We consider the prob-

lem of conserving bandwidth both at the level of an individual switch and at the level of the network.

Conflict-free wavelength routing in wide-area optical networks is achieved by utilizing Latin routers [BH93].

These are routing devices that employ the concept of a Latin square (LS) (See Fig. 1-3). A partial Latin square

L is an n x n matrix with entries from the set {0} U{ 1, 2, ... , n} such that no nonzero number is repeated

twice in the same row or in the same column. Latin squares naturally model the state of optical switches with

the (i, j)-th entry denoting that wavelength Lij is routed from input port i to output port j (0 is used as a place-

holder to denote emptiness). The requirement that there be no wavelength conflict at the input or output ports

is captured in the property that no value repeats in any row or column. We consider the question of conserving

bandwidth at these Latin routers.

1243

2431

3124

Figure 1-3: A 4 x 4 LS

We also consider the problem of wavelength utilization across the entire network. Though the total number

of wavelengths is limited, nevertheless, it is possible to build a wide-area optical network by spatial reuse of

wavelengths. For instance there are only three usable wavelengths in Fig. 1-1, yet it is still possible to set up

all the shown interconnections by using wavelength 1 both for the A - B and C - D routes. We show that

the problem of minimizing the total number of wavelengths used is solvable for constant degree undirected

trees and constant size networks but is hard for constant degree directed trees.

1.2 Approximations and Nonapproximability: A Brief History

The last few years have seen major advances in our understanding of performance guarantees for approxima-

tion algorithms for NP-hard combinatorial optimization problems. Essentially for the twenty years following

the path-breaking work of Cook [Coo71], Karp [Kar72], and Levin [Lev73], there was no progress. Recently

new techniques have been developed for proving that certain approximation algorithms are unlikely to exist.

This in turn has spurred significant recent advances in the design and analysis of approximation algorithms.

We present a short summary of the history of work in this area.

Computational complexity was born in a 1965 paper of Hartmanis and Stearns [HS65]. Edmonds [Edm65]

formulated the notion of polynomial time P by defining an efficient algorithm to be one that runs in time

polynomial in the size of the input. Nondeterministic time assumed significance when Cook [Coo71] showed

that satisfiability is as hard as any other problem in NP, nondeterministic polynomial time. Soon after, Karp

[Kar72] showed that a number of well-known combinatorial problems also shared this property. Since these

problems, which include traveling salesman, clique, set cover, and others, have great practical significance,

the P vs NP question has become the most famous open problem of theoretical computer science.

Following the recent discovery of NP-completeness, Johnson [Joh74b, Joh74a] suggested that one ap-

proach to coping with the intractability of a problem is to design and analyze approximation algorithms. He

considered a variety of problems that have since become the central questions of the area. This work of John-

son was followed by a spate of approximation algorithms for a bunch of combinatorial optimization problems

[Hoc95].

In the mid-to-late 1980s the spate of approximation results had slowed to a trickle. But there was ex-

citement on the other side of the fence in the complexity theory community. Interactive proof systems were

coming to be established as a significant area of study. This line of research owed its origins to both the notions

of probabilistic computations [Gil77] and modern cryptography [DH76]. The formal interactive proof system

model was developed concurrently by Goldwasser, Micali, and Rackoff [GMR85] and Babai [Bab85]. Great

excitement was aroused by the discovery of a most surprising connection between interactive proof systems

and approximation algorithms by Feige, Goldwasser, Lovasz, Safra, and Szegedy [FGL+91a]. This line of

research culminated in the celebrated result of Arora, Lund, Motwani, Sudan, and Szegedy [ALM+92a] that

all languages in NP can be accepted by a verifier with access to logarithmic randomness and only a constant

number of answer bits. Improved hardness of approximation results were obtained by a number of researchers

for clique, 3-SAT, set cover and a host of other problems. We do not attempt to detail the current state of this

area since it is in a rapid state of flux.

1.3 Competing Provers

We proved hardness of approximation results for the problems obtained from the area of optical networks by

reductions from set cover and standard interactive proof systems. However, the hardness factors obtained do

not quite match the factors obtained by the corresponding approximation algorithms. In an attempt to improve

the hardness factors we study alternate models of interactive proof systems.

The standard study of multi-prover interactive proof systems have concentrated on cooperating provers.

These are systems in which a verifier interacts with a set of provers who collaborate in their attempt to convince

the verifier that a word is in a prespecified language. Results on probabilistically checkable proofs coupled

with parallel repetition techniques characterize NP in terms of multi-prover proof systems: languages in NP

can be verified through a one round interaction with two cooperating provers using limited randomness and

communication.

Less attention has been paid to the study of competition in the complexity theoretic setting of interactive

proof systems. An interesting question is the following: consider one-round proof systems where the first

prover is trying to convince the verifier to accept and the second prover is trying to make the verifier reject.

What class of languages is characterized by this system? There are two possible models here - (a) an informa-

tionally symmetric model, and (b) an informationally asymmetric model. It is an interesting problem to study

these two systems with a view to obtaining a characterization of the classes of languages accepted, in terms

of more conventional complexity classes. The ultimate hope of this endeavor is to obtain new and improved

hardness results from these proof system variants.

1.4 Summary of Thesis

In Chapter 2, motivated by applications to construction of optical networks, we study a general class of bicri-

teria network design problems. A generic problem in this class is as follows: given an undirected graph and

two minimization objectives (under different cost functions), with a budget specified on the first, find a sub-

graph from a given subgraph class that minimizes the second objective subject to the budget on the first. We

consider three different criteria - the total edge cost, the diameter, and the maximum degree of the network.

We present the first polynomial-time approximation algorithms for a large class of bicriteria network design

problems for the above mentioned criteria.

In Chapter 3 we continue our study of optical network design problems in the bicriteria framework set up

in Chapter 2. We focus on the following problem (and its variants): find a low-cost network, under one cost

function, that services every node in the graph, under another cost function, (i.e., every node of the graph is

within a prespecified distance from the network). This study has important applications to the problems of

optical network design and the efficient maintenance of distributed databases.

In Chapter 4 we consider the problem of conserving bandwidth on optical networks. These networks incor-

porate optical switches that employ the concept of Latin routers [BH93] for assigning wavelengths to routes.

The issue of maximizing wavelength utilization at these switching devices is of great importance since it leads

to significant improvements in overall network performance [CB95]. We present two fast approximation al-

gorithms for the problem of maximizing wavelength utilization at Latin routers. These algorithms are easily

implementable and have very small constants in their running times making them eminently suitable for actual

use in real-world optical switches. We provide strong experimental evidence to show that, in practice, these

algorithms are near-optimal. We also consider the problem of conserving bandwidth across the entire network

as opposed to just optimizing at the level of a router. We present a polynomial-time algorithm for this problem

on fixed constant-size topologies. We combine this algorithm with ideas from Raghavan and Upfal [RU94]

to obtain an optimal assignment of wavelengths on constant degree undirected trees. Mihail, Kaklamanis and

Rao [MKR95] posed the following open question: what is the complexity of this problem on directed trees?

We show that it is NP-hard even for constant degree directed trees.

In Chapter 5 we consider one-round proof systems where the first prover is trying to convince the verifier

to accept and the second prover is trying to make the verifier reject. We build into these proof systems a crucial

asymmetry between the provers. We show that such proof systems capture, with restrictions on communication

and randomness, languages in NP. We generalize this model by defining alternating prover proof systems.

We show that they characterize every level of the polynomial hierarchy. Alternating oracle proof systems are

also examined. We provide the first exact characterization of the polynomial hierarchy in terms of interactive

proof systems.

In Chapter 6 we introduce the natural class SP containing those languages which may be expressed in

terms of two symmetric quantifiers. This class lies between AP and EP n HII and naturally generates a

"symmetric" hierarchy corresponding to the polynomial-time hierarchy. We demonstrate, using the proba-

bilistic method, new containment theorems for BPP. We show that MA (and hence BPP) lies within SP,

improving the constructions of [Sip83, Lau83] (which show that BPP C EP n IIP). Symmetric alternation

is shown to enjoy two strong structural properties which are used to prove the desired containment results. We

offer some evidence that SP $ EP n II by demonstrating an oracle so that S, 'O : E',O n I~',O assuming

that the machines make only "positive" oracle queries.

This thesis contains the results of four published papers and three unpublished manuscripts. Chapters 2

and 3 are based on [MRS+95] and [MRS96], respectively, and represent joint work with Madhav Marathe, R.

Ravi and others. Chapter 4 is based on [KRS96a], [KRS96b], and [KPRS96] and is joint research with Ravi

Kumar, Rina Panigrahy, and Alex Russell. Chapter 5 is based on joint research with Marcos Kiwi, Carsten

Lund, Alex Russell, and Dan Spielman,[KLR+94]. Chapter 6 is joint work with Alex Russell [RS95].

Chapter 2

Bicriteria Network Design Problems

2.1 Motivation

With the information superhighway fast becoming a reality, the problem of designing networks capable of

accommodating multimedia (both audio and video) traffic in a multicast (simultaneous transmission of data

to multiple destinations) environment has come to assume paramount importance [Cho91, FWB85, KJ83,

KPP92a, KPP92b, KPP93]. Fiber-optic networks are increasingly coming to be seen as the technology of

choice for these networks. As argued in [KPP92a], one of the popular solutions to multicast routing involves

tree construction. Since optical networks are circuit switched (as opposed to conventional networks that are

packet switched) two optimization criteria under two very different cost functions come into play. The two

optimization criteria are - (a) the minimum worst-case transmission delay, and (b) the minimum total con-

struction cost. The issue of minimizing transmission delay takes on additional importance since multimedia

data must be transmitted in real-time.

Network design problems where even one cost measure must be minimized, are often NP-hard [GJ79a].

But, in real-life applications, it is often the case that the network to be built is required to minimize multiple

cost measures simultaneously, with different cost functions for each measure. For example, as pointed out in

[KPP92a], in the problem of finding good multicast trees, each edge has associated with it two edge costs:

the construction cost and the delay cost. The construction cost is typically a measure of the amount of buffer

space or channel bandwidth used and the delay cost is a combination of the propagation, transmission, and

queueing delays.

Such multi-criteria network design problems, with separate cost functions for each optimization criterion,

also occur naturally in VLSI designs (see [ZPD94] and the references therein). With the advent of deep mi-

cron VLSI designs, the feature size has shrunk to sizes of 0.5 microns and less. As a result, the interconnect

resistance, being proportional to the square of the scaling factor, has increased significantly. An increase in

interconnect resistance has led to an increase in interconnect delays thus making them a dominant factor in the

timing analysis of VLSI circuits. Therefore VLSI circuit designers aim at finding minimum cost (spanning or

Steiner) trees given delay bound constraints on source-sink connections.

The above applications set the stage for the formal definition of multicriteria network design problems. We

explain this concept by giving a formal definition of a bicriteria network design problem. A generic bicriteria

network design problem, (A, B, S), is defined by identifying two minimization objectives, A and B, from a

set of possible objectives, and specifying a membership requirement in a class of subgraphs, S. The problem

specifies a budget value on the first objective, A, under one cost function, and seeks to find a network having

minimum possible value for the second objective, B, under another cost function, such that this network is

within the budget on the first objective. The solution network must belong to the subgraph class S. For ex-

ample, the problem of finding low-cost and low-transmission-delay multimedia networks [KPP92a, KPP93]

can be modeled as the (Diameter, Total cost, Spanning tree)-bicriteria problem: given an undirected graph

G = (V, E) with two different weight functions ce (modeling the construction cost) and de (modeling the

delay cost) for each edge e E E, and a bound D9 (on the total delay), find a minimum c-cost spanning tree

such that the diameter of the tree under the d-costs is at most D. It is easy to see that the notion of bicriteria

optimization problems can be easily extended to the more general multicriteria optimization problems. In this

chapter, we will be mainly concerned with bicriteria network design problems.

In the past, the problem of minimizing two cost measures was often dealt with by attempting to minimize

some combination of the two, thus converting it into a unicriterion problem. This approach often fails, es-

pecially when the two criteria are very disparate. Therefore we have chosen to model bicriteria problems as

that of minimizing one criterion subject to a budget on the other. We argue that this approach is both general

as well as robust. It is more general because it subsumes the case where one wishes to minimize some func-

tional combination of the two criteria. It is more robust because the quality of approximation is independent

of which of the two criteria we impose the budget on. We elaborate on this more in Sections 2.5.1 and 2.5.2.

The organization of the rest of the chapter is as follows: Section 2.2 summarizes the results obtained in this

chapter; Section 2.3 discusses related research work; Section 2.4 contains the hardness results; Section 2.5.1

shows that the two alternative ways of formulating a bicriteria problem are indeed equivalent; Section 2.5.2

demonstrates the generality of the bicriteria approach; Section 2.6 details the parametric search technique;

Section 2.7 presents the approximation algorithm for diameter constrained Steiner trees; Section 2.8 contains

the results on treewidth-bounded graphs; Section 2.9 contains some concluding remarks and open problems.

2.2 Summary of Results

In this chapter, we study the complexity and approximability of a number of bicriteria network design prob-

lems. The three objectives we consider are: (a) total cost, (b) diameter, and (c) degree of the network. These

reflect the price of synthesizing the network, the maximum delay between two points in the network and the

reliability of the network, respectively. The Total cost objective is the sum of the costs of all the edges in the

subgraph. The Diameter objective is the maximum distance between any pair of nodes in the subgraph. The

Degree objective denotes the maximum over all nodes in the subgraph, of the degree of the node. The class

of subgraphs we consider in this chapter are mainly Steiner trees (and hence Spanning trees as a special case);

although several of our results extend to more general connected subgraphs such as generalized Steiner trees,

etc.

As mentioned in [GJ79a], most of the problems considered in this chapter are NP-hard for arbitrary in-

stances even when we wish to find optimum solutions with respect to a single criterion. Given the hardness of

finding optimal solutions, we concentrate on devising approximation algorithms with worst case performance

guarantees. Recall that an approximation algorithm for a minimization problem HI provides a performance

guarantee of p if for every instance I of II, the solution value returned by the approximation algorithm is

within a factor p of the optimal value for I. Here, we extend this notion to apply to bicriteria optimization

problems. An (a, /3)-approximation algorithm for an (A, B, S)-bicriteria problem is defined as a polynomial-

time algorithm that produces a solution in which the first objective (A) value, is at most a times the budget,

and the second objective (B) value, is at most 3 times the minimum for any solution that is within the budget

on A. The solution produced must belong to the subgraph class S. Analogous definitions can be given when

A and/or B are maximization objectives.

2.2.1 General Graphs

Table 1 contains the performance guarantees of our approximation algorithms for finding spanning trees, S,

under different pairs of minimization objectives, A and B; asterisks indicate results obtained in this chapter;

-y > 0 is a fixed accuracy parameter. For each problem cataloged in the table, two different costs are specified

on the edges of the undirected graph: the first objective is computed using the first cost function and the second

objective, using the second cost function. The rows are indexed by the budgeted objective. For example the

entry in row A, column B, denotes the performance guarantee for the problem of minimizing objective B

with a budget on the objective A. All the results in Table 1 extend to finding Steiner trees with at most a

constant factor worsening in the performance ratios. For the diagonal entries in the table the extension to

Steiner trees follows from Theorem 6. ALGORITHM DCST of Section 2.7 in conjunction with ALGORITHM

BICRITERIA-EQUIVALENCE of Section 2.5.1 yields the (Diameter, Total cost, Steiner tree) and (Total cost,

Diameter, Steiner tree) entries. The other nondiagonal entries can also be extended to Steiner trees and these

extensions will appear in the journal versions of [RMR+93, Rav94]. Our results for arbitrary graphs can be

divided into three general categories.

Cost Measures Degree Diameter Total Cost

Degree (O(log n), O(log n))* (O(log2 n), O(log n))[Rav94] (O(log n), O(log n))[RMR+ 93]

Diameter (O(log n), O(log2 n))[Rav94] (1 + y, 1 + 1)* (O(log n), O(log n))*

Total Cost (O(log n), O(log n))[RMR+93] (O(log n), O(log n))* (1 + 7, 1 + 1)*

Table 1. Performance Guarantees for finding spanning trees in an arbitrary graph on n nodes.

First, as mentioned before, there are two natural alternative ways of formulating general bicriteria prob-

lems: (i) where we impose the budget on the first objective and seek to minimize the second, and (ii) where we

impose the budget on the second objective and seek to minimize the first. We show that an (a, 3)-approximation

algorithm for one of these formulations naturally leads to a (P, a)-approximation algorithm for the other. Thus

our definition of a bicriteria approximation is independent of the choice of the criterion that is budgeted in the

formulation. This makes it a robust definition and allows us to fill in the entries for the problems (B, A, S)

by transforming the results for the corresponding problems (A, B, S).

The diagonal entries in the table follow as a corollary of a general result (Theorem 6) which is proved

using a parametric search algorithm. The entry for (Degree, Degree, Spanning tree) follows by combining

Theorem 6 with the O(log n)-approximation algorithm for the degree problem in [RMR+93]. In [RMR+93]

they actually provide an O(log n)-approximation algorithm for the weighted degree problem. The weighted

degree of a subgraph is defined as the maximum over all nodes of the sum of the costs of the edges incident

on the node in the subgraph. Hence we actually get an (O(log n), O(log n))-approximation algorithm for the

(Weighted degree, Weighted degree, Spanning tree)-bicriteria problem. Similarly, the entry for (Diameter,

Diameter, Spanning tree) follows by combining Theorem 6 with the known exact algorithms for minimum di-

ameter spanning trees [CG82, RSM+94]; while the result for (Total cost, Total cost, Spanning tree) follows by

combining Theorem 6 with an exact algorithm to compute a minimum spanning tree [Kru56, Pri57]. Theorem

6 is very general. Given any p-approximation algorithm for minimizing the objective A in the subgraph class

S, Theorem 6 allows us to produce a (2p, 2p)-approximation algorithm for the (A, A, S)-bicriteria problem.

Consider, for example, the conjunction of this theorem with the results of Goemans et al [GGP+94]. This

leads to a host of bicriteria approximation results when two costs are specified on edges for finding minimum-

cost generalized Steiner trees, minimum k-edge connected subgraphs, or any other network design problems

specified by weakly supermodular functions. Thus for example, we get (0(1), O(1))-approximation algo-

rithms for the (Total cost, Total cost, Generalized Steiner tree) and (Total cost, Total cost, k-edge connected

subgraph)-bicriteria problems. (See [AKR95, GW92, KV94] for the results on the corresponding unicriterion

problems.) Similarly, given an undirected graph with two costs specified on each node we can get logarithmic

approximations for the minimum node-cost Steiner tree using the result of Klein and Ravi [KR95]. As another

example, with two edge-cost functions, and an input number k, we can use the result of Blum et al. [BRV96]

to obtain an (0(1), O(1))-approximation for the minimum cost (under both functions) tree spanning at least

k nodes.

Finally, we present a cluster based approximation algorithm and a solution based decomposition technique

for devising approximation algorithms for problems when the two objectives are different. Our techniques

yield (O(log n), O(log n))-approximation algorithms for the (Diameter, Total cost, Steiner tree) and the (De-

gree, Total cost, Steiner tree) problems'.

1 The result for (Degree, Total cost, Steiner tree) can also be obtained as a corollary of the results in [RMR+93].

2.2.2 Treewidth-Bounded Graphs

We also study the bicriteria problems mentioned above for the class of treewidth-bounded graphs. Examples

of treewidth-bounded graphs include trees, series-parallel graphs, k-outerplanar graphs, chordal graphs with

cliques of size at most k, bounded-bandwidth graphs, etc. We use a dynamic programming technique to show

that for the class of treewidth-bounded graphs, there are either polynomial-time or pseudopolynomial-time

algorithms (when the problem is NP-complete) for several of the bicriteria network design problems studied

here. Recall that a polynomial time approximation scheme (PTAS) for problem II is a family of algorithms

A such that, for all c > 0, given an instance I of II, there is a polynomial time algorithm A E A that returns a

solution which is within a factor (1+E) of the optimal value for I. A PTAS in which the running time grows as

a polynomial function of e is called a fully polynomial time approximation scheme (FPAS). Here we show

how to convert these pseudopolynomial-time algorithms for problems restricted to treewidth-bounded graphs

into FPASs using a general scaling technique. Stated in our notation, we obtain PTASs with performance

of (1, 1 + E), for all E > 0. The results for treewidth-bounded graphs are summarized in Table 2. As before,

the rows are indexed by the budgeted objective. All algorithmic results in Table 2 also extend to Steiner trees

in a straightforward way.

Our results for treewidth-bounded graphs have an interesting application in the context of finding optimum

broadcast schemes. Kortsarz and Peleg [KP95] give O(log n)-approximation algorithms for the minimum

broadcast time problem for series-parallel graphs. Combining our results for the (Degree, Diameter, Spanning

tree) for treewidth-bounded graphs with the techniques in [Rav94], we obtain an O(logn)-approximation

algorithm for the minimum broadcast time problem for treewidth-bounded graphs (series-parallel graphs have

a treewidth of 2), improving and generalizing the result in [KP95].

Cost Measures Degree Diameter Total Cost

Degree

polynomial-time polynomial-time polynomial-time

Diameter (weakly NP-hard) (weakly NP-hard)

polynomial-time (1, 1 + E) (1, 1 + C)

Total Cost (weakly NP-hard) (weakly NP-hard)

polynomial-time (1, 1 + E) (1, 1 + E)

Table 2. Bicriteria spanning tree results for treewidth-bounded graphs.

2.3 Previous Work

2.3.1 General Graphs

The area of unicriterion optimization problems for network design is vast and well-explored (See [Hoc95,

CK95] and the references therein.). Ravi et al. [RMR+93] studied the degree-bounded minimum cost span-

ning tree problem and provided an approximation algorithm with performance guarantee (O(log n), O(log n)).

Though they were doing bicriteria optimization they did not state it as such in their paper.

The (Degree, Diameter, Spanning tree) problem was studied in [Rav94] in the context of finding good

broadcast networks. There he provides an approximation algorithm for the (Degree, Diameter, Spanning tree)

problem with performance guarantee (O(log2 n), O(log n)) 2.

The (Diameter, Total cost, Spanning tree) entry in Table 1 corresponds to the diameter-constrained mini-

mum spanning tree problem introduced earlier. It is known that this problem is NP-hard even in the special

case where the two cost functions are identical [HLCW89]. Awerbuch, Baratz, and Peleg [ABP90] gave an

approximation algorithm with (0(1), 0(1)) performance guarantee for this problem - i.e., the problem of

finding a spanning tree that has simultaneously small diameter (i.e., shallow) and small total cost (i.e., light),

both under the same cost function. Khuller, Raghavachari, and Young [KRY95] studied an extension called

Light, approximate Shortest-path Trees (LAST) and gave an approximation algorithm with (0(1), 0(1)) per-

formance guarantee. Kadaba and Jaffe [KJ83], Kompella et al. [KPP92a], and Zhu et al. [ZPD94] consid-

ered the (Diameter, Total cost, Steiner tree) problem with two edge costs and presented heuristics without

any guarantees. It is easy to construct examples to show that the solutions produced by these heuristics in

[ZPD94, KPP92a], can be arbitrarily bad with respect to an optimal solution. A closely related problem is

that of finding a diameter-constrained shortest path between two pre-specified vertices a and t, or (Diameter,

Total cost, s-t path). This problem, termed the multi-objective shortest path problem (MOSP) in the literature,

is NP-complete and Warburton [War87] presented the first FPAS for it. Hassin [Has92] provided a strongly

polynomial FPAS for the problem which improved the running time of Warburton [War87]. This result was

further improved by Philips [Phi93].

The (Total cost, Total cost, Spanning tree)-bicriteria problem has been recently studied by Ganley et al.

[GGS95]. They consider a more general problem with more than two weight functions. They also gave ap-

proximation algorithms for the restricted case when each weight function obeys triangle inequality. However,

their algorithm does not have a bounded performance guarantee with respect to each objective.

2.3.2 Treewidth-Bounded Graphs

Treewidth-bounded graphs were introduced by Robertson and Seymour [RS86]. Many NP-hard problems

have exact solutions when attention is restricted to the class of treewidth-bounded graphs and much work

has been done in this area (See [ACPS93, ALS91, BLW87] and the references therein). Independently, Bern,

Lawler and Wong [BLW87] introduced the notion of decomposable graphs. Later, it was shown [ACPS93] that

the class of decomposable graphs and the class of treewidth-bounded graphs are equivalent. Bicriteria network

design problems restricted to treewidth-bounded graphs have been previously studied in [ALS91, Bod88].

2 The result in [Rav94] is actually somewhat stronger - given a budget, D, on the degree he finds a tree whose total cost is at most
O(log n) times the optimal and whose degree is at most O(D log n + log 2 n).

2.4 Hardness results

The problem of finding a minimum degree spanning tree is strongly NP-hard [GJ79a]. This implies that all

spanning tree bicriteria problems, where one of the criteria is degree, are also strongly NP-hard. In contrast, it

is well known that the minimum diameter spanning tree problem and the minimum cost spanning tree problems

have polynomial time algorithms [CG82, HLCW89, Kru56, Pri57, RSM+94].

The (Diameter, Total Cost, Spanning tree)-bicriteria problem is strongly NP-hard even in the case where

both cost functions are identical [HLCW89]. Here we give the details of the reduction to show that (Diameter,

Total Cost, Spanning tree) is weakly NP-hard even for series-parallel graphs (i.e., graphs with treewidth at

most 2 [Bod92]). Similar reductions can be given to show that (Diameter, Diameter, Spanning tree) and (Total

cost, Total cost, Spanning tree) are also weakly NP-hard for series-parallel graphs.

We first recall the definition of the PARTITION problem [GJ79a]. As an instance of the PARTITION

problem we are given a set T = {tt, t2 , -t -, t,} of positive integers and the question is whether there exists

a subset X C A such that E ti = tj = (tj)/2.
tiCX tjET-X tjET

Theorem 1 (Diameter, Total cost, Spanning tree) is NP-hard for series-parallel graphs.

Proof: Reduction from the PARTITION problem. Given an instance T = {th, t 2 , -- , t,} of the PARTI-

TION problem, we construct a series parallel graph G with n + 1 vertices, vl, v2 , .. • v+l1 and 2n edges. We

attach a pair of parallel edges, e! and e2, between vi and vi_, 1 < i < n. We now specify the two cost

functions f and g on the edges of this graph; c(eý) = ti, c(e?) = 0, d(el) = 0, d(e?) = ti, 1 < i < n (see

Figure 2-1). Let E ti = 2H. Now it is easy to show that G has a spanning tree of d-diameter at most H and
ti ET

total c-cost at most H if and only if there is a solution to the original instance T of the PARTITION problem.

c(e) = t i

d(e) = 0

V V
n+1

......... ----
c(e = 0

d(e =t i

Figure 2-1: Reduction from the PARTITION problem to (Diameter, Total cost, Spanning tree) for series par-
allel graphs.

We now show that the (Diameter, Total-cost, Steiner tree) problem is hard to approximate within a loga-

rithmic factor. This is in contrast to the approximation algorithm provided in Section 2.7. There is however a

V

gap between the results of Theorems 3 and 9. Our non-approximability result is obtained by an approximation

preserving reduction from the MIN SET COVER. An instance (T, X) of the MIN SET COVER problem

consists of a universe T = {t1 , t 2,... , t } and a collection of subsets X = {X1, X 2, ... , Xm }, Xi C T,

each set Xi having an associated cost ci. The problem is to find a minimum cost collection of the subsets

whose union is T. Recently Feige [Fei96] has shown the following non-approximability result:

Theorem 2 Unless NP C DTIME(nlog log n), the MIN SET COVER problem, with a universe of size k,

cannot be approximated to better than a In k factor

Theorem 3 Unless NP C DTIME(nlog log n), given an instance of the (Diameter, Total Cost, Steiner tree)

problem with k sites, there is no polynomial-time approximation algorithm that outputs a Steiner tree of di-

ameter at most the bound D, and cost at most R times that of the minimum cost diameter-D Steiner tree, for

R < Ink.

Proof: The following is an approximation preserving reduction from the MIN SET COVER problem to the

(Diameter, Total Cost, Steiner tree) problem. Given an instance (T, X) of the MIN SET COVER problem

where T = {tt, t2,... , tk} and X = {X1, X 2 ,... , Xm}, Xi c T, where the cost of the set Xi is ci, we

construct an instance G of the (Diameter, Total Cost, Steiner tree) problem as follows. The graph G has a node

ti for each element ti of T (there is a mild abuse of notation here but it should not lead to any confusion.), a

node xi for each set Xi, and an extra "enforcer-node" n. For each set Xi, we attach an edge between nodes n

and xi of c-cost ci, and d-cost 1. For each element ti and set Xj such that ti E Xj we attach an edge (ti, xj)

of c-cost, 0, and d-cost, 1. In addition to these edges, we add a path P made of two edges of c-cost, 0, and

d-cost, 1, to the enforcer node n (See Fig. 2-2. The c-cost of the edges are shown. All these edges have d-cost

of 1.). All other edges in the graph are assigned infinite c and d-costs. The nodes ti along with n and the two

nodes of P are specified to be the terminals for the Steiner tree problem instance. We claim that G has a c-cost

Steiner tree of diameter at most 4 and cost C if and only if the original instance (T, X) has a solution of cost

C.

It is easy to see that any Steiner tree of diameter at most 4 must contain a path from ti to n, for all i, that

uses an edge (xj, n) for some Xj such that ti E Xj. Hence any Steiner tree of diameter at most 4 provides a

feasible solution of equivalent c-cost to the original Set cover instance. The proof follows from Theorem 2.

2.5 Bicriteria Formulations: Properties

In Section 2.1, we claimed that our formulation for bicriteria problems is robust and general. In this section,

we justify these claims.

t1 t2 t3 t4 t5 t6 t7

Figure 2-2: Reduction from the MIN SET COVER problem to (Diameter, Total cost, Steiner tree) problem.

2.5.1 Robustness

We claimed that our formulation is robust because the quality of approximation is independent of which of

the two criteria we impose the budget on. We elaborate on this claim in the following.

Let G be a graph with two (integral) 3 cost functions, c and d. c and d are typically edge costs or node

costs. Let A (B) be a minimization objective computed using cost function c (d). Let the budget bound on

the c-cost4 (d-cost) of a solution subgraph be denoted by C (D).

There are two natural ways to formulate a bicriteria problem: (i) (A, B, S) - find a subgraph in S whose

A-objective value (under the c-cost) is at most C and which has minimum B-objective value (under the d-

cost), (ii) (B, A, S) - find a subgraph in S whose B-objective value (under the d-cost) is at most D and which

has minimum A-objective value (under the c-cost).

Note that bicriteria problems are meaningful only when the two criteria are hostile with respect to each

other - the minimization of one criterion conflicts with the minimization of the other. A good example of

hostile objectives are the degree and the total edge cost of a spanning tree in an unweighted graph [RMR + 93].

Two minimization criteria are formally defined to be hostile whenever the minimum value of one objective is

monotonically nondecreasing as the budget (bound) on the value of the other objective is decreased.

Let XYZ(G, C) be any (a, /)-approximation algorithm for (A, B, S) on graph G with budget C under the

c-cost. We now show that there is a transformation which produces a (P, a)-approximation algorithm for (B,

A, S). The transformation uses binary search on the range of values of the c-cost with an application of the

given approximation algorithm, XYZ, at each step of this search. Let the minimum c-cost of a D-bounded

3In case of rational cost functions, our algorithms can be easily extended with a small additive loss in the performance guarantee.
4 We use the term "cost under c" or "c-cost" in this section to mean the value of the objective function computed using c, and not to

mean the total of all the c costs in the network.

subgraph in S be OPTc. Let Chi be an upper bound on the c-cost of any D-bounded subgraph in S. Note that

Chi is at most some polynomial in n times the maximum c-cost (of an edge or a node). Hence log(Chi) is

at most a polynomial in terms of the input specification. Let HEUc (HEUd) denote the c-cost (d-cost) of the

subgraph output by ALGORITHM BICRITERIA-EQUIVALENCE given below.

Claim 1 If G contains a D-bounded subgraph in S then ALGORITHM BICRITERIA-EQUIVALENCE outputs

a subgraphfrom S whose c-cost is at most a times that of the minimum c-cost D-bounded subgraph and whose

d-cost is at most ,/D.

Proof: Since A and B are hostile criteria it follows that the binary search in Step 2 is well defined. Assume

that S contains a D-bounded subgraph. Then, since XYZ(G, Chi) returns a subgraph with d-cost at most O3D,

it is clear that ALGORITHM BICRITERIA-EQUIVALENCE outputs a subgraph in this case. As a consequence

of Step 2a and the performance guarantee of the approximation algorithm XYZ, we get that C' + 1 < OPTc.

By Step 2b we have that HEUd !5 P3 and HEUc < a(C' + 1) 5 aOPTc. Thus ALGORITHM BICRITERIA-

EQUIVALENCE outputs a subgraph from S whose c-cost is at most a times that of the minimum c-cost D-

bounded subgraph and whose d-cost is at most (D9.

Note however that in general the resulting (0, a)-approximation algorithm is, not strongly polynomial

since it depends on the range of the c-costs. But it is a polynomial-time algorithm since its running time is

linearly dependent on log Chi the largest c-cost. The above discussion leads to the following theorem.

Theorem 4 Any (a, () -approximation algorithm for (A, B, S) can be transformed in polynomial time into

a (3, a)-approximation algorithm for (B, A, S).

ALGORITHM BICRITERIA-EQUIVALENCE:

* Input: G - graph, D - budget on criterion B under the d-cost, XYZ - an (a, 3)-approximation algorithm

for (A, B, S).

* 1. Let Chi be an upper bound on the c-cost of any D-bounded subgraph in S.

2. Do binary search and find a C' in [0, Chi] such that

(a) XYZ(G, C') returns a subgraph with d-cost greater than OD, and

(b) XYZ(G, C' + 1) returns a subgraph with d-cost at most 03D.

3. If the binary search in Step 2 fails to find a valid C' then output "NO SOLUTION" else output

XYZ(G, C' + 1).

* Output: A subgraph from S such that its c-cost is at most a times that of the minimum c-cost D-bounded

subgraph and its d-cost is at most O(D.

2.5.2 Generality

In Section 2.1, we said that our formulation is more general because it subsumes the case where one wishes to

minimize some functional combination of the two criteria. We briefly comment on this next. For the purposes

of illustration let A and B be two objective functions and let us say that we wish to minimize the sum of the

two objectives A and B. Call this an (A + B, S) problem. Let XYZ(G, C) be any (a, /)-approximation

algorithm for (A, B, S) on graph G with budget C under the c-cost. We show that there is a polynomial time

max{a, /3}-approximation algorithm for the (A + B, S) problem. The transformation uses binary search on

the range of values of the c-cost with an application of the given approximation algorithm, XYZ, at each step

of this search. Let the optimum value for the (A + B, S) problem on a graph G be OPTc+d = (Vc + Vd),

where Vc and Vd denote respectively the contribution of the two costs c and d for A and B. Let HEUc(C)

(HEUd(C)) denote the c-cost (d-cost) of the subgraph output by XYZ(G, C). Finally, let HEUc+d(C) denote

the value computed by ALGORITHM CONVERT.

Theorem 5 Let XYZ(G, C) be any (a, /3)-approximation algorithm for (A, B, S) on graph G with budget

C under the c-cost. Then, there is a polynomial time max{a, /3}-approximation algorithmfor the (A + B, S)

problem.

Proof: Consider the iteration of the binary search in which the bound on the c-cost is V,. Then as a conse-

quence of the performance guarantee of the approximation algorithm XYZ, we get that HEUc(V,) < aV,.

By Step 2a and the performance guarantee of the algorithm XYZ, we have that HEUd(Vc) < 3Vda. Thus

HEUc+d(Vc) < aVc + 3Vd 5 max{a, 3}(Vc + Vd). Since ALGORITHM CONVERT outputs a subgraph

from S the sum of whose c-cost and d-cost is minimized, we have that

mmin (HEUc(C') + HEUd(C')) • max{a, 0}(OPT±+d).
c'E[o,ch,]

ALGORITHM CONVERT:

* Input: G - graph, XYZ - an (a, 3)-approximation algorithm for (A, B, S).

* 1. Let Chi be an upper bound on the c-cost of any subgraph in S.

2. Employ binary search to find a C' in [0, Chi] such that

(a) XYZ(G, C') returns a subgraph with the minimum value of HEUc(C') + HEUd(C').

* Output: A subgraph from S such that the sum of its c-cost and its d-costs is at most

max{al, 0}(OPTc+d).

A similar argument shows that an (a, 6)-approximation algorithm XYZ(G, C), for a (A, B, S) problem

can be used to find devise a polynomial time ap approximation algorithm for the (A x B, S) problem. A

similar argument can also be given for other basic functional combinations. We make two additional remarks.

1. The use of approximation algorithms for (A, B, S)-bicriteria problems, to solve (f(A, B), S) problems

(f denotes a function combination of the objectives) does not always yield the best possible solutions.

For example problems such as (Total Cost + Total Cost , Spanning Tree) and (Total Cost/Total Cost ,

Spanning Tree) [Cha77, Meg83] can be solved exactly in polynomial time by direct methods but can

only be solved approximately using any algorithm for the (Total Cost, Total Cost , Spanning Tree)-

bicriteria problem.5

2. Algorithms for solving (f(A, B), S) problems can not in general guarantee any bounded performance

ratios for solving the (A, B, S) problem. For example, a solution for the (Total Cost + Total Cost ,

Spanning Tree) problem or the (Total Cost/Total Cost, Spanning Tree) problem can not be directly used

to find a good (a, 0)-approximation algorithm for the (Total Cost, Total Cost, Spanning Tree)-bicriteria

problem.

The above discussion points out that while a good solution to the (A, B, S)-bicriteria problem yields a

"good" solution to any unicriterion version, the converse is not true. It is in this sense that we say our formu-

lation of bicriteria network design problems is general and subsumes other functional combinations.

2.6 Parametric Search

In this section, we present approximation algorithms for a broad class of bicriteria problems where both the

objectives in the problem are of the same type (e.g., both are total edge costs of some network computed using

two different costs on edges, or both are diameters of some network calculated using two different costs, etc.).

As before, let G be a graph with two (integral) cost functions, c and d. Let C denote the budget on criteria

A. We assume that the c and d cost functions are of the same kind, i.e., they are both costs on edges or, costs on

nodes. Let UVW(G, f) be any p-approximation algorithm that on input G produces a solution subgraph in S

minimizing criterion A, under the single cost function f. In a mild abuse of notation, we also let UVW(G, f)

denote the (f-)cost of the subgraph output by UVW(G, f) when running on input G under cost function f.

We use the following additional notation in the description of the algorithm and the proof of its performance

guarantee. Given constants a and b and two cost functions f and g, defined on edges (nodes) of a graph, af +bg

denotes the composite function that assigns a cost af(e) + bg(e) to each edge (node) in the graph. Let h($)

denote the cost of the subgraph, returned by UVW(G, () + d) (under the (()c + d)-cost function). Let

the minimum d-cost of a C-bounded subgraph in S be OPTd. Let HEUc (HEUd) denote the c-cost (d-cost) of

the subgraph output by ALGORITHM PARAMETRIC-SEARCH given below.
5 This is true since the (Total Cost, Total Cost, Spanning Tree)-bicriteria problem is NP-complete and therefore unless P = NP can

not be solved in polynomial time.

Let y > 0 be a fixed accuracy parameter. In what follows, we devise a ((1 + 7y), (1 + d))-approximation

algorithm for (A, A, S), under the two cost functions c and d. The algorithm consists of performing a binary

search with an application of the given approximation algorithm, UVW, at each step of this search.

Claim 2 The binary search, in Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-defined.

Proof: Since (-UVW(G, f)) is the same as UVW(G, f-), we get that = UVW(G, ()c+d) =

UVW(G,()c ±+ d), Hence _l is a monotone nonincreasing function of). Thus the binary search in

Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-defined.

Claim 3 If G contains a C-bounded subgraph in S then ALGORITHM PARAMETRIC-SEARCH outputs a sub-

graph from S whose d-cost is at most (1 + ¼)p times that of the minimum d-cost C-bounded subgraph and

whose c-cost is at most (1 + Y)pC.

Proof: By Claim 2 we have that the binary search in Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-

defined.

Assume that S contains a C-bounded subgraph. Then, since UVW(G, (')c+d) returns a subgraph with

cost at most (1 + -7)pDhi, under the ((D-)c + d)-cost function, it is clear that ALGORITHM PARAMETRIC-

SEARCH outputs a subgraph in this case.

As a consequence of Step 2a and the performance guarantee of the approximation algorithm UVW, we

get that

' + 1 < OPTd
-y

ALGORITHM PARAMETRIC-SEARCH:

* Input: G - graph, C - budget on criteria A under the c-cost, UVW - a p-approximation algorithm that

produces a solution subgraph in S minimizing criterion A, under a single cost function, 7 - an accuracy

parameter.

* 1. Let Dhi be an upper bound on the d-cost of any C-bounded subgraph in S.

2. Do binary search and find a D' in [0, 1-] such that

(a) UVW(G, (- -)c + d) returns a subgraph such that ,, > (1 + Y)p, and

(b) UVW(G, (- j-)c + d) returns a subgraph such that (1 (1 + 7)p

3. If the binary search in Step 2 fails to find a valid C' then output "NO SOLUTION" else output

UVW(G, (+)c + d).

* Output: A subgraph from S such that its d-cost is at most (1 + 1)p times that of the minimum d-cost

C-bounded subgraph and its c-cost is at most (1 + 7y)pC.

By Step 2b we have that the subgraph output by ALGORITHM PARAMETRIC-SEARCH has the following

bounds on the c-costs and the d-costs.

HEUd 5 h(D' + 1) 5 p(l + 7)(D' + 1) _ (1 + 1)pOPTd

C C
HEUc < (+)h(D' + 1) < ()(1 + Y)p(D'i + 1) = (1 + y)pC.

Thus ALGORITHM PARAMETRIC-SEARCH outputs a subgraph from S whose d-cost is at most (1 + 1)p
times that of the minimum d-cost C-bounded subgraph and whose c-cost is at most (1 + -)pC.

Note however that the resulting ((1 + -)p, (1 + 1)p)-approximation algorithm for (A, A, S) may not

be strongly polynomial since it depends on the range of the d-costs. But it is a polynomial-time algorithm

since its running time is linearly dependent on log Dhi. Note that)hi is at most some polynomial in n times

the maximum d-cost (of an edge or a node). Hence log(Dhi) is at most a polynomial in terms of the input

specification.

The above discussion leads to the following theorem.

Theorem 6 For all y > 0, any p-approximation algorithm thatproduces a solution subgraph in S minimizing

criterion A can be transformed into a ((1 + 7)p, (1 + L)p)-approximation algorithm for (A,A,S).

It is obvious that the above theorem can be generalized from the bicriteria case to the multicriteria case

(with appropriate worsening of the performance guarantees) where all the objectives are of the same type but

with different cost functions.

2.7 Diameter-Constrained Trees

In this section, we describe ALGORITHM DCST, our (O(log n), O(log n))-approximation algorithm for (Di-

ameter, Total cost, Steiner tree) or the diameter-bounded minimum Steiner tree problem. Note that (Diameter,

Total cost, Steiner tree) includes (Diameter, Total cost, Spanning tree) as a special case. We first state the prob-

lem formally: given an undirected graph G = (V, E), with two cost functions c and d defined on the set of

edges, diameter bound D and terminal set K C V, the (Diameter, Total cost, Steiner tree) problem is to find

a tree of minimum c-cost connecting the set of terminals in K with diameter at most D under the d-cost.

The technique underlying ALGORITHM DCST is very general and has wide applicability. Hence, we first

give a brief synopsis of it. The basic algorithm works in (log n) phases. Initially the solution consists of the

empty set. During each phase of the algorithm we execute a subroutine Q2 to choose a subgraph to add to

the solution. The subgraph chosen in each iteration is required to possess two desirable properties. First, it

must not increase the budget value of the solution by more than D; second, the solution cost with respect

to B must be no more than OPTc, where OPT, denotes the minimum c-cost of a D bounded subgraph in S.

Since the number of iterations of the algorithm is O(log n) we get a (log n, log n)-approximation algorithm.

The basic technique is fairly straightforward. The non-trivial part is to devise the right subroutine Q to be

executed in each phase. Q must be chosen so as to be able to prove the required performance guarantee of the

solution. We use the solution based decomposition technique [KR95, Rav94, RMR+93] in the analysis of our

algorithm. The basic idea (behind the solution based decomposition technique) is to use the existence of an

optimal solution to prove that the subroutine Q finds the desired subgraph in each phase.

We now present the specifics of ALGORITHM DCST. The algorithm maintains a set of connected sub-

graphs or clusters each with its own distinguished vertex or center. Initially each terminal is in a cluster by

itself. In each phase, clusters are merged in pairs by adding paths between their centers. Since the number

of clusters comes down by a factor of 2 each phase, the algorithm terminates in [log 2 1K/] phases with one

cluster. It outputs a spanning tree of the final cluster as the solution.

ALGORITHM DIAMETER-CONSTRAINED-STEINER-TREE (DCST):

* Input: G = (V, E) - graph with two edge cost functions, c and d, D - a bound on the diameter under

the d-cost, K C V - set of terminals, c - an accuracy parameter.

* 1. Initialize the set of clusters Ci to contain IKI singleton sets, one for each terminal in K. For each

cluster in C, define the single node in the cluster to be the center for the cluster. Initialize the phase

count i := 1.

2. Repeat until there remains a single cluster in Ci

(a) Let the set of clusters Ci = {C1 ... , Ck } at the beginning of the i'th phase (observe that

ki = IKI).

(b) Construct a complete graph Gi as follows: The node set Vi of Gi is {v

v is the center of a cluster in C}. Let path P,,y be a (1 + E)-approximation to the mini-

mum c-cost diameter D-bounded path between centers v. and v, in G. Between every pair

of nodes v, and v, in Vi, include an edge (v,, v,) in Gi of weight equal to the c-cost of Pay.

(c) Find a minimum-weight matching of largest cardinality in Gi.

(d) For each edge e = (v., v,) in the matching, merge clusters C. and C,, for which v. and v,

were centers respectively, by adding path P,, to form a new cluster C,,. The node (edge) set

of the cluster C,, is defined to be the union of the node (edge) sets of CQ, C, and the nodes

(edges) in Py. One of v_ and v , is (arbitrarily) chosen to be the center v,, of cluster Co.

C,, is added to the cluster set Ci+l for the next phase.

(e) i := i + 1.

3. Let C', with center v' be the single cluster left after Step 2. Output a shortest path tree of C' rooted

at v' using the d-cost.

* Output: A Steiner tree connecting the set of terminals in K with diameter at most 2 [log 2 n] D under the

d-cost and of total c-cost at most (1+ e) [log2 n] times that of the minimum c-cost diameter D-bounded

Steiner tree.

We make a few points about ALGORITHM DCST:

1. The clusters formed in Step 2d need not be disjoint.

2. All steps, except Step 2b, in algorithm DCST can be easily seen to have running times independent of the

weights. We employ Hassin's strongly polynomial FPAS for Step 2b [Has92]. Hassin's approximation

algorithm for the D-bounded minimum c-cost path runs in time O(IEI (- log R)). Thus ALGORITHM

DCST is a strongly polynomial time algorithm.

3. Instead of finding an exact minimum cost matching in Step 2c, we could find an approximate minimum

cost matching [GW92]. This would reduce the running time of the algorithm at the cost of adding a

factor of 2 to the performance guarantee.

We now state some observations that lead to a proof of the performance guarantee of ALGORITHM DCST.

Assume, in what follows, that G contains a diameter D-bounded Steiner tree.

Claim 4 Algorithm DCST terminates in [log 2 IKh]1 phases.

Proof: Let ki denote the number of clusters in phase i. Note that ki+l = [r 1 since we pair up the clusters

(using a matching in Step 2d). Hence we are left with one cluster after phase [log 2 I!K I and algorithm DCST

terminates.

Claim 5 Let C E Ci be any cluster in phase i of algorithm DCST Let v be the center of C. Then any node u

in C is reachable from v by a diameter-iD path in C under the d-cost.

Proof: Note that the existence of a diameter D-bounded Steiner tree implies that all paths added in Step 2d

have diameter at most D under d-cost. The proof now follows in straightforward fashion by induction on i.

Lemma 7 Algorithm DCST outputs a Steiner tree with diameter at most 2 [log 2 JK] -D under the d-cost.

Proof: The proof follows from Claims 4 and 5.

This completes the proof of performance guarantee with respect to the d-cost. We now proceed to prove

the performance guarantee with respect to the c-costs. We first recall the following pairing lemma.

Claim 6 [KR95, RMR+93] Let T be an edge-weighted tree with an even number of marked nodes. Then there

is a pairing (vl, wl), ..., (vk, Wk) of the marked nodes such that the vi - wi paths in T are edge-disjoint.

Proof: A pairing of the marked nodes that minimizes the sum of the lengths of the tree-paths between the

nodes paired up can be seen to obey the property in the claim above.

Claim 7 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let OPTc denote its c-cost.

The weight of the largest cardinality minimum-weight matching found in Step 2d in each phase i of algorithm

DCST is at most (1 + e) - OPTc.

Proof: Consider the phase i of algorithm DCST. Note that since the centers at stage i are a subset of the

nodes in the first iteration, the centers vi are terminal nodes. Thus they belong to OPT. Mark those vertices

in OPT that correspond to the matched vertices, vl, v2,.. , v2 L j, of Gi in Step 2c. Then by Claim 6 there

exists a pairing of the marked vertices, say (v1 , v2),... , (v2 L[-J -1 L)' and a set of edge-disjoint paths in

OPTbetween these pairs. Since these paths are edge-disjoint their total c-cost is at most OPTc. Further these

paths have diameter at most D under the d-cost. Hence the sum of the weights of the edges (vl, v2),... ,

(v2L -1 , VL2 -J) in Gi , which forms a perfect matching on the set of matched vertices, is at most (1 + e) •

OPTc. But in Step 2c of ALGORITHM DCST, a minimum weight perfect matching in the graph Gi was found.

Hence the weight of the matching found in Step 2d in phase i of ALGORITHM DCST is at most (1 + e) OPTc.

Lemma 8 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let OPTc denote itsc-cost.

ALGORITHM DCST outputs a Steiner tree with total c-cost at most (1 + e) [log12 KI] - OPT,.

Proof: From Claim 7 we have that the c-cost of the set of paths added in Step 2d of any phase is at most (1 +

E) . OPTc. By Claim 4 there are a total of [log S IKI1 phases and hence the Steiner tree output by ALGORITHM

DCST has total c-cost at most (1 + o) [logs IKI] -CD.

From Lemmas 7 and 8 we have the following theorem.

Theorem 9 There is a strongly polynomial-time algorithm that, given an undirected graph G = (V, E), with

two cost functions c and d defined on the set of edges, diameter bound D, terminal set K C V and a fixed

E > 0, constructs a Steiner tree of G of diameter at most 2 rlog 2 IK 1 D under the d-costs and of total c-cost

at most (1 + e) [log s IJKJ times that of the minimum-c-cost of any Steiner tree with diameter at most D under

d.

2.8 Treewidth-Bounded Graphs

In this section we consider the class of treewidth-bounded graphs and give algorithms with improved time

bounds and performance guarantees for several bicriteria problems mentioned earlier. We do this in two steps.

First we develop pseudopolynomial-time algorithms based on dynamic programming. We then present a gen-

eral method for deriving FPASs from the pseudopolynomial-time algorithms. We also demonstrate an ap-

plication of the above results to the minimum broadcast time problem.

A class of treewidth-bounded graphs can be specified using a finite number of primitive graphs and a fi-

nite collection of binary composition rules. We use this characterization for proving our results. A class of

treewidth-bounded graphs I is inductively defined as follows [BLW87].

1. The number of primitive graphs in F is finite.

2. Each graph in F has an ordered set of special nodes called terminals. The number of terminals in each

graph is bounded by a constant, say k.

3. There is a finite collection of binary composition rules that operate only at terminals, either by identify-

ing two terminals or adding an edge between terminals. A composition rule also determines the termi-

nals of the resulting graph, which must be a subset of the terminals of the two graphs being composed.

2.8.1 Exact Algorithms

Theorem 10 Every problem in Table 2 can be solved exactly in O((n -C)o(1))-timefor any class of treewidth

bounded graphs with no more than k terminals, for fixed k and a budget C on the first objective.

The above theorem states that there exist pseudopolynomial-time algorithms for all the bicriteria prob-

lems from Table 2 when restricted to the class of treewidth-bounded graphs. The basic idea is to employ a

dynamic programming strategy. In fact, this dynamic programming strategy (in conjunction with Theorem 4)

yields polynomial-time (not just pseudopolynomial-time) algorithms whenever one of the criteria is the de-

gree. We illustrate this strategy by presenting in some detail the algorithm for the diameter-bounded minimum

cost spanning tree problem.

Theorem 11 For any class of treewidth-bounded graphs with no more than k terminals, there is an O(n •

k2k+ 4 . CO(k4))-time algorithm for solving the diameter C-bounded minimum c-cost spanning tree problem.

Proof: Let d be the cost function on the edges for the first objective (diameter) and c, the cost function for

the second objective (total cost). Let F be any class of decomposable graphs. Let the maximum number of

terminals associated with any graph G in F be k. Following [BLW87], it is assumed that a given graph G is

accompanied by a parse tree specifying how G is constructed using the rules and that the size of the parse tree

is linear in the number of nodes.

Let 7r be a partition of the terminals of G. For every terminal i let di be a number in {1, 2,... , C}. For

every pair of terminals i and j in the same block of the partition 7r let dij be a number in {1, 2,... , C}. Cor-

responding to every partition ir, set {di} and set {dij } we associate a cost for G,

Cost t•d = Minimum total cost under the c function of any forest containing

a tree for each block of 7, such that the terminal nodes

occurring in each tree are exactly the members of the corresponding

block of 7r, no pair of trees is connected, every vertex in G

appears in exactly one tree, di is an upper bound on the maximum

distance (under the d-function) from i to any vertex in the same

tree and dij is an upper bound the distance (under the d-function)

between terminals i and j in their tree.

For the above defined cost, if there is no forest satisfying the required conditions the value of Cost is defined

to be oo.

Note that the number of cost values associated with any graph in r is O(kk . CO(k2)). We now show how

the cost values can be computed in a bottom-up manner given the parse tree for G. To begin with, since P

is fixed, the number of primitive graphs is finite. For a primitive graph, each cost value can be computed in

constant time, since the number of forests to be examined is fixed. Now consider computing the cost values

for a graph G constructed from subgraphs G1 and G2, where the cost values for G1. and G2 have already been

computed. Notice that any forest realizing a particular cost value for G decomposes into two forests, one for

G1 and one for G2 with some cost values. Since we have maintained the best cost values for all possibilities for

G1 and G2, we can reconstruct for each partition of the terminals of G the forest that has minimum cost value

among all the forests for this partition obeying the diameter constraints. We can do this in time independent

of the sizes of G1 and G2 because they interact only at the terminals to form G, and we have maintained all

relevant information.

Hence we can generate all possible cost values for G by considering combinations of all relevant pairs of

cost values for G1 and G2. This takes time O(k 4) per combination for a total time of O(k 2k+4 .CO(k 4)). As

in [BLW87], we assume that the size of the given parse tree for G is O(n). Thus the dynamic programming

algorithm takes time O(n -k 2k+ 4 . CO(k4)). This completes the proof.

0

2.8.2 Fully Polynomial-Time Approximation Schemes

The pseudopolynomial-time algorithms described in the previous section can be used to design FPASs for

these same problems for the class of treewidth-bounded graphs. We illustrate our ideas once again by devising

an FPAS for the (Diameter, Total cost, Spanning tree)-bicriteria problem for the class of treewidth-bounded

graphs. The basic technique underlying our algorithm, ALGORITHM FPAS-DCST, is approximate binary

search using rounding and scaling - a method similar to that used by Hassin [Has92] and Warburton [War87].

As in the previous section, let G be a treewidth-bounded graph with two (integral) edge-cost functions

c and d. Let D be a bound on the diameter under the d-cost. Let E be an accuracy parameter. Without loss

of generality we assume that ! is an integer. We also assume that there exists a D-bounded spanning tree

in G. Let OPT be any minimum c-cost diameter D-bounded spanning tree and let OPTc denote its c-cost.

Let TCSTonTW(G, c, d, C) be a pseudopolynomial time algorithm for the (Total cost, Diameter, Spanning

tree) problem on treewidth-bounded graphs, i.e., TCSTonTW outputs a minimum diameter spanning tree

of G with total cost at most C (under the c-costs). Let the running time of TCSTonTW be p(n, C) for

some polynomial p. For carrying out our approximate binary search we need a testing procedure PROCEDURE

TEST(V) which we detail below:

PROCEDURE TEST(V):

We now prove that PROCEDURE TEST(V) has the properties we need for helping us do a binary search.

Claim 8 IfOPTc < V then PROCEDURE TEST(V) outputs LOW. And, ifOPTc > V(1 + E) then PROCEDURE

TEST(V) outputs HIGH.

Proof: If OPTc < V then since

Ce Ce OPTc n-

T /(n - 1) - T Ve/(n - 1) - V//(n - 1) -
eEOPT eEOPT

therefore PROCEDURE TEST(V) outputs LOW.

Let T, be the c-cost of any diameter D bounded spanning tree. Then we have T• > OPT,. If OPTc >

V(1 + E) then since

ce l Ce T, OPT, n-1
)e > (e -) > (n- 1)> (n- 1) > --

eET e-Tv- V (n - 1) - Ve/(n - 1) - Ve/(n - 1) E

therefore PROCEDURE TEST(V) outputs HIGH.

Claim 9 The running time of PROCEDURE TEST(V) is O(p(n, 5)).

Proof: PROCEDURE TEST(V) invokes TCSTonTW only ,- times. And each time the budget C is

bounded by , hence the running time of PROCEDURE TEST(V) is O(!p(n, -)).

We are ready to describe ALGORITHM FPAS-DCST - which uses PROCEDURE TEST(V) to do an ap-

proximate binary search.

* Input: G - treewidth bounded graph, D - bound on the diameter under the d-cost, V - testing parame-

ter, TCSTonTW - a pseudopolynomial time algorithm for the (Total cost, Diameter, Spanning tree)

problem on treewidth-bounded graphs, e - an accuracy parameter.

* 1. Let LVE/(-l1) J denote the cost function obtained by setting the cost of edge e to L l)J

2. If there exists a C in [0,] such that TCSTonTW(G, L V/(-1)J, d, C) produces a spanning

tree with diameter at most D under the d-cost then output LOW otherwise output HIGH.

* Output: HIGH/LOW.

Lemma 12 If G contains a D-bounded spanning tree then ALGORITHM FPAS-DCST outputs a spanning

tree with diameter at most D under the d-cost and with c-cost at most (1 + E)OPTc.

Proof: It follows easily from Claim 8 that the loop in Step 2 of ALGORITHM FPAS-DCST executes O (log Chi)

times before exiting with LB < OPTc < UB < 2LB.

Since
Ce Ce OPT, n - 1

E LBc/(n 1-) - LBe/(n - 1) - LBe/(n - 1) - 2(
eEOPT eEOPT

we get that Step 3 of ALGORITHM FPAS-DCST definitely outputs a spanning tree. Let HEU be the tree

output. Then we have that

HEUc = Ce < LBe/(n - 1) c L e < LBE/(n - 1)(L ce + 1).LBe/(n - 1) LBe/(n - 1)
eEHEUc eEHEUr eeHEUc

But since Step 3 of ALGORITHM FPAS-DCST outputs the spanning tree with minimum c-cost we have that

E _Lc_.______ E Ce

[LBc/(n - 1) EPTLBe/(n - 1)
eEHEUc eEOPT

Therefore

HEU, < LBE/(n - 1) L Ce -)] + LB < E ce + EOPTc • (1+ E)OPT,.

eEOPT eEOPT

This proves the claim.

ALGORITHM FPAS-DCST:

* Input: G - treewidth-bounded graph, D - bound on the diameter under the d-cost, TCSTonTW - a

pseudopolynomial time algorithm for the (Total cost, Diameter, Spanning tree) problem on treewidth-

bounded graphs, e - an accuracy parameter.

* 1. Let Chi be an upper bound on the c-cost of any D-bounded spanning tree. Let LB = 0 and UB =

Chi.

2. While UB > 2LB do

(a) Let V = (LB + UB)/2.

(b) If PROCEDURE TEST(V) returns HIGH then set LB = V else set UB = V(1 + e).

3. Run TCSTonTW(G, L LB/•(n-i)J, d, C) for all C in [0, 2(-)] and among all the trees with

diameter at most D under the d-cost output the tree with the lowest c-cost.

* Output: A spanning tree with diameter at most D under the d-cost and with c-cost at most (1 + e) times

that of the minimum c-cost D-bounded spanning tree.

Lemma 13 The running time of ALGORITHM FPAS-DCST is O(p(n, 2) log Chi).

Proof: From Claim 9 we see that Step 2 of ALGORITHM FPAS-DCST takes time O(p(n, n) log Chi) while

Step 3 takes time O(p(n, ')). Hence the running time of ALGORITHM FPAS-DCST is O(1p(n, n) log Chi).

Lemmas 12 and 13 yield:

Theorem 14 For the class of treewidth-bounded graphs, there is an FPAS for the (Diameter, Total cost,

Spanning tree)-bicriteria problem with performance guarantee (1, 1 + E).

As mentioned before, similar theorems hold for the other problems in Table 2 and all these results extend

directly to Steiner trees.

2.8.3 Near-Optimal Broadcast Schemes

The polynomial-time algorithm for the (Degree, Diameter, Spanning tree))-bicriteria problem for treewidth-

bounded graphs can be used in conjunction with the ideas presented in [Rav94] to obtain near-optimal broad-

cast schemes for the class of treewidth-bounded graphs. As mentioned earlier, these results generalize and

improve the results of Kortsarz and Peleg [KP95].

Given an unweighted graph G and a root r, a broadcast scheme is a method for communicating a mes-

sage from r to all the nodes of G. We consider a telephone model in which the messages are transmitted

synchronously and at each time step, any node can either transmit or receive a message from at most one

of its neighbors. The minimum broadcast time problem is to compute a scheme that completes in the mini-

mum number of time steps. Let OPTr(G) denote the minimum broadcast time from root r and let OPT(G) =

max,EG OPT, (G) denote the minimum broadcast time for the graph from any root. The problem of comput-

ing OPT, (G) - the minimum rooted broadcast time problem - and that of computing OPT(G) - the minimum

broadcast time problem are both NP-complete for general graphs [GJ79a]. It is easy to see that any approxi-

mation algorithm for the minimum rooted broadcast time problem automatically yields an approximation al-

gorithm for the minimum broadcast time problem with the same performance guarantee.

Let T(G) denote the set of all spanning trees of graph G. For spanning tree T E T(G) let AT denote

the maximum, over all nodes, of the degree of the node in T. Let the r-eccentricity of T, R,(T), denote the

maximum, over all nodes, of the distance of the node from r in T. We generalize the definition of the poise

of a graph from [Rav94] to that of the rooted poise of a graph:

P,(G) = min (A(T) + R,(T))
TET(G)

Theorem 15 [Rav94]

Q(Pr(G)) 5 OPTr(G) • O(P,(G) logn
log log n

The proof of this theorem is constructive and implies that a good solution to the rooted poise of a graph

can be used to construct a good solution for the minimum rooted broadcast time problem with an O(lo)-

factor overhead.

Lemma 16 Given a treewidth bounded graph G and root r, in polynomial time a spanning tree T can be

found such that (A(T) + R,(T)) = P,(G).

Proof: Since G is an unweighted treewidth-bounded graph we can obtain a (strongly) polynomial-time algo-

rithm to solve the (Degree, r-eccentricity, Spanning tree)-bicriteria problem on G, using the ideas outlined in

Section 2.8.1. Run this algorithm with all possible degree bounds and choose the tree T with the least value

of (A(T) + R,(T)).

0

From Theorem 15 and Lemma 16 we get the following theorem

Theorem 17 For any class oftreewidth-bounded graphs there is a polynomial-timeO() -approximation

algorithm for the minimum rooted broadcast time problem and the minimum broadcast time problem.

2.9 Concluding Remarks

We have obtained the first polynomial-time approximation algorithms for a large class of bicriteria network

design problems. The objective function we considered were (i) degree, (ii) diameter, and (iii) total cost. The

connectivity requirements we considered were spanning trees, Steiner trees, and (in several cases) generalized

Steiner trees. Our results were based mostly on the following three main ideas:

1. A binary search method to convert an (a, 6)-approximation algorithm for (A, B, S)-bicriteria problems

to a (3, a)-approximation algorithm for (B, A, S)-bicriteria problems.

2. A parametric search technique to devise approximation algorithms for (A,A,S)-bicriteria problems.

3. A cluster based approach for devising approximation algorithms for certain categories of (A,B,S)-bicriteria

problems.

We also devised pseudopolynomial time algorithms and fully polynomial time approximation schemes for

a number of bicriteria network design problems on the class of treewidth-bounded graphs.

The following are some natural open questions and directions suggested by our work:

1. Devise algorithms that improve upon the performance guarantees presented in this chapter. As a step

in this direction, recently Ravi and Goemans [RG96] have devised a (1, 1 + e) approximation scheme

for the (Total Cost, Total Cost, Spanning tree) problem.

2. Devise approximation algorithms for the (Diameter, Total cost, Generalized Steiner tree) problem. For

more information on the generalized Steiner tree problem look at [AKR95] and the references therein.

3. Find good broadcast schemes which minimize the total cost of the spanning tree. In our language this

problem translates to finding an approximation algorithm for the (Degree, Diameter, Total Cost, Span-

ning tree) problem.

Chapter 3

Service-Constrained Network Design

Problems

3.1 Motivation

The optical network is a pure data transmission medium. All the computing and processing continues to be

done in the electronic world. An important issue in interfacing these two worlds - the electronic and the optic

- is that of designing the optical network subject to location-theoretic constraints imposed by the electronic

world. Given a set of sites in a network we wish to select a subset of the sites at which to place optoelectronic

switches and routers [KRS96b]. As before, the major requirement is that every site should be within a pre-

specified distance from an optoelectronic access node and the chosen sites should be connected together using

fiber-optic links as a minimum cost tree (See Fig. 3-1. Circles represent prespecified distances).

A problem of a similar nature comes up in the area of distributed database management. The problem

[WM91] can be stated as follows: given a set of sites in a network we wish to select a subset of the sites

at which to place copies of the database. The major requirement is that each site should be able to access a

copy of the database within a prespecified service time, and the chosen sites should be connected together as a

minimum cost tree so that updates to one of the copies can be propagated to the other copies in an inexpensive

manner (See Fig. 3-2. Circles represent prespecified service times).

These problems can be thought of as particular instances of a more general class of "service-constrained

network design problems." Informally, service-constrained network design problems involve both a location-

theoretic objective and a cost-minimization objective subject to connectivity constraints. The location-theoretic

objective requires that we choose a subset of nodes at which to "locate" services such that each node is within a

bounded distance from at least one chosen location. The cost-minimization objective requires that the chosen

locations be connected by a network minimizing parameters such as diameter or total cost. The two objectives

are measured under two (possibly) different cost functions.

ELECTRONIC MEDIUM

.. .

Figure 3-1: Optoelectronic switches linked by a network.

Figure 3-2: Database copies linked by a network.

i t

~
i

o.O.°

°.°

".....

3.2 Summary of Results

The prototypical problem we consider in this chapter is the following: given an undirected graph G = (V, E)

with two different cost functions ce (modeling the service cost) and de (modeling the construction cost) for

each edge e E E, and a bound S, (on the service constraint for each vertex v), find a minimum d-cost tree

such that every node v in the graph is serviced by some node in the tree, i.e. every node v is within distance

S, (under the c-costs) of some node in the tree.

In this chapter, we study the complexity and approximability of a number of service-constrained network

design problems using the bicriteria framework developed in Chapter 2. The two versions of the location-

theoretic or service cost objective that we consider are: (i) Non-uniform service cost and (ii) Uniform service

cost. In the Non-uniform service cost version a service constraint Sv, is specified for each vertex. The Uniform

service cost version is a special case where S,, = S, Wvk, i.e., all vertices have the same service constraint.

For the cost-minimization objective we focus our attention on the total cost of the network. The Total cost

objective is the sum of the costs of all the edges in the tree. We also consider the Diameter objective - the

maximum distance between any pair of nodes in the tree - and the Bottleneck objective - the maximum value

of any edge in the tree.

As mentioned before, the two objectives are measured with respect to different edge-cost functions. The

(budgeted) service cost objective is measured using the c-cost function while the cost-minimization objective

is measured using the d-cost function. As stated before, a node u is said to service node v if u is within distance

S, of v, under the c-cost. The service-degree of a node is defined to be the number of nodes it services. All

our results come in two flavors: (i) Different cost functions, and (ii) Identical cost functions. The Identical

cost functions version is a special case of the Different cost functions case where the two cost functions are

the same, i.e., ce = d, Ve.

We now state our main results.

Definition 1 A node u is said to service a node v ifu is within distance S , of v. The service-degree of a

node is the number of nodes it services. The service-degree of the graph is the maximum over all nodes of the

service-degree of the node and is denoted by A.

Theorem 18 There is a (1, O(A - In n))-approximation algorithm for the (Non-uniform service cost, Total

cost, Tree)-bicriteria problem with different cost functions.

We provide a counterbalancing hardness of approximation result by showing that:

Theorem 19 Unless NP C DTIME(nlog log n), the (Uniform service cost, Total cost, Tree)-bicriteria prob-

lem, with different cost functions, cannot be approximated to within (a, /), for any a > 1 and any / < In n.

We consider the identical cost functions case and show that

Theorem 20 For any e > 0 there is a (2(1 + e), 2(1 + .))-approximation algorithm for the (Non-uniform

service cost, Total cost, Tree)-bicriteria problem with identical cost functions.

This is opposed by

Theorem 21 Unless NP C DTIME(n log log n), the (Uniform service cost, Total cost, Tree)-bicriteriaprob-

lem, with identical cost functions, cannot be approximated to within (a, 3), for a = 1 and any 3 < In n.

We also show that

Theorem 22 (Non-uniform service cost, Diameter, Tree) and (Non-uniform service cost, Bottleneck, Tree)-

bicriteria problems, with different cost functions, are solvable exactly in polynomial-time.

We consider the (Uniform service cost, Total cost, Generalized Steiner forest)-bicriteria problem - a gen-

eralization that arises from its application to the optical network design problems. If we had a number of sites

with connectivity requirements only among some subsets of the sites, rather than all the sites, then we need

the solution subgraph to be a forest and not necessarily a tree. This motivates the service-constrained gen-

eralized Steiner forest problem. The formal statement of the (Uniform service cost, Total cost, Generalized

Steiner forest)-bicriteria problem is as follows: given an undirected graph G = (V, E) with two different cost

functions ce (modeling the service cost) and de (modeling the construction cost) for each edge e E E, a set

of k site pairs (si, ti), and a bound S (on the maximum service constraint), find a minimum d-cost forest 5F

such that for each site pair (si, ti) there exists a tree T E FT with the property that both si and ti are within

distance S of the tree.

Our main result for the service-constrained generalized Steiner forest problem is the following:

Theorem 23 There is a (2(1 + E), 6(1 + !))-approximation algorithm for the (Uniform service cost, Total

cost, Generalized Steiner forest)-bicriteria problem with identical cost functions.

3.3 Previous Work

Variants of the service-constrained tour problem have been considered in [AFMP94, AH91, CS89]. Current

and Schilling [CS89] consider the covering salesperson problem and present a heuristic for it without provid-

ing any performance guarantees. In this problem, nodes represent customers and the service radius represents

the distance a customer is willing to travel to meet the salesperson. The goal is to find a minimum length tour

connecting a subset of the nodes so that the nodes are strictly serviced. Arkin and Hassin [AH91] considered

geometric versions of the problem, where the service neighborhood (i.e., the neighborhood the customer is

willing to travel) is modeled as a region in the plane. For convex neighborhoods, they present heuristics that

provide constant performance guarantees. They also show how their heuristics can be extended to nonconvex

regions. Arkin et. al. [AFMP94] considered additional geometric variations of the covering tour problem in-

cluding the lawn mower problem, where the goal is to find a tour such that each given point is within a circle

of unit radius from at least one point on the tour. They provide an approximation algorithm for this problem

with a constant performance guarantee.

References [AFMP94, AH91] considered only the geometric versions of the problems. In the identical

cost functions case, where the edge costs satisfy the triangle inequality, our approximation algorithm for the

(Non-uniform service cost, Total cost, Tree)-bicriteria problem can be used to produce a tour such that for any

e > 0, the service constraint for each node is violated by a factor of at most 2(1 + E) and the cost of the tour

is at most 2(1 + -) times that of a minimum cost tour which strictly services the nodes.

The paper by Marathe et al ([MRS+95]) and the references therein are an extensive source on the area of

bicriteria and multicriteria network design. The framework that we employ was developed in [MRS+95].

The organization of the rest of the chapter is as follows: Section 3.4 contains the proofs of Theorems 18

and 19, where the cost functions are different; Section 3.5 contains the proofs of Theorems 20 and 21, where

the cost functions are identical; Section 3.6 contains the proof of Theorem 22; Section 3.7 contains the proof

of Theorem 23; Section 3.8 contains some concluding remarks and open problems.

3.4 Different Cost Functions

Before we give the proof of Theorem 18, we need to state two facts. The first fact is that we may assume that

the graph is complete and that the edge cost functions, c and d, obey triangle inequality. The reason for this is

as follows: consider the (complete) graph obtained on the same set of vertices by adding edges between every

pair of vertices of c and d-costs equal to that of the shortest c and d-cost paths between the corresponding

vertices in the original graph; then any solution on this new graph transforms to a solution of identical value

in the original graph.

We need some more preliminaries before we can state the second fact. Given a graph G with edge weights

and node weights, we define the ratio weight of a simple cycle C in G to be

ZeEC Wte

-vEC Wtv

Here wte denotes the weight of an edge and wt, denotes the weight of a vertex. In other words, the ratio

weight of a cycle is the ratio of the edge weight of the cycle to the node weight of the cycle.

The following problem is NP-hard:

Definition 2 MIN-RATIO-ROOTED-CYCLE (MRRC) Problem: Given a graph G = (V, E) with edge and

node weights, and a distinguished vertex r E V called the root, find a simple cycle in G that contains r and

has minimum ratio weight.

Now we state our second fact which is obtained by a slight modification of the ideas in [BRV96].

Theorem 24 There is a polynomial-time approximation algorithm with constantfactor p, performance guar-

antee for the MRRC problem.

Having stated the two facts we are now in a position to present the main idea behind our algorithm. To

begin with, we may assume that a specific node r belongs to the optimal tree. By running over all possible

r's and picking the best we find the required (approximate) tree. The algorithm runs in phases. Initially, the

solution contains only the node r. At any stage only a subset of the nodes are serviced by the set of solution

nodes. Each phase the algorithm finds a nearly optimal minimum ratio weight cycle that services some of the

remaining unserviced nodes in the graph. The cycle is contracted to a single node and the algorithm moves to

the next phase. Termination occurs when all the nodes in the graph are serviced. A logarithmic performance

guarantee is obtained by assuring that the cycle added in each phase has low cost.

It is easy to see that ALGORITHM DIFFERENT outputs a tree that services all the nodes. It remains to show

that the d-cost of HEU is within a factor of O(A • In n) of the optimal. We prove this in the following two

lemmas.

Let OPT denote an optimal tree. In what follows, let i denote that iteration of Step 2 in which r = vi E

OPT. Let f denote the number of iterations of Step 2b for this particular value of i. Let the set of cycles chosen

in Step 2(b)ii of the algorithm be C1 , ... , Cf, in order. We use Cj to denote both the cycle as well as the d-

ALGORITHM DIFFERENT:

* Input: A graph G = (V, E), edge cost functions c and d, service budget S,, for vertex vk under the

c-cost function.

* 1. At any point in the algorithm, for each vertex vk E V, let B,k denote the set of vertices that are

within c-distance of at most S k from Vk.

2. For i=lton do

(a) Set r = vi. Set j = 0. Set Go = G - B, + r.

(b) While Gj <> r.

i. Setj =j + 1.

ii. Compute Cj, a p-approximate solution to the MRRC problem on Gj where the edge

weights are the d-edge-costs and the node weights are IBvk for k # i and 0 for r.

iii. Modify Gj by contracting Cj into a supernode. Set r to be the new supernode.

iv. Set Gj = Gj - B, + r.

(c) Let T7 be a minimum spanning tree on Uj Cj under the d-cost.

3. Let HEU = mini Ti. Output HEU.

* Output: A tree HEU such that every vertex vi E V is within a distance S,, from some node in HEU,

under the c-cost, and the d-cost of HEU is at most O(A.ln n) times that of an optimal service-constrained

tree.

cost of the cycle. We also use OPT and HEU to denote the d-costs of the corresponding tree. Let Oj denote

the number of nodes in G that are not serviced by r after choosing the cycle Cj in the jth iteration of Step 2b.

Alternatively, Oj is the number of vertices in G - r after Step 2(b)iv in the j'th iteration.. Thus, o0 < n while

Of = 0. Let cycle Cj service tj new nodes.

Lemma 25

Cj 2pAOPT
tj j-

Proof: Focus on the graph Gj at the end of iteration j - 1. Since OPT services all the vertices we have that

EVkEOPT IBkI = IV(Gj) = j-1.
We first observe that OPT induces a cycle (by doing an Euler walk along the outside of the OPT tree, see

[CLR90a], pp 697-700) with a minimum ratio weight of 2.-i"I Hence, since in Step 2(b)ii we choose a p-

approximate minimum ratio cycle Cj it follows that

Cj 2pOPT

ZVILEC3 IB',kI -

Since the service-degree of each vertex in G is at most A, it follows that no vertex contributes more than

A to the denominator of the left hand side in the above equation. Thus A - tj z, EesCj IB,k i. Hence

Cj < 2pOPT

A-tj ~-1

The lemma follows. 0

Lemma 26

HEU < 2pA HnOPT

where H, = 1 + + is the harmonic function.

Proof: By definition of 4j and tj, we have that

= - (3.1)

and from Lemma 25, we have

cj€j-1
tj > (3.2)

2pAOPT

Substituting Equation (3.2) into (3.1) we get

C0 < (2pAOPT) tj3 < (2pAOPT)(H 1jI - Hcj).

Hence, since 0 5_ n and of = 0, we get

Cj _5 (2pa OPT)(Ho, - Hf) • (2pzOPT)Hn.
j=1

This completes the proof of the lemma since HEu< =1 Cj. O

Since Hl ; In n we obtain Theorem 18.

Remark. Note that the bounds of Theorem 18 also extend to the Steiner version where only a set of terminal

sites need to be serviced. The Steiner version reduces to the regular version by setting the service budgets of

the nonterminal nodes to some large value, such as the diameter of the graph.

3.4.1 Hardness

In this section we prove Theorem 19. We show that for any a > 1, if there is a polynomial-time (a, /)-

approximation algorithm for the (Uniform service cost, Total cost, Tree)-bicriteria problem, then there is a

polynomial-time /-approximation algorithm for the MIN SET COVER problem.

As an instance of the MIN SET COVER problem we are given a universe Q = {ql, q2,... , qn} and a

collection Q1, Q2, Q, , Qm of subsets of Q. The problem is to find a minimum cost collection of the subsets

whose union is Q. Recently Feige [Fei96] has shown the following non-approximability result:

Theorem 27 Unless NP C_ DTIME(n log log n), the MIN SET COVER problem, with a universe of size

k, cannot be approximated to better than a In k factor

We now present the details of the approximation preserving reduction from MIN SET COVER to the

(Uniform service cost, Total cost, Tree)-bicriteria problem. Corresponding to an instance of MIN SET COVER

we construct the natural bipartite graph, one partition for set nodes and the other for element nodes, with edges

representing element inclusion in the sets. To this bipartite graph, we add an enforcer node with edges to all

the set nodes and also a mate node attached to the enforcer. Now we complete this skeleton-graph by throw-

ing in all the edges. We set the d-cost of an edge from the enforcer to a set node to be 1. We set the d-cost of

all other edges to be 3 - m + 1. We now specify the c-costs (service costs) for the edges. We set the c-cost

for the edge between the enforcer and the mate and for each edge between the enforcer and a set node to be

S. We set the c-cost of an edge between a set node and the element nodes contained in this set to also be S.

The d-cost of all other edges is set to a - S + 1. Let G denote the resulting instance (See Fig. 3-3) of the

(Uniform service cost, Total cost, Tree)-bicriteria problem with the c and d cost functions as specified above

and a uniform service budget of S.

Figure 3-3: Skeleton-graph with the c-costs indicated above the edges and the d-costs indicated below.

It is easy to see that any collection of k subsets which form a set cover correspond to a tree in G that strictly

services all the nodes and which has a d-cost of k. This is because the tree consisting of the enforcer and the

nodes corresponding to the sets in the collection, strictly services all the nodes and has a d-cost of k.

Let OPT denote the size of a minimum set cover to the original instance. Now we show that if there exists

a tree T which is an (a, 0)-approximation to the resulting instance G of the (Uniform service cost, Total cost,

Tree)-bicriteria problem, then from it we can derive a 3-approximation to the original set cover instance. Such

a tree T must satisfy the following properties:

1. The c-cost of T is at most /3 OPT. This follows from the definition of /-approximation and the fact

that there exists a tree in G corresponding to OPT with d-cost at most OPT.

2. The nodes of G must be serviced by T within budget S. This is because the c-cost of any edge is either

S or aS + 1, but T violates the budget constraint by at most a factor a.

3. The mate node cannot be in T. This is because the d-cost of any edge from the mate node is 3 -m + 1

which is greater than the d-cost of T. Since only the enforcer node can service the mate node with a

service cost of at most aS, the enforcer must be in T.

4. Using the same reasoning as that for the mate node, none of the nodes representing the ground elements

can be in T. To service these nodes, some of the set nodes must be in T.

We thus conclude that T consists only of the enforcer node and some of the set nodes. Since the d-cost of

T is at most .-OPT, it follows that the number of set nodes in T is at most 3 - OPT. Since the element nodes

are serviced by the chosen set nodes with a service distance of at most aS, the corresponding sets must form

a set cover. We thus have a /-approximation algorithm for set cover and this completes the proof.

m3

q 2 m=3

1

V "" ' '

3.5 Identical Cost Functions

3.5.1 Approximation Algorithm

In this section, we give a proof of Theorem 20. We provide the details of our approximation algorithm for

finding a service-constrained tree with non-uniform service costs and identical cost functions.

Let OPT be an optimal solution. We also use OPT and HEU to denote the cost of the corresponding trees.

We prove the performance guarantee of ALGORITHM IDENTICAL in the following lemmas. Let the vertices

in X at the termination of ALGORITHM IDENTICAL be v1 , v 2 ,... , vf, i.e., IXI = f.

Lemma 28 Every vertex vk is within a distance 2(1 + e)S,, of some vertex in X.

Proof: If vk E X then the lemma follows since HEU contains vk. If vk ' X then 3vi E X such that

B, n Bvk , 0 and Sv, < Sk . In this situation, it is easy to see that Vk is within a distance (1 + E)S, + (1 +

e)Svk _ 2(1 + e)SVk . This completes the proof. O

f

Lemma 29 OPT > Z S,.
i=1

ALGORITHM IDENTICAL:

* Input: An undirected graph G = (V, E), edge cost function c, service radius Sk, for vertex vk, an

accuracy parameter E > 0.

* 1. For each node vk E V, let Bvk denote the set of vertices that are within distance of at most (1 +

e)Sv, from vk.

2. Set X' = {v 1, v2 ,... , • } the set of vertices. Set X = 0.

3. Repeat until X' = 0.

(a) Let i be such that S, is the least among all vi G X'.

(b) Set X = X U {vi}.

(c) Set X' = X'\{vkLBvk n B, 0 •}.

4. Construct a graph on the set of vertices in X. Let the cost of an edge in this graph be the distance

of the shortest path between the two vertices in G. Construct the minimum spanning tree T of

this graph. Consider the subgraph corresponding to T formed by replacing each edge in T by a

shortest path of G. Let HEU be a minimum spanning tree of this subgraph. Output HEU.

* Output: A tree HEU such that any vertex vk is within a distance of 2(1 + E)SVk from some node in HEU

and the cost of HEU is at most 2(1 + 1) times that of any tree which contains a node within distance

Svk of any vertex vk.

Proof: By definition, OPT contains at least one node from each B,, for all vi E X that is within distance Si

from vi. Since the B,, for all vi E X are disjoint, any tree connecting these nodes must cross the peripheral

ESV width and the lemma follows. 01

Lemma 30 HEU < 2(OPT + ,=1 S-,).

Proof: We can construct a tree r spanning all the vi E X as follows: for each vi E X, join vi to a vertex

in OPT that is within distance Svi by a shortest path. The length of this path is no more than S,i. Thus, the

cost of F is at most OPT + ý=1 S,,. Note that F is a Steiner tree that spans all the vertices in X. Since HEU

is a minimum spanning tree on these same vertices, computed using shortest path distances between them,

standard analysis of the minimum spanning tree heuristic for Steiner trees, yields that the cost of HEU is at

most twice the cost of F. The lemma follows. O

Lemma 31 HEU < 2(1 + ±)OPT.

Proof: Follows from Lemmas 29 and 30. l

Theorem 20 follows from Lemmas 28 and 31.

3.5.2 Hardness

In this section we prove Theorem 21. We show that if there is a (1, 6)-approximation algorithm for the (Uni-

form service cost, Total cost, Tree)-bicriteria problem then there is a polynomial-time 3-approximation algo-

rithm for the CONNECTED DOMINATION problem.

As an instance of the (optimization version of the) CONNECTED DOMINATION problem we are given

a graph G(V, E) and are required to find a a dominating set D of vertices of minimum size such that the sub-

graph induced on D is connected.

The result of Feige [Fei96] combined in straightforward fashion with the reduction in [GJ79a] yields the

following non-approximability result:

Theorem 32 Unless NP C DTIME(nog los n), the CONNECTED DOMINATION problem, on a graph

with n vertices cannot be approximated to better than a In nfactor

We now present the details of the approximation preserving reduction from CONNECTED DOMINA-

TION to the (Uniform service cost, Total cost, Tree)-bicriteria problem. Corresponding to an instance G =

(V, E) of CONNECTED DOMINATION, we create a complete edge weighted graph G'(V', E') as follows:

we set V' = V. We set the c-cost of each edge in E' to be the length of the shortest path in G, and the uniform

service budget S to be 1.

We claim that there exists a connected dominating set of size at most k in G if and only if there exists a

solution to the (Uniform service cost, Total cost, Tree)-bicriteria problem with cost at most (k - 1). For the

only if part, note that any spanning tree for connected dominating set of size k is a tree of cost (k - 1) that

services all the nodes. Conversely, suppose we have a tree of cost (k - 1) servicing all the nodes in G'. Then,

the tree has no more than k nodes, and all other nodes are at a distance of 1 from some node in the tree. So,

the vertices in the tree form a connected dominating set for G. This completes the proof.

3.6 Diameter and Bottleneck

We first consider the (Non-uniform service cost, Bottleneck, Tree)-bicriteria problem - given a graph with

two cost functions on the edges, and a service budget for each node, find a tree such that the service budget

(under one cost function) for each node is satisfied and the tree has minimum bottleneck cost under the other

cost function (i.e., the cost of the maximum edge in the tree is minimum). This problem can be solved by

first sorting the edges in increasing order of the d-costs and adding the edges in that order until one of the

connected components in the resulting subgraph satisfies the service constraints for all the nodes. The details

are straightforward and so are omitted.

We now consider the (Non-uniform service cost, Diameter, Tree)-bicriteria problem. Using the ideas in

[CG82, RSM+ 94], we can show that the the service-constrained minimum diameter tree problem can be solved

in polynomial time. In this problem, we are given a graph G(V, E) and a service radius S,, for each vertex vi.

We wish to find a tree with minimum diameter (under the d-costs) such that every vertex vi is within distance

S, (under the c-cost) from some node in the tree.

We only sketch the main idea of the algorithm below. The algorithm uses the roof graph construction

in [RSM+94]. Consider the case when the d-costs are integral and polynomially bounded in the size of the

graph. Consider OPT - a minimum-diameter service-constrained tree. Let OPT have diameter D. Let x and

y be the endpoints of a longest path (under d-cost) in the tree. The weight of this path, D, is the diameter

of the tree. Consider the midpoint of this path between x and y. It either falls at a vertex or in an edge in

which case we can subdivide the edge by adding a new vertex. First we guess the value of D (there are only

a polynomial number of guesses). All the potential midpoints lie in half-integral points along edges of which

there are only a polynomial number. From each candidate point we consider the set of nodes within distance

D/2 and check whether they service all the vertices in the graph. We choose the the least such distance and

the correspondingly suitable point and output the breadth-first tree rooted at this point appropriately truncated.

When the edge weights are arbitrary, the number of candidate midpoints are too many to check in this

fashion. However, we can use a graphical representation (called the roof curve in [RSM + 94]) of the distance

of any node from any point along a given edge to bound the search for candidate points. Thus we get the

required result in the diameter case.

3.7 Service-Constrained Generalized Steiner Forest

In this section we prove Theorem 23. Given a graph G(V, E), edge cost function c, set of k site pairs (si, ti),

and a service constraint S, the service-constrained generalized Steiner forest problem requires us to find a

forest 7. of minimum cost such that for each site pair (si, ti) there exists a tree T E F7 with the property that

both si and ti are within a distance S from the tree T.

Let OPT denote an optimal service constrained forest. We also use OPT and HEU to denote the costs of

the corresponding forests. We prove the performance guarantee of ALGORITHM GENERALIZED STEINER by

proving a series of lemmas.

Lemma 33 HEU is a generalized Steiner forest that services all sites within a distance 2(1 + e)S.

Proof: In Step 3 since each site vi V D is associated with the closest site vj E D and the balls of radius

(1 + E)S around the sites in D form a maximally disjoint collection it follows that the distance between vi and

vj is at most 2(1 + e)S. 0

ALGORITHM GENERALIZED-STEINER:

* Input: An undirected graph G = (V, E), edge cost function c, service budget S, a set of site pairs (si, ti)

1 < i < p, an accuracy parameter E > 0.

* 1. Discard all site pairs for which the distance between sites is less than 2(1 + E)S, from further con-

sideration. Note that we have violated the service constraint only by a 2(1 + e) factor. Henceforth

we may assume that for all site pairs the distance between sites is at most 2(1 + E)S.

2. For each site vi E G, denote by 1(vi, r) (the ball around vi of radius r), the set of vertices that

are within distance at most r from vi. (We will refer to vi as the center of ball B(vi, r)). Consider

the balls B(vi, (1 + e)S) for each site vi. Let D be the set of centers of a maximal collection of

disjoint balls.

3. Create an auxiliary graph G' on the collection of centers in D. Set the cost on the edge be-

tween vertices vi and vj in G' to be the shortest distance between the balls B(vi, (3 + 2e)S) and

B(vi, (3 + 2c)S). Associate sites vi not in D to the closest site in D in graph G. This gives a natu-

ral association between site pairs in G and pairs of vertices in G'. Solve for an optimal generalized

Steiner forest in G'. Let DUAL be the corresponding forest in G. For each vi E D connect it to

the appropriate tree in DUAL by a path of cost no more than (3 + 2E)S. Output this forest HEU.

* Output: A forest HEU such that for all i, si and ti are within a distance of 2(1 + e)S from some tree T E

HEU and the cost of HEU is at most 3(1 + .) times that of any optimal service constrained generalized

Steiner forest.

Lemma 34 For each site vi, OPT must contain at least one node from the ball B(vi, S).

Proof: This follows from the definition of a service-constrained Steiner forest. O

Lemma 35 OPT> eIDIS

Proof: By Lemma 34 OPT strictly services each of the balls B(vi, S). Any forest servicing these balls must

cross the annular width of eS for each ball B(vi, (1 + e)S), vi E D (since these balls are non-intersecting).

This implies that the total peripheral distance covered is at least EIDIS.

Lemma 36 OPT > DUAL.

Proof: This follows from the fact that the forest corresponding to OPTin G' is a valid generalized Steiner

forest on G'. 0l

Hence, OPT > max{•DjeS, DUAL}.

Lemma 37 HEU < (3 + 2c)IDIS + DUAL

Proof: This follows from the way HEU is constructed in Step 3. Let vi E D and vj ' D be two sites such

that vj is associated with vi in Step 3. From Lemma 33 we have that the distance between vi and vj is at most

2(1 + e)S. Note that 3 + 2e = (1 + e) + (1 + e) + 1 was chosen because there must be a vertex of OPT which

is within distance I -S of vj, i.e., within distance (2(1 + e) + 1)S ofvi.

Theorem 23 follows from Lemma 33 and 37.

3.8 Concluding Remarks

In this chapter, we focused on the problem of service-constrained network design problems. We formulated a

number of these problems and presented general approximation techniques along with nearly-tight hardness

results. One natural open problem is to improve our approximation and the hardness results. Another exten-

sion that has many potential applications is the node-weighted version of the problems we consider.

Chapter 4

Optical Routing

We consider the problem of conserving bandwidth both at the level of an individual router (switch) and at the

level of the network.

4.1 Latin routers: Local Bandwidth Conservation

4.1.1 Motivation

Typical fiber-optic networks are directed netowrks with each point-to-point link being serviced by two oppo-

sitely directed optic cables. The restriction that switches have an equal number of input and output ports is en-

tirely natural. It is not a priori clear that each entry of the matrix must have at most one value, but switches that

permit routing of multiple wavelengths between the same input and output ports require additional hardware

that is both complex and costly [CB95]. Another entirely natural requirement is that of achieving conflict-free

wavelength routing - the wavelengths assigned to messages at an input port are all distinct and there must

be no wavelength conflict at any of the output ports. These restrictions were first modeled by utilizing Latin

routers ([BH93]) - routing devices that employ the concept of a Latin Square (LS).

Definition 3 An n x n LS L is an n x n matrix with the following properties:

1. Vi, j, Li,j E {1,2,.. ,n}

2. Vi, jl j 2 , Li,jl Li,j

3. Vil 0 i2, j, Li,j 0 Li2,j

Stated informally, an n x n LS is a matrix with entries from {1, 2,..., n} such that no row or column

contains the same element twice. A Latin router with n input ports, n output ports, and n wavelengths is asso-

ciated with a partial Latin square (PLS), an n x n matrix that specifies the wavelength connections from the

n input ports to the n output ports.

Definition 4 Ann x n Partial Latin Square (PLS) is an n xn matrix with entries from the set {0} U{1, 2,... , n}

(0 is used as a placeholder to denote emptiness) such that each row and each column never contains an ele-

ment from the set {1, 2,... , n } more than once.

If L is a PLS then a non-zero entry Lij denotes that the wavelength Lij is routed from input port i to output

port j. A zero entry denotes an unassigned entry. Thus the state of a Latin router can be described by a PLS.

See Fig. 4-1 for an example of a PLS.

0043

2401

3104

4312

Figure 4-1: A 4 x 4 PLS

Reducing the number of unassigned or zero entries in the PLS associated with a router is of paramount

practical importance in optical networks as this ensures reduced wastage of the valuable resources of ports

and wavelengths.

Definition 5 A PLS S1 is said to extend or be an extension ofa PLS S2 if S, can be obtained by altering only

zero entries of S2.

Definition 6 A PLS is said to be completable if it can be extended to an LS.

1243

2 4 3 1

Figure 4-2: A 4 x 4 LS

See Fig. 4-2 for an LS obtained by extending the PLS of Fig. 4-1. Not all PLSs can be completed (see

Fig. 4-3).

Definition 7 Partial Latin Square Extension Problem (PLSE): Given a PLS S1 find the largest number of zero

entries that can be changed to obtain a PLS S2 that is an extension of S1.

The PLSE problem as stated above is an optimization problem. The natural decision version of the problem

- namely, given a PLS establish whether it is completable - has been shown to be NP-complete [Co184].

4.1.2 Summary of Results

We present two fast approximation algorithms for the problem of maximizing the number of entries that can

be added to a partially filled Latin Square. We show that the greedy algorithm achieves a factor of 1/3. We use

insights derived from the linear relaxation of an integer program to obtain an algorithm based on matchings

that achieves a better performance guarantee of 1/2. These are the first known polynomial-time approximation

algorithms for the Latin Square completion problem that achieve non-trivial worst-case performance guaran-

tees. These algorithms are easily implementable and have very small constants in their running times thus

making them eminently suitable for actual use in real-world optical switches. We also provide strong experi-

mental evidence to show that, in practice, these algorithms are, in fact, near-optimal. In addition, we present

BRANCHBOUND - a back-tracking algorithm that finds an optimal solution to the problem of maximizing the

number of entries that can be added to a partially filled Latin Square. BRANCHBOUND dynamically prunes

the search space to save time. The efficacy of this pruning is demonstrated by the fact that we are able to obtain

performance results for large Latin routers in our simulations. Without some form of pruning, any attempts

at simulation would fail to yield results in a reasonable amount of time.

All the algorithms we present possess provable worst-case guarantees. This is very important from a prac-

tical standpoint. Heuristics that do not have worst-case performance guarantees tend to be commercially un-

viable since they cannot provide any insurance against downside risks. And in fact, the results in Figure 4-6

indicate that our algorithms achieve near-optimal average-case performance. The average-case performance

is of great significance since these algorithms are meant to be used over and over again in on-line situations.

4.1.3 Previous Work

The subject of LSs has been extensively developed by many eminent combinatorialists. Some of the most

famous conjectures concerning LSs were proposed by no less than Euler himself. Denes and Keedwell [DK74,

DK91] provide encyclopedic collections of results on the combinatorial aspects of LSs. Of special interest to

us are results concerning the completion of PLSs. The most famous conjecture in this area was the Evans

conjecture [Eva60] which was proved after a period of over 20 years by Smetaniuk [Sme81]. An excellent

survey of the ongoing attempt to characterize completable PLSs appears in [LE77].

The computational aspect of completing PLSs was initiated by Rosa [Ros77] and Giles, Oyama, and Trot-

ter [GOT77]. The issue was finally resolved by Colbourn [Co184] who proved that the problem of deciding

whether a PLS is completable is NP-complete.

Barry and Humblet [BH93] were the first to recognize the applicability of LSs to the problem of wave-

length assignment in optical networks. The various policies for wavelength routing, and the corresponding

assignments of wavelengths along the routes, that have been reported in the literature [CGK92, LL93, RS94,

ZA94] aim at minimizing congestion, average hop-distance, call blocking probability or maximizing traffic

throughput, and clear channel density. Chen and Banerjee [CB95] realized that these policies often lead to

scenarios where a significant number of wavelengths, available at the input and output ports of the routers,

cannot be used due to potential wavelength conflict. In [CB95], they focus on maximizing the wavelength

utilization at a Latin router by obtaining good solutions to the PLSE problem. They show that achieving im-

proved wavelength utilization also automatically improves overall network performance. They present two

algorithms, Algorithm 1 - a backtracking algorithm that takes exponential time in the worst case and Algo-

rithm 2 - a heuristic that could potentially modify preassigned routes, thus rendering it unfit for use in most

situations of practical interest.

The rest of this part on Latin routers is organized as follows: Section 4.1.4 contains notation and some basic

lemmas; Section 4.1.5 contains the factor 1/3 approximation algorithms; Section 4.1.6 contains the factor 1/2

approximation algorithms; Section 4.1.7 contains a description of algorithm BRANCHBOUND; Section 4.1.8

contains experimental results; Section 4.1.9 answers some natural questions regarding extensions of certain

PLSs; and Section 4.1.10 closes with a conjecture that we would be interested in seeing settled.

4.1.4 Preliminaries

Let L be a PLS. If Li,j = 0, we say the cell (i, j) is empty. Conversely, if Li,j 0 0, we say the cell (i, j) is

filled. Two PLSs L and M are said to be compatible if

* Vi, j, Lij = 0 or Mij = 0, and

* L + M is a PLS.

When L and M are compatible LSs we shall denote L + M by L D M. For a PLS L, let ILl denote the number

of non-empty cells of L. We write L C M (L C M) for two PLSs when M = L e A for some (non-trivial)

PLS A. This is equivalent to saying that L may be extended to M. We call L blocked if 7L' D L. For PLS

L, define L' to be a canonical compatible LS if IL'I is the largest over all compatible LSs.

The problem of extending a PLS can be viewed graph-theoretically as a coloring problem. Associate with

an n x n PLS L the colored graph with n2 vertices (i,j), 1 < i,j 5 n and edges {((i,j), (i',j')) I i =

i' or j = j'} such that vertex (i, j) is assigned color Lij : 0; vertices corresponding to zero entries of L are

considered to be uncolored. The problem of PLS extension can now be viewed equivalently as the problem

of coloring additional vertices given the corresponding partially colored graph. This motivates our use of the

terminology color for the entries of a PLS. We use the terminology degree of freedom of a 0 entry in a PLS

to refer to the number of colors that can be validly used in that entry. See Figure 4-1. The color of the entry

(1, 3) is 4. The degree of freedom of the (2, 3) entry is 1 since there is only one color that can be validly used

in that entry, namely the color 3.

Definition 8 The density of an n x n PLS is the fraction of entries that are non-zero. Ip(L) is used to denote

the density of L.

The PLS in Figure 4-1 has density 3/4. An LS is a PLS that has density 1.

Combinatorial Results

Colbourn's result, [Co184], showing that PLS-completability is NP-complete has effectively destroyed any

hopes of discovering a polynomial time algorithm for recognizing completable PLSs. It remains an intriguing

problem to understand what can be salvaged. We take a combinatorial step in this direction by providing a

quantitative characterization of minimally non-completable PLSs and minimally non-extendible or blocked

PLSs.

Definition 9 Let f(n) be the largest number such that every n x n PLS L with IL <• f(n) is completable.

Lemma 38 f(n) = n - 1.

Proof: The Evans conjecture, ([Eva60O]) made in 1960, states that any n x n PLS L with ILJ < n - 1

is completable. It was finally settled in the affirmative by Smetaniuk ([Sme81]) in 1981. This gives us that

f(n) > n - 1. That f(n) < n is easily seen by the first two PLSs of Fig. 4-3 which cannot be completed.

Hence f (n) = n - 1. O

Definition 10 Let g(n) be the largest number such that every n x n PLS L with ILl < g(n) is extendible.

Lemma 39 g(n) = [~i] - 1.

Proof: We first show that g(n) > y 2 [] - 1. Consider any n x n PLS L such that ILI < W. Let

ri (cj)be the set of non-zero entries in row i (column j) of L. If we show that there exists an i, j such that

Lij = 0 and Iril + Icj I < n, then we are done because it implies that L can extended by setting Lij to a value

in {1, 2,... , n} - ri - cj. It remains to show that there exists an i,j such that Lij = 0 and Ir I + Ic I < n.

We do this by invoking the Cauchy-Schwartz inequality to show that the expectation E[n - Ir I + n - Icj, :

I= 0] = (-•)(i(- II)2 +(n ri- lcj)2)> (n •l)(L I n)la enli) = 2(n - I) > n.

It is easy to see that g(n) < [-n2] by considering the general versions of the last two examples in Fig. 4-4. 0

Figure 4-3: Blocked PLSs with n entries
Figure 4-3: Blocked PLSs with n entries

I I, ..I I I
I L

2 1

345

534

I I K t I"I 3

Figure 4-4: Blocked PLSs with [-] entries

4.1.5 Greedy Algorithms

A Greedy Algorithm Based on Linear Programming

The problem of maximally extending a PLS L may be expressed as an integer program:

max Eijk Xijk (4.1)

subject to

Vj, k EiXjk _ , 1, Vi,kZXijk • 1, Vi, j Xijk 5< 1

Vi, j, k such that Lij = k : 0, xijk = 1 (4.2)

Vi, j, k, xijk E {0, 1}. (4.3)

The association of a feasible point m with the PLS Mij = k ~== mijk = 1 is a natural correspondence

between those LSs which extend L and the feasible points of the integer program. A variable which shares no

constraint with any variable of (4.2) shall be calledfree.

Relaxing this integer program to a linear program yields a natural greedy algorithm:

If L is not blocked there exists a free variable so that step 2 may proceed. Furthermore, if x-k is free, k is a

consistent assignment to cell Lij so that each augmentation made by step 2 results in a (larger) PLS L E At+l.

Lemma 40 Let L be a PLS and t the number of iterations performed by GREEDY (LP) on L. Then t >

GREEDY (LP):

1. Set t = 0. Set Ao - 0.

2. If L e At is blocked, return At. Otherwise let x* be an optimal solution to

the linear program for L E At and (i, j, k) be so that x!*, is a maximum free

variable. Set

At = k if(i,j) = (,)A-+

SA otherwise.

Increment t and begin step 2 again.

Proof: For a PLS L, let kL be the optimal value of the associated linear program. Notice that during each

iteration of the algorithm, at least one constraint containing a free variable is tight, so that the xtj k selected has

value at least 1/n. Examine iteration s of the algorithm. Let x* be an optimal solution to the linear program

for L (AS having value q, and (i, j, k) the triple selected in this iteration. Define

1 if(i,j,k) = (,3,)

0 if (i t and (j, k) = (3, k)) or (j 3 and (i, k) =(,))or
aiJk = (k and (i,j) = (5,3))

oX i k otherwise.

Notice that a is a feasible solution to the linear program for L (A' +1 with value at least ~, - (2 -). Each

iteration, then, depresses the objective function of the associated linear program by at most (2 - 2) whence
t>O > -I

3+- 3+--

Recall that IAtl = t so that GREEDY (LP) achieves a - approximation factor. This proves the follow-

ing theorem.

Theorem 41 GREEDY (LP) is a (+ l(l))-approximation algorithm.

The Naive Greedy Algorithm

Lemma 42 Let L be a PLS and A, B two PLSs, each compatible with L, so that L D B is blocked. Then

IBI > IAI.

Proof: For each pair (i,j) with Bij 0, let Sij = {(i,j)} U {(i,j') Bi j = Aj,} U {(i',j) I Bij = Ai, }.

Then ISijI • 3. If IAI > Fj ISijl then there is a pair (u, v), appearing in no Sij, so that Au, is non-empty.

In this case, (L D B),, may be consistently set to A,,, contradicting that L e B is blocked. Hence IAl <

Consider the greedy 3BI.

Consider the greedy algorithm defined as follows:

GREEDY:

1. Set t = 0. Set A9o = 0.

2. If L(At is blocked, return At. Otherwise, select a pair (5, 3) with (L(At)D =

0 and a color k so that

_1 - k if (i,j) - (j))
A-

+

3 A 3 otherwise.

is compatible with L. Increment t and begin step 2 again.

Since GREEDY computes an extension Ak so that L e Ak is blocked, IAkI > 1jL' I This proves the

following theorem.

Theorem 43 GREEDY is a 1-approximation algorithm.

The example in Fig. 4-2 demonstrates that our analysis of the performance of the greedy algorithm is tight.

This PLS can be filled to completion. However, an incorrect choice by GREEDY to fill 2 in (1, 1) blocks the

LS. The greedy algorithm can be implemented in O(n3) time.

4.1.6 Approximation Algorithms Based on Matching

A Linear Programming Based Algorithm Using Matching

We again consider the linear program associated with a PLS L.

Notice that a matching optimizing the quantity IM i may be computed in polynomial time byIMI+IIGII-IIMII

computing a maximum weight matching of each cardinality c E {1,..., n} for which a matching exists and

selecting the optimum (see [Tar83], for example). Hence the algorithm runs in polynomial time. To show that

this is a 1/2 approximation algorithm, we first prove the following lemma.

Lemma 44 Let G = (U, V, E, w : E --+ Q) be a weighted bipartite graph with Vu, •, w(u, v) < 1. Then

for any maximum cardinality matching M, MI > IIGII. Hence maxM I+G-I - >

MATCHING (LP):

1. Set A ° = 0. Carry out the following for each k = 1,..., n. Let x* be a

solution to the linear program associated with L E Ak- 1. If Vi, j Xýk = 0,

define Ak = Ak- 1 and move on to the next k. Construct the weighted bi-

partite graph G = (U,V,E,w : E - Q+) with U = V = {1,...,n},

E = {(u, v) I x*vk 0 0}, w(u, v) = x*vk. Select a matching M which maxi-

mizes IMI where IMI is the cardinality of the matching, IIM|I is the

weight of the matching, and |G| = ZeE w(e) = ••ij xk is the total weight

of G. Since M is a matching, the variables associated with the edges of M are

independent (that is, none of these variables occur together in a constraint) and

we may define the PLS

k k if (i,j) EM
Ak--

A_&1 otherwise.

Furthermore, each edge of M corresponds to a non-zero variable so that L and

Ak are compatible.

2. Return An.

Proof: To begin with, we show that for any maximum matching M in G, there is a subset of vertices W such

that:

(i) W covers each edge in E, and

(ii) each edge in M is covered by exactly one vertex in W.

A vertex v covers an edge (x, y) if either x = v or y = v. It is easy to see that picking either of the vertices of

every edge in M always satisfies the second requirement trivially. Suppose the first requirement is not met.

In other words, an edge (uo, vi) V M is not covered by any vertex in the current W. By maximality of M,

there is some (ul, vi) E M such that ul E W, by condition (ii). Now, let W = W\{ul} U {vl}. If the first

condition is met, we are done. Otherwise, it implies there is an edge (ul, v2) V M such that it is not covered by

the current W. We repeat the same process now. It is clear that we cannot go indefinitely. When we terminate,

we see that (uo, Vl), (vl, ul), ... , (uk-1, Vk) is an augmenting path, contradicting the maximality of M.

Since for any vertex u, E• w(u, v) <• 1, the above shows that IMI > IIGII. O

Theorem 45 MATCHING (LP) is a !-approximation algorithm.

Proof: We now consider the effect that stage t of the above algorithm has had on the optimal solution to the

linear program. Let Ot-1 be the optimal value of the linear program associated with L D At- 1 and x* a vector

achieving this optimal value. Consider the vector

1 if k = t and (i,j) E M

aijk = 0 if (k = t and (i,j) V M) or (k # t and (i,j) E M)

x1 k otherwise.

a is a feasible solution to the linear program associated with L D At and Zijk aijk Ž> t-1 - 11G11 + IIMII.
Hence kt > ot-1 - J1GI1 + jIMII. In this case we have set IMI variables and depressed the optimum value

of the linear program by at most uIGI1 - IIMII. From the above lemma IMI- > , so that the aboveIMI+IIGII-jIMI -- 2

algorithm is a -approximation algorithm. 0

A Combinatorial Algorithm Using Matching

Consider a PLS L and define Lt = {(i, j) I Vs Li, k, Vs Lsj Z k} to be the collection of cells which will

admit a t. Consider the following algorithm:

MATCHING:

1. Set A° = 0.

2. For each k = 1,... , n, consider the bipartite graph G = (U, V, E) with U =

V = {1,..., n} and E = Lk . Let M be maximum matching in G. Set

if (i, j) EM

otherwise.

3. Return A".

Consider stage k of the above algorithm. Define

Pk (0

(Lz Ak-l)
if ((L e Ak-1) = k) or ((i,j) E M)

otherwise.

Ak k
A - Z

Ai·

Notice that pk is always compatible with L e Ak so that I(L e Ak)II > [pk| > I(L D Ak-1)I1 - 21MI.

(Since M is a maximum matching, (LE Ak- 1) can have no more than IMI cells assigned to k.) This proves

the following theorem.

Theorem 46 MATCHING is a !-approximation algorithm.

The following example (Fig. 4-5) demonstrates that our analysis of the performance of the MATCHING

algorithm is in fact tight. The PLS (left) can in fact be filled to completion (right), but a bad choice of matching

can block it (middle).

4 2 3
2 4 1

3 4 2

1 2 4

1 2 3 4

3 4 1 2

4 1 2 3jjjjjjLii± iii
Figure 4-5: A worst-case scenario for the matching algorithm

We repeat the matching step for each of the n colors. Each matching step can be performed in O(n2.5) by

the Hopcroft-Karp algorithm ([HK73]). Therefore, this algorithm runs in O(n 3
-
5) time.

4.1.7 Branch and Bound Algorithm

Backtracking is a general and proven method for exhaustively going through the space of all possible solutions.

BRANCHBOUND does a search of the (potentially (n + 1)-ary) tree corresponding to the choices of colors for

each 0 entry in the PLS. But since the number of possible nodes in the tree is hugely exponential - O(n"2) -

BRANCHBOUND employs four techniques to cut down the running time.

Preprocessing. To prevent costly recomputation at each step BRANCHBOUND sets up an elaborate data struc-

ture ahead of time. This data structure permits quick table lookup of the set of possible colors that can

be validly used in a 0 entry. The data structure also permits a quick lookup of the list of invalidations

that would be caused by setting entry Lij to color k, for all i, j, k.

Implicit Depth first search. The entire algorithm is coded in a conventional higher-level language. To save

time spent processing function calls BRANCHBOUND is implemented as an iterative loop that implicitly

traverses the tree in depth first fashion.

Degree of Freedom. To reduce the number of backtracking steps the degree of freedom concept is used in a

fashion identical to that of Algorithm 1 of [CB95]. The order of 0 entries tried for backtracking is based

on the degree of freedom of the entries.

Dynamic Pruning. At any point the algorithm maintains the best solution found so far. At each node it does

a quick evaluation (using the data structure) and linear programming to figure out if the best potential

solution in the subtree rooted at that node could better the best solution found so far. If so it continues

the search else it aborts the search at that node. This is also known as alpha-beta pruning in the game

theory literature.

It is clear that BRANCHBOUND obtains a solution that is as good as that of OPT. Since the problem is

NP-complete, BRANCHBOUND could potentially take Q(n n 2) time.

4.1.8 Experimental Results

To study the applicability of our approximation algorithms in practice, we performed simulation studies. We

are mainly concerned with the quality of the output (i.e., the number of filled entries in the final PLS) and the

time taken for execution. We then compare the performance against BRANCHBOUND (which is OPT, as far

as the quality of the result is concerned). The simulations were conducted on 4 x 4 to 9 x 9 PLSs that were

randomly filled with initial densities from 20% to 80%. The performance of various algorithms are shown in

Figure 4-6. The table shows the output densities obtained and execution time (in ms) averaged over several

trials (100 trials). The simulations were written in C++ and run on a Sparc-20. The results in the tables can

be taken in at a glance by inspecting the graphs in Figure 4-7.

From our results, it is clear that the approximation algorithms with their heuristics perform very well in

practice. As expected, BRANCHBOUND runs fast when the density is large (since there are less choices).

This suggests a combined approach in practice - using the approximation algorithms at low densities and

BRANCHBOUND at higher densities.

Algorithm 4 x 4 PLS 5 x 5 PLS 6 x 6 PLS
Initial% 20 40 60 80 20 40 60 80 20 40 60 80

GREEDY Final% 96 87 85 83 91 85 86 86 90 87 85 85
Time 0 0.08 0.08 0.12 0.08 0.08 0.32 0.12 0.24 0.08 0.12 0.12

MATCH Final% 100 87 87 83 94 91 87 86 98 91 86 85
Time 1 0.52 0.76 0.36 1.24 1.08 1 0.68 1.88 1.64 1.4 1.08

BRANCHBOUND Final% 100 100 87 83 100 93 87 86 100 95 88 86
Time 2.52 1.12 0.32 0.16 9.84 2.64 0.68 0.12 75.04 14.68 2.04 0.16

Algorithm 7 x 7 PLS 8 x 8 PLS 9 x 9 PLS
Initial% 20 40 60 80 20 40 60 80 20 40 60 80

GREEDY Final% 87 87 85 85 89 88 86 88 91 89 86 85
Time 0.24 0.28 0.08 0 0.25 0.32 0.32 0.2 0.6 0 0.32 0.12

MATCH Final% 96 92 88 85 100 94 89 88 97 95 88 85
Time 3 2.72 2.16 1.64 4 3.4 2.76 2.16 5.6 4.7 3.48 2.76

BRANCHBOUND Final% 100 98 90 85 100 98 90 88 100 99 91 85
Time 1227 153 7.04 0.4 589 12k 16.16 0.4 246k 401k 144.56 0.48

Figure 4-6: Experimental evaluation of the algorithms

10
a

E 102

10'

100

3 4 5 6 7
Latin Square Size

8 9 10
4 5 6 7

Latin Square Size

Figure 4-7: Performance of algorithms when initial density = 50%

4.1.9 Extending Blocked PLSs

In many applications, the problem of completing a blocked PLS with new available colors is significant. A

natural question is this: given a blocked n x n PLS L, how many extra colors are necessary to complete it.

This can be answered exactly (in polynomial time) by constructing the bipartite graph GL on the 2n vertices,

Ri, Cj, 1 < i,j 5 n, such that there is an edge between Ri and Cj iff Lij = 0; and observing by Hall's

theorem [Hal48] that the edge set of this bipartite graph can be partitioned into k* disjoint matchings where

k* is the maximum degree of a vertex in the bipartite graph defined above. By coloring each such matching

with a new color, we ensure that there are no conflicts generated. Thus, k* new colors suffice. Notice that k*

colors are indeed necessary since some node of GL has degree k*.

In fact, one can see that k* < n/2 by a proof similar to that of Lemma 39. And, in fact k* can be equal to

n/2, as can be seen from the two examples in Fig. 4-4.

A related question is this: given a blocked L, and k new colors, what is the maximum number of en-

tries that can be filled using these new colors. For k = 1, it is equivalent to finding the maximum match-

100oo

95

90

5 85

LL

80

75

::::::::::::::::::r-::::::I:::::. :~::::::::I:::: :::
............iiii iiii....:..:;···

............ ::::::::: ::::::::::: · :::::::ijiiiiiiiiiiiiiiiiii ij iiiiiliiiifiiii.....................·······
...

...
.............

..
iiiiiiiiiiiiiiiiiiiii..........ii

....

..............
....

8 9 10
I

7n i

.... I

.

.................

............

.............

.............

.............

..............

3

ing in GL (defined above) and hence can be exactly computed. For k > 1, this problem is equivalent to

finding disjoint matchings Mi,... , Mk. in GL such that Ek• IMil is maximized. This number can be ex-

actly computed by computing a maximum flow on the following graph G'n . V(GL,) = V(GL) U {s, t},

E(GLI) = E(GL) U ul ,(s, Ri) U UO= 1(Cj, t), and c(e) = 1 if e E E(GL) and c(e) = k otherwise. It is

easy to extract the actual color assignment to edges from the maximum flow graph.

4.1.10 Concluding Remarks

In this section we presented three algorithms to complete a Latin router in which some of the entries may have

been preassigned. Two of the algorithms are fast polynomial time approximation algorithms with provable

worst-case bounds. Unlike Algorithm 2 of [CB95], neither of these algorithms changes preassigned entries.

GREEDY possesses the extra advantage of being usable in a dynamic situation where routing requests are on-

line. The third is an exhaustive search-based algorithm that uses pruning to dynamically shrink the search-

space. BRANCHBOUND is a more efficient version of Algorithm I of [CB95],

These algorithms have applications to the problem of lightpath assignment in wide area wavelength rout-

ing optical networks. We also present simulation results which show that on average the two approximation

algorithms are near-optimal, in addition to being very fast.

We now present a conjecture we would like to see settled. Define the Latin square polytope to be £C =

{x E (Rn) 3 I Vi, j, k xijk > O, Vj, k Ei Xij <, 1, Vi, k Ej Zijk < 1 Vi, j k Xijk 1}. We conjecture

the following:

Conjecture 1 For every vertex v E 2n, Vi, j, k, Vijk = 0 or vijk > 1.

This would show that MATCHING(LP) achieves a factor of + Q(1).

4.2 Network: Global Bandwidth Conservation

4.2.1 Motivation

Though the number of wavelengths at a given node is limited by the size of the switch, nevertheless, it is

possible to build a transparent wide-area optical network by spatial reuse of wavelengths. Figure 1-1 shows

an all-optical wavelength routing network with two 3 x 3 switches. Though each switch has only 3 input and

output ports, it is still possible to set up all the shown interconnections by (re)using wavelength 1 both for the

A - B and C - D routes.

4.2.2 Summary of Results

Bandwidth is a very valuable resource in wavelength division multiplexed optical networks. The fundamental

problem in bandwidth utilization in optical networks can be modeled as follows:

Definition 11 (OPTICAL ROUTING:) Given a directed (undirected) graph G and a set P of n requests, each

of which is a pair of nodes to be connected by a directed (undirected) path, find a set ofpaths corresponding to

these requests and an assignment of wavelengths to the paths so as to minimize the total number of wavelengths

used. The assignment should ensure that different paths allotted the same wavelength must be edge-disjoint.

We present a polynomial-time algorithm for this problem on fixed constant-size topologies. We combine

this algorithm with ideas from Raghavan and Upfal [RU94] to obtain an optimal assignment of wavelengths on

constant degree undirected trees. Mihail, Kaklamanis, and Rao [MKR95] posed the following open question:

what is the complexity of this problem on directed trees? We show that it is NP-complete even on binary and

constant depth directed trees.

4.2.3 Previous Work

OPTICAL ROUTING has been studied in great detail on a number of different and fundamental topologies by

Raghavan and Upfal [RU94]. This problem is NP-complete for undirected trees by reduction from edge col-

oring. They gave a 9/8-approximation algorithms for undirected trees and a 2-approximation algorithm for

rings. They also present approximation algorithms for expanders, meshes, and bounded-degree graphs. Sub-

sequently, Mihail, Kaklamanis, and Rao [MKR95] consider the problem on directed trees (these are graphs

obtained by replacing each edge of an undirected tree by two directed edges in opposite directions). They ob-

tain a 15/8-approximation algorithm using potential function arguments. Aumann and Rabani [AR95] con-

sider routing permutations on arrays, hypercubes, and arbitrary bounded degree networks, while Bermond et.

al. [JCGP+96] study the problems of broadcasting and gossiping in optical networks.

Section 4.2.4 contains some notation; Section 4.2.5 presents a polynomial time algorithm for the problem

of OPTICAL ROUTING on constant-size topologies. Section 4.2.6 deals with hardness of routing on constant-

degree trees. Section 4.3 lists some interesting observations on OPTICAL ROUTING on trees.

4.2.4 Preliminaries

For an undirected graph G, let x'(G) denote its chromatic index (i.e., the edge color number). (x(G) denotes

the vertex color number, as usual. We use X'(G) both to denote an optimal edge coloring as well as the number

of colors used, i.e. the chromatic index. For edge e, X'(e) denotes the color of the edge. When G is a tree,

for any given u, v E V, the path from u to v is unique and hence OPTICAL ROUTING is equivalent to path

coloring on trees. Given an instance of OPTICAL ROUTING with a graph G and a (multi)set P(IPI = n)

of paths, we use A(G, P) to denote both an assignment of wavelengths and the total number of wavelengths

used; we use A(p) to denote the wavelength of path p. A* (G, P) denotes the optimal number of wavelengths

for the set of requests P. Note that wavelengths can also be interpreted as colors.

4.2.5 Constant Size Graphs

We now present an exact polynomial-time algorithm for the problem of OPTICAL ROUTING on a fixed constant-

size topology, G (i.e., k is constant). This problem is non-trivial - a combinatorial approach seems difficult.

We present the algorithm only for undirected graphs. The algorithm for directed graphs is a straightforward

modification.

Theorem 47 OPTICAL ROUTING on constant-size topologies is in P.

Proof: Let rij denote the number of paths from node i to j. Note that rij could potentially be as large as n.

Let a path-matching be a collection of edge-disjoint simple paths. Let. M = {M I M is a path-matching

in G} be the set of path-matchings in G. Note that since G is constant-size, so is M G .

Consider the following integer program (IP):

The optimization function:

min 1 XM
MEMG

subject to the constraints:

ijEM

It is easy to see that the above IP models the problem of OPTICAL ROUTING exactly. A solution to the

IP yields A*(G, P), the optimum number of wavelengths needed. Though the IP has terms in the constraints

which are linear in n, the optimizing function has only a constant number of variables. This means we can

solve the IP exactly using Lenstra's polynomial-time algorithm for integer programs in fixed dimension [Len83].

0

Thus we have an exact polynomial-time algorithm for the problem of OPTICAL ROUTING on a fixed

constant-size topology.

4.2.6 Constant Degree Trees

First, we show that for undirected trees of constant degree, the problem of coloring paths is in P. Then, we

show that for directed trees, this problem is NP-complete even for binary trees.

Theorem 48 Coloring paths on undirected bounded-degree trees is in P.

Proof: Let T be an undirected tree with vertex set V and edge set E. The problem now is to assign colors in

an optimal fashion to paths in P. Observe that the following nice decomposition result holds: let the removal

of edge e E E result in two trees T1 (V1, E1) and T2(V2, E2). P is partitioned into P1 (the paths entirely in

T1), P2 (the paths entirely in T2), and P12 (the paths that go through e). Consider the trees (Vi, E1 U {e}) with

paths P1 UP 12 and (V2, E2 U {e}) with paths P2 UP12 . If we can color both the above instances optimally then

we can combine the colors of the two to get an optimal coloring of P on T. Thus we need only to solve the

problem on stars (trees with one central vertex and many leaves) and then we can put the solutions together

to get a solution for the whole. But since T is constant degree, the stars we get from breaking up the tree are

constant-sized and so we can use the results from Theorem 47 to get optimal solutions for these stars.

Thus we have an exact polynomial-time algorithm for the problem of OPTICAL ROUTING on a constant-

degree undirected trees. O

To prove the next theorem, we need some basic results from vertex coloring interval and circular-arc graphs.

Recall that an interval (circular-arc) graph is the intersection graph of intervals(arcs) on a line (circle). Inter-

vals graphs can be vertex colored in linear time. Vertex coloring circular-arc graphs is NP-hard [GJ79b].

Theorem 49 Coloring paths on directed binary trees is NP-complete.

Proof: We reduce the problem of vertex coloring circular-arc graphs to the problem of coloring paths on a

directed binary tree. As an instance of the vertex-coloring problem we are given a circular-arc graph G and

an integer k, and asked whether the chromatic number x(G) = k? Our idea is to embed a circle on the tree.

We consider the circular-arc representation of G, which is computable in polynomial-time [Go180]. We "cut"

G at two distinct points P1, P2 on the circle to partition G into two "pieces" G1 , G2 . Note that G1 and G2 are

collections of intervals on a line. Note also that there are intervals in both G1 and G2 that correspond to the

same arc in G. We construct a directed tree as follows: we take a suitably long directed path and pick a vertex

in the middle to be the root. This gives us a tree with two leaves. We embed the interval graph G1 on this

directed tree as a set of directed paths going from left to right and G2 going from right to left. We now need to

ensure that the same arc in G 1 and G2 gets assigned the same color. We do this by attaching a binary tree to

each end of the tree. The paths corresponding to the same arc in G1 and G2 are then extended into these trees

until they can be split down two adjacent leaves. We then add k - 1 directed paths across these two leaves

thus ensuring that the two extended paths get the same color in any k-coloring. See Fig. 4-8 for an illustration

of this reduction for a 3-node circular-arc graph. The resulting tree and set of directed paths constitute the

instance of the OPTICAL ROUTING problem on directed trees.

It is easy to see that the resulting instance of OPTICAL ROUTING is k-colorable if and only if the original

circular-arc graph can be vertex colored with k colors.

4.3 Concluding Remarks

An interesting parameter is the thickness denoted Lmax. Given a tree T and set of paths P, Lmax is defined

to be the maximum thickness of of the paths at any point in T. When Lmax = 1, one color suffices since

there is no overlap of paths. When Lmax = 2, we can show that the set of paths can be decomposed into

x pl

; %x 1'' ./

al a2 bl b2

Figure 4-8: Reduction to a binary directed tree

a tree of cycles. Hence, either 2 or 3 colors suffice and the problem is in P. We can reduce the problem of

edge-coloring cubic graph to show that the problem is NP-complete when Lmax = 3.

The problem of obtaining a better than 7Lmax/4 algorithm for binary trees or better than 15Lmax/8 for

general trees ([MKR95]) is still tantalizingly open.

Chapter 5

Asymmetric Alternation in Interaction

5.1 Motivation

The framework of cooperating provers has received much attention. A natural question arises: what happens

in a scenario in which provers compete with each other? In this chapter we explore a specific model of inter-

active proof systems - namely, alternating prover proof systems . The aim of this line of investigation was to

obtain improved hardness of approximation results.

5.1.1 Summary of Results

We consider the scenario of competing-prover proof systems. In a competing-prover proof system two teams

of competing provers (Pi : i E I) and(Pi: i E), (whereI C_ {0,..., k-1},andl= {0,... ,k-1}\I),

interact with a probabilistic polynomial-time verifier. The first team of provers tries to convince the verifier

that w is in L, for some prespecified-specified word w and language L. The second team has the opposite

objective, but the verifier does not know which team to trust. Before the protocol begins, the provers fix their

strategies in the order specified by their subindices. These strategies are deterministic.' To model the situation

of k competing provers, we propose and study the class k-APP of languages that have k-alternating-prover

one-round proof systems.

Definition 12 (k-Alternating-proverproof systems) A language L is said to have a k-APP system with pa-

rameters (r(n), q(n), [Qo, - - , Qk-1]), Qi E { , V }, and error (•cc, rej) if there is a probabilistic non-

adaptive verifier V which runs in time polynomial in the size of the input, n, interacts with two teams of com-

peting provers, and the following hold:

1 We will later see that it is important to distinguish between the cases where the provers can have randomized as opposed to deter-
ministic strategies.

if w E L, then QoPo, .- - , Qk-1Pk-1 such that

Pr[(V - Po,..., Pk-l)(w,r) accepts] 1- Eac

if w V L, then QoP, ... , Qk-Pk-l such that2

Pr [(V <-+Po,... ,Pk-1) (w,r) accepts] ej,

where the verifier is allowed one round of communication with each prover, the probabilities are taken over

the random coin tosses of V, and the quantifiers range over the set of deterministic provers' strategies. Fur-

thermore, V uses 0 (r(n)) coin flips and the provers' responses are of size 0 (q(n)).

As in multi-prover proof systems no prover has access to the communication generated by or directed to any

other prover. The hierarchical order among the provers of an alternating-prover proof system is a key feature

of the proof systems we consider.

We also consider systems of k-competing oracles.

Definition 13 (k-Alternating-oracle proof systems) A language L is said to have a k-AOP system with pa-

rameters (r(n), q(n), [Qo, ... , Qk-1]), Qi E { 3,V }, and error (acc, Erej) if there is a probabilistic non-

adaptive verifier V which runs in time polynomial in the size of the input, n, queries two teams of competing

oracles, and the following hold:

if w E L then QoOo, ... , Q-10k-1 such that

Pr[(V -+O0,...,Ok-1) (w,r) accepts] 1-Eacc,

ifw V L then QoOo, . . , k-lOk--1 such that

Pr[(V+-+00,...,Ok-1) (w,r) accepts < E,ej,

where the probabilities are taken over the random coin tosses of V, and the quantifiers range over the set of

possible oracles. Furthermore, V uses 0 (r(n)) coin flips and queries 0 (q(n)) bits.

There is a fundamental difference between alternating-prover proof systems and alternating-oracle proof

systems. Provers may be asked only one question, whereas oracles may be asked multiple questions but their

answers may not depend on the other questions. (This requirement was labeled in [FRS88] as the oracle re-

quirement.)

2 For Q E { 3, V }, Q denotes V if Q = 3, and 3 otherwise.

We now establish some conventions that we will need for the rest of the chapter. Consider a k-APP or

k-AOP systems with parameters (r(n), q(n), [Qo,... , Qk-i I), Qi E { 3, V }, and error (E,cc, -ej). When

we omit r(n) and q(n) they are assumed to be log n and 1 respectively; when the quantifiers do not appear,

they are assumed to alternate beginning with 3; when Eace = evej = e, we say the system has error e. We

abbreviate the sequence of 2t alternating quantifiers beginning with 3 by (3, V)t. We define the class k-APP

to be the set of languages that have a k-alternating-proverproof system with error 1/3.3 We follow the standard

custom of denoting the length of the string w by n. Finally, we denote provers by boldface letters, and their

strategies by italic letters.

We characterize NEXPTIME and NP in terms of two-alternating-prover proof systems. We estab-

lish conditions under which alternating-prover proof systems are equivalent in power to alternating-oracle

proof systems. We show that alternating-prover proof systems are weakened if we allow the provers to have

access to secret sources of unbiased random bits. (In contrast the power of cooperating-prover proof sys-

tems, remains unchanged if the provers are allowed to use private coins.) We characterize the k-th level of

the polynomial-time hierarchy in terms of k-alternating-oracle proof systems. This result is an extension of

the NP = PCP(log n, 1) of [ALM+92b]. Finally, we give a precise characterization of each level of the

polynomial-time hierarchy in terms of alternating-prover proof systems. The main result of this work is

Theorem 50 For every constant e, 0 < e < 1/2, a language L is in EP, if and only if it has a (k + 1)-

alternating-prover proof system with error e.

5.2 Previous Work

Interactive proof systems and the class IP were independently proposed by Babai [Bab85] and Goldwasser,

Micali, and Rackoff [GMR85]. The major question left open by these papers was to determine the precise

relation between IP and classical complexity classes. This was finally settled by Shamir et al. [LFKN90,

Sha90] who showed that IP = PSPACE.

In order to allow for perfect zero-knowledge proofs without cryptographic assumptions, Ben-Or, Gold-

wasser, Kilian, and Wigderson [BOGKW88] introduced the concept of a multi-prover interactive proof. Here,

the scenario is similar to the one of interactive proofsystems, now, however, there are k powerful provers with

whom the verifier interacts. Moreover, there is a crucial restriction on the provers, they cannot communicate

with each other. The set of languages recognizable by multi-prover interactive proof systems is denoted MIP.

Clearly, IP C MIP. Babai, Fortnow, and Lund [BFL90] showed that NEXPTIME = MIP. This char-

acterization was strengthened when [LS91, FL92] showed that NEXPTIME languages have two-prover

one-round proof systems.

For a more thorough account of the work in interactive proof systems we refer the reader to the surveys

of Johnson [Joh88, Joh92].

3 Note that we are already employing the previously stated conventions.

Another line of research deriving from the MIP = NEXPTIME result concerns the alternative char-

acterization of MIP proposed by Fortnow, Rompel, and Siper [FRS88]. This alternative characterization is

what more modern terminology refers to as probabilistically checkable proofs (PCPs). Here, the scenario is

as before, but instead of the verifier having access to a prover he has random access to a proof tape (formally

an oracle).

In essence, [FRS88] shows that the class of languages having probabilistically checkable proofs is pre-

cisely MIP, hence, NEXPTIME = PCP(no(1), no(1)) [BFL90]. This result was followed by a se-

quence of highly technical developments that led to the celebrated NP = PCP(log n, 1) result of Arora,

Lund, Motwani, Sudan, and Szegedy [ALM+ 92b]. Key among this sequence of developments were the papers

ofBabai, Fortnow, Levin, and Szegedy [BFLS91], Feige, Goldwasser, Lovaisz, Safra, and Szegedy [FGL+91b],

and Arora and Safra [AS92b].

Informally, the NP = PCP(log n, 1) result says that languages in NP have proofs of membership that

can be verified probabilistically by a small number of spot-checks. In this short discussion we cannot do true

justice to the many researchers that contributed to the work leading to [ALM+92b] and the derivation of its

many consequences. Thus, we refer the reader interested in a more accurate account of the contributions

related to PCPs to the surveys of Babai [Bab92], Goldreich [Gol94], Johnson [Joh92], and to the thesis of

Arora [Aro94] and Sudan [Sud92].

More recently, Feige and Kilian [FK94], building on top of the NP = PCP(log n, 1) result of [ALM + 92b],

show that NP is characterized by two-prover one-round proof systems in which the verifier has access to only

O (log n) random bits, the provers' responses are constant size, and the probability that the verifier incorrectly

accepts a string not in the language is at most e, where e can be an arbitrarily small positive constant.

In all the prover proof systems that we have discussed so far, all the provers are trying to convince the

verifier of the veracity of a given statement. In other words, the provers always cooperate with each other.

Proof systems related to the one given in Definition 12, but where the provers do not have access to each

others' strategies, have been studied in Feige, Shamir, and Tennenholtz [FST87]. Yet, the use, in a com-

plexity theoretic setting, of the notion of competition among independent decision makers is older. Stock-

meyer [Sto76a] used games between competing players to characterize languages in the polynomial-time hi-

erarchy. Other uses of competing players to study complexity classes include Condon [Con88], Feigenbaum,

Koller and Shor [FKS95], Reif [Rei79], Russell and Sundaram [RS95], and Peterson and Reif [PR79].

More recently, Condon, Feigenbaum, Lund, and Shor [CFLS93, CFLS94] characterized PSPACE by

systems in which a verifier with O (log n) random bits can read only a constant number of bits of a polynomial-

round debate between two players. These systems are the motivation four our definitions of k-competing or-

acles.

The rest of this chapter is organized as follows: Section 5.3 contains a characterization of NP in terms of

two-alternating-prover proof systems; Section 5.4 studies the effect of allowing the provers of an alternating-

prover proof system to have access to private coins; Section 5.5 contains the characterization of the levels

of the polynomial-time hierarchy in terms of alternating-oracle proof systems; Section 5.6 contains a review

of some results of Feige and Kilian [FK94); Section 5.7 contains a proof of Theorem 50; and, Section 5.8

contains some closing remarks.

5.3 Two-Alternating-Prover Proof Systems for NP

Suppose that a language L can be recognized by a two-cooperating-prover one-round proof system with ver-

ifier V and provers Po and P 1 quantified by ([3, 3]). The verifier V on random string r, asks prover P0

question q(o)(r), asks prover P1 question q(1)(r), and uses the answers to the questions to decide whether or

not to accept. We will transform this system into a two-alternating-prover proof system with verifier V and

provers P 0 and P 1 quantified by ([3, V]). In this latter system, prover Po claims that there exist provers Po

and P 1 that would convince V to accept. Prover P 1 is trying to show that Po is wrong. The verifier V will

simulate the verifier V from the original system to generate the questions q(O) (r) and q(1) (r) that the verifier

V would have asked the cooperating provers. To justify his claim, Po will tell V what P 0 or P 1 would have

said in answer to either question. To test Po's claim, V will pick one of the two questions q(O) (r) and q(1) (r)

at random and ask P0 to respond with what the corresponding prover would have said in answer to the ques-

tion. Unfortunately, this does not enable V to get the answer to both questions. To solve this problem, we

recall that P 1 knows what P0 would answer to any question. Thus, V will send both questions to P 1, and

request that P 1 respond by saying how Po would have answered the questions.

If w E L, then Po is honest, and P 1 has to lie about what P0 would say in order to get the verifier to

reject. If P 1 lies about what Po said, he will be caught with probability at least 1/2, because Pi does not

know which question V sent to Po. Thus, the verifier will accept with probability at least 1/2.

On the other hand, if w ~ L, then P 1 will honestly answer by telling V what P 0 would have answered

to both questions. In this case, V will accept only if the provers that Po represent would have caused V to

accept. Thus, we obtain a two-alternating-prover proof system with error (1/2, e).

We now show how we can balance these error probabilities by a 'parallelization' of the above protocol

with an unusual acceptance criteria.

Lemma 51 A two-cooperating-prover one-round proof system with error (0, E) can be simulated by a two-

alternating-prover one-round proof system with error (2 - m , m2m-`l), an m-fold increase in the verifier's

randomness and an m2m-fold increase in the length of the answers returned by the provers.

Proof: Let V denote the verifier and Po, P 1 the provers of the two-cooperating-prover proof system. Now,

consider the two-alternating-prover proof system with verifier V and provers P0, P 1 that execute the follow-

ing protocol, henceforth referred to as the BASIC SIMULATION PROTOCOL:

Assume that the two-cooperating-prover proof system accepts. Then, P 0 is honest. Hence, P 0 truthfully

answers each question he is asked as P 0 would have. We will see that this forces P 1 to lie in response to

all but the set of indices 'j Indeed, suppose there is an m-tuple of questions indexed by Z " iA j for which

P1 honestly represents what P 0 would say. Then there must be an s such that (%1, (j),. If P 1 honestly

represented Po's answers on tuple %, the verifier V would accept, since V on random string r, would accept

if given answers a from P(-.), and a3 from P(,,. Since P 1 does not see the randomly chosen , he decides

to honestly answer the questions sent to prover P 0 with probability at least 1 - 2- m. Hence, the probability

that V accepts is at most 2- m .

On the other hand, assume that the two-cooperating-prover proof system rejects. Then the probability that

V accepts is at most e for each s, and i'such that (s, : (j)1, for a total error of m2m-le. O

Lemma 51 yields an exponential-in-m blowup in the size of the provers' responses. This may seem to be a

fatal drawback. But, we will apply this lemma in situations where m is not too large and e is very small.

4 We have to allow P 1 to answer this way. This is because a cheating prover Po may vary its strategy according to the value of jthat
it receives, but which P 1 does not see.

THE QUERIES

- Verifier V generates m pairs of questions as the old verifier V would have, i.e. V selects random

strings rl, . . . , r, and generates ((q() (rs), q() (rs)) : s = 1, . . . , m).

- V then picks one question from each pair, i.e. randomly chooses j = (j,... , jm) in { 0, 1 }m,

and sends to Po the questions (q(i) (rs) : s = 1,... , m) and J.

- V sends to P 1 all the tuple of questions ((q() (rs), q(1)(r,)) : s = 1,... , m).

THE RESPONSES

- Po is supposed to respond with (jp, (q(aj)(r)) : s = 1,... , m), which is how Po and P 1 would

have answered the questions.

- P 1 is supposed to respond with what Po would have said to ' = (i,... ,im) and

(q(i)(r,) : s = 1,... , m), henceforth denoted (a: s = 1, . . . , m),for every one of the 2 pos-

sible assignments to ZO.4

ACCEPTANCE CRITERIA

- The verifier V accepts if P 1 did not correctly represent what P 0 said on the tuple of questions that

Po was asked.

- Otherwise, V accepts if there exists at least one s E { 1, ... , m } and index vector ' such that

(i 8, (J)8 and V on random string r8 would accept if given answers a from P(, and af from

P(33

We will combine the preceding lemma with the theorem of Feige and Kilian [FK94], which we state below

in our terminology:

Theorem 52 (Feige-Kilian [FK94]) For any constant e, 0 < E < 1/2, a language L is in NP, if and only if

L has a two-alternating-proverproofsystem with parameters ([3, 3]) and error (0, e).

Remark 1 The proofofTheorem 52 given in [FK94] is based on a proofofa weak version ofthe parallel repe-

tition theorem. Shortly after [FK941 appeared, Raz [Raz95] succeeded in proving the parallel repetition theo-

rem. Thus, the above claim can now be proved by combining the NP = PCP(log n, 1) result of [ALM+92b]

with the techniques from [FRS88]for simulating an oracle by a pair of provers, and then reducing the error

of the proof system thus derived by parallel repetition. This yields an alternative proof of Theorem 52 where

the hidden constants are better (smaller).

Corollary 53 For any constant e, 0 < E < 1/2. A language L is in NP, if and only if, L has a two-

alternating-prover proof system with error e.

Proof: The forward direction follows immediately from Lemma 51 and Theorem 52 by choosing an appro-

priate integer m and a positive constant e such that 2-m < 1/3 and m2m~-1 < 1/3. For the reverse direction,

assume L has a two-alternating-prover proof system with error e. Observe that the strategy of the first prover

is of length polynomial in the size of the input w. Thus, given w we can non-deterministically guess the op-

timal strategy of the first prover. We then compute the optimal strategy for the second prover. This can be

done in polynomial time. It is now possible to compute the acceptance probability efficiently by simulating

the verifier's behavior on each of the 20(10g(lw l)) random strings. The probability thus computed is at least

1 - e, if and only if, w E L. 0

Corollary 54 A language L is in NEXPTIME, if and only if L has a two-alternating-proverproofsystem

with parameters (poly(n), poly(n), [3, V]) and error (1/poly(n), 1/exp(n)). 5

Proof: We first prove the forward direction. Observe that the NEXPTIME characterization of [FL92] in

terms of multi-prover interactive proof systems, can be rephrased (in our terminology) as: a language is in

NEXPTIME, if and only if, it can be recognized by a two-alternating-prover proof system with parameters

(poly(n), poly(n), [3, 3]) and error (0, 1/exp(n)). Hence the corollary follows again from Lemma 51 and by

choosing 2- 5< 1/poly(n) and m2m-1 e 5 1/exp(n). The reverse implication follows by properly scaling

the proof of the reverse direction of Corollary 53. 0

5.3.1 The Robust Simulation Protocol

In Section 5.7, we will need a stronger version of Lemma 51. This section describes extensions to the BASIC

SIMULATION PROTOCOL that yield such strengthening.

5 The terms poly(n) and exp(n) refer to O (nC) and 0 (2n' c) respectively, where c is some positive constant.

In the previous section we saw how two-cooperating-prover proof systems with one sided error could be

simulated by two-alternating-prover proof systems. We now study the possibility of carrying out a similar

simulation of k-cooperating-prover proof systems, even in the case that the error is two sided. In addition, the

simulation is carried out in a more demanding scenario.

As in the BASIC SIMULATION PROTOCOL we consider an alternating-prover proof system verifier V who

concurrently simulates m rounds of the original cooperating-prover proof system verifier V. We refer to each

one of these simultaneously performed rounds as a run. For each one of these m runs V assigns a label of

accept/reject based on computations and simulations of V. We model the situation where some of the provers'

responses are maliciously corrupted. We do this by allowing up to a 6-fraction of the labels to be arbitrarily

flipped. We refer to these flipped labels as wild-cards. The verifier V now decides to accept or reject based

on the total number of accept labels. We refer to these systems as alternating-prover proof systems with a

6-fraction of wild-cards.

Lemma 55 Let P > 1 be such that e0f0- = 1/e. A k-cooperating-prover one-round proof system with

error (eacc, Erej) can be simulated by a two-alternating-prover one-round proof system with a i-fraction of

wild-cards, with error (e-m "Ea + (1 - 1/k) (1-2C-PEac,)m, mk(m-1)(k- 1)erej), an m-fold increase in the

verifier's randomness and an mkm-fold increase in the length of the answers returned by the provers.

Proof: Let V denote the k-cooperating-prover proof systems' verifier, and P 0 ,. . , Pk-1 its provers. More-

over, denote by V the verifier and by P 0 , P 1 the provers of the two-alternating-prover proof system that ex-

ecutes the following protocol, henceforth referred to as the ROBUST SIMULATION PROTOCOL WITH A (-

FRACTION OF WILD-CARDS:

6 We have to allow P 1 to answer this way. This is because a cheating prover Po may vary its strategy according to the value of Ythat
it receives, but which P 1 does not see.

THE QUERIES

- V generates m k-tuples of questions as V would have, i.e. V selects random strings ri,..., rm

and generates ((q() (rs), ... , q(k- 1)(r)) : s = 1,... , m).

- V then chooses one question from each k-tuple, i.e. randomly selects 3' = (j,... ,jm) in

{ 0,..., k - 1 }m, and sends to Po both 'and the questions (q(ji)(rs) : s = 1,... , m).

- V sends to P 1 the tuple of questions ((q(O)(rs),... ,q(k- 1)(r)) : s = 1,..., m)

THE RESPONSES

- P 0 is supposed to respond with (•(q(ja)(r)) : s = 1,..., m), which is how P0,...,Pk-1

would have answered the questions.

- Prover Pi is supposed to respond with what prover Po would have answered to

(q(i-)(rs): s = l,... ,m) and S = (il,... ,im), say (a : = 1,... ,m), for every one

of the km possible assignments to t.6

Assume the cooperating-prover proof system accepts. Then P 0 honestly answers the question he is asked

in each run. Let p be the fraction of the random strings which V selects that would cause V to reject on input

w. If P 1 answers honestly in more than a (1 - 1/k)(1- p- 2C)m fraction of the V's, then V labels at least (m + 1

of the runs with accept. A multiplicative Chernoff bound (see e.g. [AS92a, Theorem A.12]) shows that the

probability that p is greater than /3 acc is at most (eP/3-P)mEacc, which by our choice of / equals e- mEnce.

Hence, the verifier V rejects with probability at most e- m 'rec + (1 - l/k)(1- 2C-PEa-C)m

Assume now that the cooperating-prover proof system rejects. The verifier V accepts if at least one more

than (m of the runs get labeled accept. A fraction (of the runs could be wild-cards. The probability that there

exists one more run labeled accept is at most ,rej for each s, and z', .. ., '- 1 such that (3)8 and (~ '),,... , (4 _1)

are all distinct, for a total error of mk(m-1)(k-1)Tfej . 0

5.4 Two-Alternating Randomized Prover Proof Systems

The power of cooperating-prover proof systems, is unchanged if the provers are allowed to choose randomized

strategies. In this section we show that the situation is different for competing-prover proof systems.

A two-alternating randomized-prover proof system, denoted 2-ARP, is one where the provers have ac-

cess to private coins. The same conventions that apply to two-alternating-prover proof system will be adopted

for two-alternating randomized-prover proof systems.

The main result of this section shows that unless P = NP, a two-alternating randomized-prover proof

system with constant error is strictly weaker than a two-alternating-prover proof system with constant error.

Intuitively, in a two-alternating randomized-prover proof system the first prover can use his private coins to

'hide' his strategy from the second prover. The second prover cannot then figure out the exact intentions of

the first prover. He cannot devise as good a strategy against this type of adversary as opposed to when the

first prover acts according to a deterministic strategy. Thus, the second prover is of less use to the verifier, and

consequently the whole proof system is weakened.

Lemma 56 For every constant e, 0 < e < 1/2, a language L is in P, if and only if, L has a two-alternating

randomized-prover proof system with parameters (0 (log(n)) , 0 (log(n)) , [3, V]) and error .

ACCEPTANCE CRITERIA

- V accepts if P 1 did not correctly represent what Po said on the tuple of questions that Po was

asked.

- Otherwise, the verifier V labels a run s accept if there are index vectors 4i,... , '4-1 such that (j)s

and (i)8, ... , (4-_1), are all distinct, and V on random string r, accepts given answers a, from

P(4, and a ,...• a,-' from P(i),, .. , (_-,), respectively. Up to a a-fraction of these labels

could be wild-cards. The verifier V accepts if there are at least (m + 1 runs labeled accept.

Proof: The forward direction is trivial, since the verifier alone, without the help of the provers, can decide

languages in P.

We now prove the converse. Let

- Di(q, a) be the probability that prover Pi responds to q with answer a,

- Qi be the set of possible questions to prover Pi, and Ai be the set of possible responses of prover Pi ,

- Di = (Di(q, a) : q E Qi, a E Ai),

- R be the set of random strings that the verifier may generate on input w,

- 7r, be the probability that the verifier generates random string r ,

- q(i) (r) be the question that the verifier sends to prover Pi on random string r,

- V(r, ao, al) be 1 if the verifier V accepts on input w, random string r and given responses ao from Po

and al from P1, Otherwise, let V(r, ao, al) be 0.

Feige and Lovdisz [FL92] have shown that the probability of acceptance of a two-cooperating-prover proof

system can be computed by solving a quadratic optimization problem in max form. Applying their technique

we get that the probability that V accepts on input w is

max C (Do)
Do

subject to, Vq E Qo, Do(q,a)=l
aEAo

Vq E Qo , Va E Ao, Do(q, a) > 0,

where
C(Do) min m irV(r, ao, a) Do(q(o) (r), ao) Di(q(1)(r), al)

rER aoEAo,a
1 EAI

subject to, VqEQ 1, Do(q,a)=l1
aEA1

Vq E Q 1, Va E A1, Di(q, a) > 0.

By the duality theorem of linear programming (see e.g. [Sch86, Ch. 7.§4]), C(Do) can be expressed as the

optimum of a linear program in max form. Thus, to compute the probability that V accepts w it is enough to

solve a linear program of poly(Iwl, Ao 1, JIA1 , IRI) size. Since in our case AoI1, A1 I, IRI = 2 0(og IMI), and

linear programming is polynomial-time solvable, the lemma follows. O

An analogous result for EXP, for the only if part, was independently obtained in [FKS95].

Corollary 57 For every constant E, 0 < e < 1/2, a language L is in P, if and only if L has a two-alternating

randomized-prover proof system with error e.

But, in Corollary 53 we showed that languages in NP have two-alternating-prover proof systems with con-

stant error. Hence, 2-APP : 2-ARP, unless P = NP.

5.5 Alternating-Oracle Proof Systems for EP

Feige and Kilian's proof of Theorem 52 uses an amplification of the main result of [AS92b, ALM+92b], which

states that NP = PCP(log n, 1). In our terminology, this says that NP languages have one-alternating-

oracle proof systems with error (0, e), where e can be an arbitrarily small positive constant. In order to extend

our results beyond NP, we will need analogous tools that we can apply to languages in E2. Thus, we begin

by showing that languages in E' have k-alternating-oracle proof systems.

We consider from now on only the case in which k is odd. Our results have analogous statements for even

k.

The next theorem is implicit in [CFLS94].

Theorem 58 (k odd) For any constant e > 0. Every language L in E has a k-alternating-oracle proof

system with error (0, e).

In the proof of this theorem, we will make use of the fact that there are encodings, E(.), that associate to

a string x, a string E(x) such that the following holds:

- the length of E(x) is linear (for our purposes, polynomial would suffice) in the length of x.

- there is a polynomial-time algorithm that on input x returns E(x).

- there is a constant EE and a polynomial-time algorithm DE such that if y and E(x) differ in at most an CE

fraction of their bits, then DE(y) = x (in which case we say that x and y are closer than EE). Otherwise,

DE(y) outputs FAILURE (in which case, we say that y is farther than CE from any codeword).

Encodings with this property exist (e.g. Justesen encodings [MS77, Ch. 10.§ 11]).

Proof of Theorem 58: Let L be a language in EP. That is, there exists a polynomial-time Turing machine M

such that w E L if and only if 3X 1 , VX2,..., BXk M(w, X 1,..., Xk) accepts [CKS81]. As in [CFLS94],

we will view the acceptance condition as a game between an 3 player and a V player who take turns writing

down polynomial-length strings Xi, with the 3 player writing on the odd rounds.

In our k-alternating-oracle proof system, the player who writes in round i purports to write down an encoding

E(Xi) of Xi. In addition, in the k-th round, the 3 player is to write down encodings of everything the V player

said and a PCP proof that M(w, X 1, ... , Xk) accepts. If each player actually wrote down codewords, then,

using the techniques from [ALM+92b], the verifier would read a constant number of random bits from each

oracle and a constant number of bits to check the P CP proof and accept if M on input (w, X 1, ... , Xk) would

have accepted, or reject with high probability if M would have rejected.

In reality, one of the players will be trying to cheat and will have little incentive to write codewords. Let Yi

denote the oracle that is written in the i-th round. If a player writes an oracle Yi that is within EE of a codeword,

then the other player will proceed as if Yi was that codeword. On the other hand, if a player writes an oracle Yi

that is farther than EE from a codeword, then with high probability the verifier will detect that player's perfidy.

In the last round, the 3 player writes down strings Zi which he claims are encodings of Yi, for each even i. In

addition, the 3 player will, for each bit of each oracle Yi, provide a PCP proof that, when decoded, Zi agrees

with Yi on that bit. For each even i, the verifier will test these PCP proofs to check that DE(Zi) agrees with

Yi on some constant number of randomly chosen bits. If any of these tests fails, then the verifier will know

that the 3 player has cheated and will reject accordingly. If the Zi's pass all the tests, then the verifier will be

confident that DE(Zi) is close to Yi, for all even i. The verifier then accepts if the last player's proof indicates

either that,

- DE(Yi) = FAILURE for some even i, or

- M(w, X 1, DE (2), ... , DE (Yk-1), Xk) accepts (note that the PCP proof refers to the Xi's for odd i

through their encoding as Yi, and to the Yi's for i even through their encoding as Zi).

To see why this protocol works, assume that w E L. In this case, the 3 player will always write codewords.

Moreover, regardless of what oracle Yi the V player writes in turn i, the exist player will write Zi = E(Yi).

Thus, the Zi's will always pass the consistency tests. If one of the V player's oracles is farther than EE from

a codeword, then the last player will include this fact in his proof, and the verifier will reject. On the other

hand, if for each even i, Yi is close to some codeword Xi, then the application of DE to Yi will result in Yi

being treated as the encoding of Xi in the 3 player's PCP proof.

If w V L, then the 3 player will have to cheat in order to win. If the 3 player writes a message Yi that is

not close to a unique codeword, then this will be detected with high probability when the verifier checks the

validity of the PCP proof supplied in the last round. If one of the Zi's misrepresents the oracle, Yi = E(Xi),

of a V player, then either DE(Zi) and Yi will have to differ in at least an EE fraction of their bits, or the 3 player

will have to falsify the certification of the computation of DE on Zi so that it does not decode to Xi. In either

case, the 3 player will be caught with high probability. 0

We note that Theorem 58 exactly characterizes E' because an alternating-Turing machine with k alter-

nations can guess the k oracles and then compute the acceptance probability of the k-alternating-oracle proof

system.

Using Theorem 58 and the standard technique of [FRS88] for simulating an oracle by a pair of provers,

we can transform a k-alternating-oracle proof system into a (k + 1)-alternating-prover proof system.

Corollary 59 (k odd) Let k = 2 t + 1. Then, L E P, if and only if, L has a (k + 1)-alternating-proverproof

system with parameters ([(3, V)t, 3, 3]) and error (0, 1 - -L), where N is a large constant depending on k.

In order to prove Theorem 50, we have to reduce the error in Corollary 59 and show how to change the

quantifiers from ([(3,V)t, , , 3]) to ([(3,V)t, 3, V]). In other words, we want an analogue of the parallel rep-

etition theorem and of Lemma 51 which apply to alternating-prover proof systems. In the next two sections

we describe how these goals can be achieved.

5.6 Feige and Kilian lemmas

In Section 5.7, we will prove an analogue of the weak version of the parallel repetition theorem of Feige and

Kilian [FK94] that applies to k-alternating-prover proof systems. The techniques used in [FK94] provide a

deep insight into how a few random variables influence the value of a multi-variate function. In order to prove

our analogue of their theorem, we will need a better understanding of some of their results, which we will

summarize in this section.

Consider a prover P to which we send m randomly chosen questions (q(r), . . . , q(rm)) and to which

P answers (a,... , am) according to a fixed strategy f = (fi,... , fm), a function from m-tuples (the m-

tuple of questions that P receives), to m-tuples (the m-tuple of answers that P responds with). We would like

P to use a global strategy, f, in which each fi is only a function of the question on round i, i.e. a function of

q(ri). We say that such a prover behaves functionally. We now discuss the consequences of a prover's failure

to behave in this way.

Let I be a subset of { 1,... , m } and Q = (q(ri) : i E I) be the questions indexed by I. Now, suppose

we knew both I and Q, then, if the prover behaves functionally we can determine (ai : i E I). But what if

the prover does not behave functionally, but 'almost functionally'? To answer this we need to formalize what

'almost functionally' means: Say that an f-challenge7 (1, Q) is live if there is an A = (ai : i E I) such that

Pr [fi(q(rl),... ,q(rm)) = a, foralli i] E ,

where the probability is taken over the choices of (ri : i I), and C is a parameter to be fixed later. If

the above inequality holds, say that A is a live answer for the challenge (I, Q). Intuitively, if we know the

questions Q that P receives on rounds I and that A is not a live answer for the challenge (I, Q), we should

not be willing to bet that P will answer A on rounds I, because, A has too small a chance of occurring. If

P acts functionally in each round, then every challenge (I, Q) is live, since the questions that P is sent on a

round completely determines his answer on that round.

For any choice of parameters E, C, y, n, m, and M such that 8E < , (-5 < -yn, O < 7 < 1, M = m - n,

e> max 256nM, (8n) 1/ (in particular note that m > n), the following lemmas are implicit in the

work of Feige and Kilian:

Lemma 60 (Feige-Kilian) Let j E { 0,..., n }. IfA = (ai : i E) is not a live answer for the challenge

(I, Q), where Q = (q(ri) : i E I) and I = { il,... ,ij }, then, with probability at least 1 - ne (over the

choices of I \ I = { ij+,... , in } and { rii i I \ 1I}, where I = { ii,..., i,} C { 1,... , m }) it holds

that

Pr[fi(q(rl),...,q(rm))=ai, for alliEI] < C+(n-j),,

We omit f whenever it is clear from context.

where the probability is taken over the choices of (ri : i I).

Intuitively, the preceding lemma says that if A is not a live answer set for the challenge (I, Q), and in

addition to knowing the questions that P receives in rounds I we know the questions sent to P in rounds

I D I, we usually should still not be willing to bet that P will answer A in rounds I. Note however, that for

this to be true we assume that III is a small fraction of all the rounds.

Lemma 61 (Feige-Kilian) There is a good j for f = (f1,... , fi,), j < Tyn, such that if more than a

fraction of the challenges (I, Q) (over the choices of I = { i, ... , ij } and (r: i E I)) are live, then for a

(1 - () fraction of the live challenges (I, Q), for every i V I, and for each live answer set A = (a : i E I)

for the challenge (I, Q), it holds that there is afunction Ff,i, such that

Pr E i fi(q(ri),... , q(rm)) F,,,,(q(i)) I > 1- 6,

where the probability is taken over the choices of (r : i V I) and I \ I = { ij+l, ... , i }.

Informally stated, the previous lemma says that to every strategy of prover P we can associate a nonneg-

ative integer j such that if a non-negligible fraction of the challenges (I, Q) are live, where III = j, and if

P answers the challenge (I, Q) with live answer A, then, P behaves 'almost functionally' in a significant

fraction of the rounds I \ I, for most choices of the live challenges (I, Q), and of the sets I \ I.

5.7 Alternating-Prover Proof Systems for EkP

In Section 5.5 we characterized E4 in terms of alternating-prover proof systems with one sided but large rejec-

tion error and where the quantifiers associated to the provers, except the last one, alternated beginning with the

existential quantifier. The goal of this section is to provide alternating-prover proof systems for Ek languages

which in addition achieve:

- Low error rates, and

- The quantifiers associated to all the provers alternate.

To achieve these goals we follow an approach similar to the one taken in the obtaining of two-alternating-

prover proof systems for NP (see Section 5.3). We again restrict our discussion to the case k = 2t + 1, i.e.

k is odd. Our results have analogue statements for even k.

First, we prove that languages that have a (k+ 1)-alternating-prover proof system with parameters ([(3,)t, V , 3])

and one sided but large rejection error can be recognized by a (k + 3)-alternating-prover proof system with

parameters ([(3, V)t, V, 3, 3, 3]) and two sided but arbitrarily small constant error.8 Notice that we achieve

8 In fact, a (k + 2)-APP system with parameters (((3, V)t, V, 3, 3)) and similar error rates suffices, but proving this would unnec-
essarily complicate our exposition.

this without increasing the number of alternations of the quantifiers associated to the provers. This step can

be viewed as an analogue of the weak version of the parallel repetition theorem of Feige and Kilian [FK94]

that applies to competing-prover proof systems.

We then describe how to convert the proof systems obtained in the first step into (k + 1)-alternating-prover

proof systems in which all the quantifiers associated to the provers alternate, and where the error is small. This

latter step is an analogue of Lemma 55.

5.7.1 Achieving Low Error Rates

We now informally describe a simulation protocol that achieves the first goal of this section. We consider

a (k + 1)-alternating-prover proof system with parameters ([(3, V)t, 3, 3]) and one sided but large rejection

error, with verifier V and provers Po,... , Pk,. We simulate this proof system with a (k+3)-alternating-prover

proof system where the error is low. The verifier of this latter proof system is denoted by V, and its provers

by Po,... , Pk, and P3, Pv. Prover Pi is quantified as Pi is. Moreover, P3 and Pv are quantified by 3 and

V respectively. The ordering of the provers is such that Pa and Pv follow immediately after the last prover

among Po,..., Pk which is quantified by 3 and V respectively. Below we illustrate the relation among the

old and new provers.
3 3 V 3

Po ... Pk-3 Pk-2 Pk-1Pk

Po Pk-3 Pk-2Pv Pk-1PkP9

The verifier V concurrently simulates many rounds of V's protocol. We refer to each of these rounds as

a run. The verifier V expects provers to behave functionally, i.e. to answer each of their questions according

to a function that does not depend on the other questions they receive. Cheating provers have no incentive to

comply with V's expectations. In order to penalize them for not doing so V implements the CONSISTENCY

TEST. This test requires two (one for each competing team of provers) additional provers (P3 and PV). If a

team of provers fails this test, their claim is rejected. Honest provers behave functionally. Thus, they always

pass the CONSISTENCY TEST.

Cheating provers pass the CONSISTENCY TEST with a significant probability, only if they behave 'almost

functionally'. But, this is not a guarantee that honest provers can determine these functional strategies. It is

important to address this issue when designing protocols for alternating-prover proof systems as opposed to

cooperating-prover proof systems.

The protocol implemented by V allows honest provers to make a set of 'educated' guesses regarding the

strategies that cheating provers use. In fact, V allows P 1 to make constantly many different guesses regard-

ing the strategy that Po uses to answer his questions. Either Po has a significant probability of failing the

CONSISTENCY TEST, or P 1 has a significant probability of making the right guess among its many guesses.

Prover P 1 fixes, for each guess, a strategy for answering the questions he receives. The verifier V expects that

each strategy that P 1 fixes corresponds to a functional behavior. But, if P 1 is dishonest, he has no incentive

in doing so. Hence, the verifier also allows P 2 to make constantly many 'educated' guesses for each of the

guesses that P 1 makes, and so on and so forth.

At the end of the protocol, V can determine which of the provers' guesses are correct. With high proba-

bility, either cheating provers fail the CONSISTENCY TEST, or V can determine, among the correct guesses, a

set of runs most of which can be treated as independent executions of V's protocol. This suffices for achieving

our error reduction goals.

Below we describe the precise protocol implemented by the verifier V. We then informally discuss the

motivation behind the main components of the protocol.

The format of each prover's answer is a graph, more precisely a rooted tree.

For a rooted tree T, with node set V(T) and edge set E(T), we say that a node v E V(T) is at level i if

its distance to the root of T is i. We say that an edge e E E(T) is at level i if it is rooted at a node of level i.

Definition 14 Let J be a set of indices. We say that a tree T is a J-tree if nodes at level j E J have only one

child.

9 We later set m > n.
10 We later set -y = 2(-+)"

11 When a question is sent to a prover the verifier indicates the run i E {1,... , m} to which the question corresponds.

THE QUERIES

- V chooses I C { 1,... , m }, Ii = n,9 at random, and selects for every i E I a random string ri

as the old verifier V would have. The runs indexed by I will be called the compare runs, the other

runs will be called confuse runs.

- For every confuse run i and every prover P, the verifier V selects random string r$') as the old

verifier V would have.

For i E { 1,... , m }, { 0,..., k } let pýl) = ri if i is a compare run, rO) otherwise.

- For every prover P1 the verifier V chooses I C I \ Uj<1 Ij, IIj = yn, at random together with

a random ordering 7r1 of It for I E { 0,. , k }.10

- V sends to prover P, l E { 0,... , k }, q()(p)) : E { 1,... ,m) \Uj Ij).11

- V sends to prover PI+, I E { 0,... , k - 1 } all questions (q(i)(r 2) : i E Ij), the set of indices

Ij, and the orderings 7rj, for all j E { 0,... , 1 }. (We will see that this helps honest provers to make

educated guesses about the strategies used by cheating provers that pass the CONSISTENCY TEST

with a significant probability.)

- In order to implement the CONSISTENCY TEST the verifier V sends to provers P3 and Pv the

questions (q)(r)) : i E It), the set of indices It and the orderings 7r1 , for all 1 E { 0,..., k }.

We consider trees whose nodes and edges are labeled. Internal nodes will be labeled by sets of indices. Edges

rooted at a node labeled J will be labeled by a tuple of strings (aj : j E J). Leaves will also be labeled by

a tuple of strings. We denote the label of a node v by £ZT(v), and the label of the edge e by £CT(e).

Definition 15 Let v be a node of level I of tree T with root vo. Let vo,... , vl- be the sequence of nodes

along the path from the root of T to v. Define the history of v as follows:

?'T(V) = [12T(vo),I T(VO, Vl)] -'[[T(VI-1),IT(vi-1,V)I.

If v is the root of T we say that its history is empty and we denote it by 0.

THE RESPONSES

- Prover P, responds with a tree Ti, P 3 with a tree T3, and Pv with a tree TV.

- TI, for 1 E { 0,... , k } is a tree of depth I labeled as follows:

* An internal node v at level j E { 0,... , - 1 } is labeled by Ij. Every internal node v

at level j has an edge rooted at v for every possible tuple of answers of Pj to questions

(q(j) (ri) : i E Ij), and labeled by this tuple of answers.

* A leaf is labeled either FAILURE, SUCCESS, or by a tuple of answers

(a') : i E {1,... ,m} \ Uj,< i). If P1 is honest, he labels the leaves of T, as shown

later under HONEST PROVERS PROCEDURE FOR LABELING LEAVES.

- T = T 3 (respectively T = Tv) is a K-tree of depth k + 1, where K = { 0, 2,..., k - 1, k }

(respectively K = { 1,3,... , k - 2 }), labeled as follows:

* Nodes are labeled as the nodes of the trees described above. Edges at levels I ' K are also

labeled as in the trees described above.

* The only edge of level I E K rooted at node v of T is labeled by a tuple of an-

swers a'/M : i E It . An honest prover sets a'() = a) for all i E II, where

(ai ') : i E {1,... , m} \ Uj< I) is thelabel of the leaf of T) withhistory NT(V). (Note that

T belongs to T7's team.)

HONEST PROVERS PROCEDURE FOR LABELING LEAVES

Assume P 1 is honest, 1 E { 0,... , k }, then P1 will generate a tree T, of the proper format. Con-

sider the leaf uL of T1. Let uo,..., u, be a path in T, from the root uo to the leaf u,. In label-

ing ul, P1 considers the strategies fo,... , fl-1 that Po,... , PI-1 use in labeling the leaves (abus-

ing notation) uo, ... , u1-1 of To,... , TI- 1 with history 7"T, (U0o), ... , 7-T, (u-1) respectively. For

s E { 0,... , 1 - 1 }, let j, be the smallest good j, as defined by Lemma 61 (hence j < yn), for fs.

Let I, C I, be the set of the first j, indices of I, as determined by ?r,. Let •, = (q() (ri) : i E ,)

be the set of questions on runs TI, and let , = ($) : i E C) be the set of answers in runs Z,

induced by the label of the leaf us. Define the following events:

Event El : Vs E { 0, ... , I - 1 }, the answer sets A, are live for the f,-challenge (I, Q,).

Event E2 : Vs E { 0,... , 1 - 1 }, more than a C fraction of the fs-challenges (1,, Q,) (over the

choices of , = { il,... , ij, }and (r : i E ,)) are live.

For an appropriate choice of parameters we can distinguish two cases,

Events E1 and E2 occur: Vi E {1,... , m} \ U,<1 I,, Vs E { 0,..., I - 1 }, P1 determines

(if possible) the functions Ff, T.4 (as in Lemma 61), and the optimal strategy for answer-

ing run i, say Pi', of the (1 + 1)-th prover P1 assuming that the first 1 provers strategies are

Ffo' ... Ff,_ 1 , __. If P1 is unable to determine some Ff , he labels ut

with FAILURE, that is, P1 recognizes that cheating provers have outsmarted him. Otherwise,

P, answers run i of ul according to P'.

Otherwise: P, labels ul with SUCCESS, that is, P 1 expresses its confidence that the cheating provers

will not pass the CONSISTENCY TEST.

The verifier will reject the claim of any team of provers that fails to respond in the proper format. Thus,

we only focus in the case that To,... , Tk, and T3 , TV are in the proper format.

In particular we are interested on a specific quantity associated to tree T1, for every 1 { 0,... , k }. This

quantity will be denoted by R-(To,... , TI), and is recursively defined as follows: H(To)= [Io, (ao) : i E I).

Ifvt istheleafof T with history(To,... ,TI-1) andlabel (a : i { 1, ... ,m } \ U< I) thend(T,...)

(To,...,Ti-1) Ih, a(d) : i E1 = [Io, ao): iE Io[1It, e) : iE I,

Note that there is only one leaf in T3 and another in TV both of which have the same history. This history

determines a common branch of T3 and Tv which we denote by,

'(T,, 0)) (k)

It is important to note that from the point of view of the verifier V there is only one branch in each of the

trees To,... , Tk and T 3 , Tv which is of relevance.

The idea behind the above described protocol is the following: the verifier V wants to simulate n/2 rounds

of V's protocol. In order to do this, V generates n sets of questions as V would have and sends them to the

first k provers. Half of these questions will be used to implement the CONSISTENCY TEST using the two last

provers. Moreover, these n questions are sent to the first k provers among a much larger set of m-n questions,

for a total of m questions. This latter type of questions are called confuse questions, since their purpose is to

confuse cheating provers. The provers do not know which questions are/are not confuse questions. There

is no dependency whatsoever between the confuse questions sent to different provers. If cheating provers

answer using a global strategy, then their responses will depend on the confuse questions. This will reduce

their probability of passing the CONSISTENCY TEST because the last two provers do not receive the confuse

questions. We are left to argue what happens when the provers have a non-negligible probability of passing

the CONSISTENCY TEST. The description of the provers' responses show how honest provers can choose

their strategies. The next lemma establishes that the parameters of the above described simulation protocol

can be chosen so the final error is small, and the blowup in the size of the provers' responses and the overall

number of random bits used by the verifier is a constant factor.

Lemma 62 (k odd) Let k = 2 t + 1. For any constant a, 0 < a < 1/2. Every language L recognized by a

(k + 1)-alternating-proverproof system with parameters ([(3, V)t, 3, 3]) and error (0, 1 - .), where N is a

large constant, has a (k + 3)-alternating-proverproof system with parameters ([(3, V)t, , V, 3, 3]) and error

a.

Proof: Denote by V the (k + 1)-alternating-prover proof systems' verifier, and by P0,... ,Pk its provers.

Moreover, let V denote the verifier which interacts with provers Po,... ,P P and P3, Pv according to the
12 Where c is a large constant whose value we will set later.

ACCEPTANCE CRITERIA

- If a prover does not comply with the proper format of the responses, then, the verifier V rejects the

claim of the team to which he belongs. (Honest provers will always answer in the proper format.)

- The verifier V implements the following CONSISTENCY TEST: V determines the largest l E

{ 0,... , k + 1 } such that W(To),... ,W-(To,... , T-1) are prefixesof '(T 3 , Tv). Two different

situations may arise:

* If I > k, then we say that the consistency test PASSES.

* Otherwise, the verifier rejects the claim of the team to which prover P 1 belongs.

- If the previous test passes then, V accepts, if and only if, for more than a 1 - - fraction of the runs

i E I \ Uj<k IJ the old verifier V on random string ri would accept if given answers aO°),..., aj")

from provers P0o,... , Pk respectively.'

simulation protocol previously described. Clearly, the latter proof system is a (k + 3)-alternating-prover one-

round proof system where the provers are quantified according to ([(3, V)t, V, 3, 3, 3]). We have to show that

there is an appropriate choice of parameters for which this proof systems achieves error a, uses logarithmic

number of random bits, and where the provers' responses are constant size.

First, note that honest provers never fail the CONSISTENCY TEST.

Now, consider the strategy fo that prover Po uses in labeling the only leaf of To, and the strategies fl, . . . , fk

that P1,. . . , Pk use in labeling the leaves vl,.. . . , Vk of To0,... , Tk with history W-(To),... , I(To,..., Tk)

respectively. For s { 0, ... , k }, let j, be the smallest good j, as defined by Lemma 61, for f,. Let /, C I,

be the set of the first j, indices of I, as determined by r8,. Let •, = (q() (ri) : i E ,) be the set of questions

on runs Is, and let A., = (iý) : i E I,) be the set of answers in runs I, induced by the label of the leaf vs.

Finally, define the events E1 and E2 as follows

Event El : Vs E { 0,..., k }, the answer sets A, are live for the f,-challenge (I, Q,).

Event E2 : Vs E { 0,... , k }, more than a C fraction of the f,-challenges (I, Q,) (over the choices of I, =

{il,... ,ij, } and(ri i E Y,))arelive.

We distinguish the following cases:

If E does not occur: then, there is an s E { 0,... , k } such that A, is not a live answer for the f,-challenge

(I,, Q•). It follows that Ps is a cheating prover. By Lemma 60, except for a probability of at most nE

(over the choices of I \/, and { ri I i E I \ I, }), P 8 will pass the CONSISTENCY TEST with probability

at most (+ nf. thus cheating provers pass the test with probability at most C + 2nE < 3((assuming

fe < C).

If E2 does not occur: then, the probability that event El occurs is at most C. The preceding case analysis

bounds the probability that cheating provers will pass the CONSISTENCY TEST when event El does

not occur by 3(. Thus, if E2 does not occur, then cheating provers will pass the CONSISTENCY TEST

with probability at most 4C.

If E1 and E 2 occur: then, Lemma 61 implies that with probability at most (k2) C the honest provers con-

cede FAILURE in one of the leafs v0 , ... , vk. Otherwise, with probability at least 1 - -2 6 at least

(1 - (k + 1)'y - (k+2-)n of the runs i E I \ Uj<k Ij are good, i.e. they are answered according to

Ffo Ffx.

Letp = (k+2) (65+)+7(, and n' = (1-(k+l)y,)n. Now, choose7 = 2(k+, = , small enough so

C • 1/(2cN(k+2))2 (hence p = (1-(k+l)y - -)(- 2> 1-) andp = (k+2) ()+7C (• a/2, n

large enough so n > 2N log(2/a) and n > 2(- 5 / y, e small enough so 8e < C5 and ne < C, M large enough

soifM =m - n,e > max 256 M (8 nM) 1/3

All the above mentioned parameters are independent of the size of the input. Hence, the simulation proto-

col requires only a constant factor blowup in the size of the provers' responses and in the amount of random-

ness used by the verifier.

We refer to the runs indexed by elements of I \ Ujk Ij as the relevant runs.

Assume w E L. Then, with probability at least 1 - p > 1 - a/2, apt > 1 - 1 fraction of the relevant

runs are good runs. But, a good run would make the old verifier V accept. Thus, a fraction of at least 1 -

of the relevant runs make the verifier V accept. Hence, V accepts with probability at least 1 - a.

Assume w ý L. Let p be the fraction of good runs among the relevant runs. Recall that the verifier V will

accept if more than a 1 - I fraction of the n' relevant runs would cause the old verifier V to accept. Hence,

V accepts if more than (p - 1) n' of the pn' good runs would make the old verifier V accept. But, a good

run makes V accept with probability at most 1 - 1. Note that the probability that p < p is at most p < a/2.

A bound on the tail of a binomial distribution (see e.g. [CLR90b, Theorem 6.2]) shows that we can choose

c large enough so that the probability that more than (p - -L) n' of the good pn' runs make V accept is at

most a/2. Hence the overall acceptance probability of the verifier V is at most a. O

Remark 2 Note that the task of performing the CONSISTENCY TEST can be distributed among the provers.

Provers P 3 and Pv are only needed in order to insure the functional behavior of the last provers (among

Po,... , Pk) that are quantified with 3 and V respectively. Indeed, the simulation protocol described in this

subsection allows provers more leeway than necessary. In fact, V should also request that the tree T1 with

which P1 responds be a Jr -tree, where J1 is the set of indices j E { 0, . . . , - 1 }for which Pj is in the same

team that P1 is. For every 1 E { 0,... , k } and j E J1 , the verifier V will now check that the label of the

unique edge of level j rooted at the node v of T1 is consistent with the set of answers that the leaf of Tj with

history W7-T, (v) induces in runs Ij. If one of these consistency check fails, then V rejects the claim of prover

Pt 's team, where 1 is the smallest index for which one of the above consistency check fails.

The previous observation will be crucial for achieving the goals of the next subsection.

5.7.2 Fixing the Quantifiers

We now show that the conclusion of Lemma 62 still holds even if we are restricted to using k + 1 provers, all

of whose quantifiers alternate. More precisely, we have the following:

Lemma 63 (k odd) Let k = 2 t + 1. For any constant e, 0 < e < 1/2. Every language L recognized by a

(k + 3)-alternating-proverproof system with parameters ([(3, V)t, V, 3, 3, 3]) and error a for any constant a,

can be recognized by a (k + 1)-alternating-prover proof system with parameters ([(3, V)t+1]) and error e.

Proof: [Sketch I Again, the proof consists in simulating the first proof system by the second one. There are

three major components to this simulation. Namely, the simulation protocols in which the proofs of Theorem 52,

Lemma 55 and Lemma 62 are based. We denote by V the (k + 3)-alternating-prover proof systems' verifier,

and its provers by P,... , Pk-1 and 'k-2, pk-1, P -1. The provers' ordering is such that P'k2 follows

immediately after Pk-2, and P- 1 , P 1- follow Pk-1 (in this order). Hence, the provers with subindex k -2

are quantified by V, and the ones with subindex k - 1 are quantified by 3. We will simulate this proof system

by a (k + 1)-alternating-prover-proof system with verifier V, and provers Po,... , Pk-1, Pv all of whose

quantifiers alternate starting with 3. We refer to the former proof system as the old proof system, and to the

latter one as the new proof system. Note, that an old prover with subindex i is quantified as the new prover

with subindex i is. We would like to simulate an old prover with subindex i by the new prover with subindex

i. Below we illustrate the relation among the old and new provers.

3 3 V 3

PO ... Pk-3 Pk-2P'2 Pk-1PI 1 P/

pk .. k Pk kP k-1

Po ... Pk-3 Pk-2 Pk-1 Pv
v

The verifier V interacts with the provers as in the simulation protocol discussed in the previous subsec-

tion, but modified according to Remark 2 and as described below. We first describe the queries that V makes;

For 1 < k - 1, denote by q() (r) the question that V asks PI on random string r. Moreover, let q(k-1) (r)

q(k-2) (r) and q,(k-2) () denote the questions that V, on random string r, asks 'k-1 k-2 and KP-2 re-

spectively.

THE QUERIES

- V chooses I C { 1,... , m }, 111 = n, at random, and selects for every i E I a random string ri as

V would have. The runs indexed by I will be called the compare runs, the other runs will be called

confuse runs.

- For every confuse run i and every 1 < k - 2, V selects random string r!') as V would have.13 For

every run i, V randomly chooses ai E { 0, 1 } and bi E { 0, 1, 2 }.

For every run i and I < k - 1, let p) = ri if i is a compare run, and rt) otherwise.

- For every I < k - 2, the verifier V chooses It C I \ Uj< Ij, I, II = yn, at random together with

a random ordering 7rt of I,.

- For every 1 < k - 3, the verifier V sends to prover P, the questions

(q)(p):ieI { m1,...,I\Uj<tl)

- V sends to Pk-2 questions (q~ (pk-2)) :i E {1, ... m } \ Uj<k-2 3), where qj- 2)(r)

equals (q(k- 2)(r),0) if ai = 0, and (q,(k- 2)(r), 1) otherwise.

- V sendsto Pkl questions (q-L')(ri): I\ Uj<k-1 Ij),whereq-)(r) equals(q(k-1)(r), 0)

if bi = 0, (ql(k-1)(r), 1) if bi = 1, and (q"I(k-l)(r), 2) otherwise.

- For I < k - 2, the verifier V sends to P 1+1 the questions that were sent to Pj in runs Ij, the set

of indices Ij, and the orderings 'rj, for all j < 1.

- V sends to Pv the questions that were sent to P, in runs I,, the set of indices

II, and the orderings 7rt, for all 1 < k - 2. V also sends the pairs of ques-

tions ((q(k-2)(r),iq'(k- 2)(ri)):iEI\\Uj<k-2I), and the triplets of questions

((qk-1)(ri), q'k-1)(ri), q"(k-1)(ri)) : iE I\Uj<k-1. IJ),

The format of the provers' responses, the honest provers' answers, and the verifier's acceptance criteria

correspond to modifications of the simulation protocol of Subsection 5.7.1. We now list these modifications.

- Prover P1, 1 < k - 1, responds with a J,-tree, denoted TI, of the form described in Remark 2.

- Prover Pv responds with two trees, T3 and Tv. Tree TV is a tree of the same kind and depth as the

response tree Tk-2. Tree T3 is a tree of the same kind and depth as the response tree Tk-1.

- Provers Po, ... , Pk-3 should respond as in the simulation protocol of Subsection 5.7.1.

- At each leaf of its response tree prover Pk-2 is required to simulate Pk-2, k-2" This can be done

with the help of Pv without giving too much advantage to cheating provers. Indeed, consider the leaf

13 There are will be no questions sent to Pk,-1 in the confuse runs.

v of Tk-2. Let f denote the strategy by which Pk-2 labels v. Note that f is a function defined over

pairs (q, b), where q is a question and b E { 0, 1 }. Hence, f implicitly defines two strategies f(., 0)

and f(., 1). The verifier V requires that Pv label the leaf of TV with history 7WT(v) according to these

two strategies. Thus, Pv reveals the answers to the questions that were not sent to Pk-2. Prover Pv

succeeds in misrepresenting s of the answers that Pk-2 would have given with probability at most 1/28.

- At each leaf of its response tree prover Pk- 1 is required to simulate Pk-1, p 1 and Pk 1. Lemma 55

shows how this can be done with the help of Pv. Indeed, for each leaf v of T3 , prover Pv, responds as

the second prover of the two-alternating-prover proof system of Lemma 55 would have responded to a

prover that answers according to the strategy that prover Pk-1 uses for labeling the leaf of Tk-1 with

history 7-IT, (v).

Upon receiving the provers responses V will perform all the consistency checks suggested by the preceding

discussion. If one these checks fails, then V rejects the claim of the team found at fault. Otherwise, as in the

simulation protocol of Subsection 5.7.1, V only focuses in a unique branch of To,... , Tk and T3, Tv which is

of relevance. The verifiers acceptance criteria corresponds to the obvious extension of the acceptance criteria

of the simulation protocol in which the proof of Lemma 55 is based.

For an appropriate choice of parameters, the proof of correctness of the simulation protocol just described

follows from the same arguments used to prove Theorem 52, Lemma 55 and Lemma 62. 0

We can now prove our main theorem:

Proof of Theorem 50: We prove the theorem for the case where k is odd.

For the reverse direction, assume L has a (k + 1)-prover proof system with error e < 1/2. Consider the

alternating Turing machine that on input w performs the following three steps: first, it uses its i-th level of

alternation, i E { 1,... , k }, to guess the strategy of the i-th prover (i.e. guesses the constant-size answer to

each of the poly(Iwl) many different question that the i-th prover might receive). Second, it computes the

optimal strategy of the last prover (i.e. computes for each one of the poly(Iwl) many questions that the last

prover might receive, the optimal constant-size response). Finally, it determines the probability that the verifier

accepts (by simulating the verifier in each one of his poly (1w) many random strings), and accepts, if and only

if, the verifier's acceptance probability is at least 1 - E. Clearly, this machine recognizes L, hence, L E EP.

The forward direction follows from Theorem 58, Lemma 62 and Lemma 63. 0

Corollary 64 If k is a positive integer, then E _1 = k-APP.

5.7.3 Comments

In this subsection we make some general comments and give evidence that the two sided error requirement of

Theorem 50 is necessary. Indeed, unless the polynomial-time hierarchy collapses, all EP- 1 languages cannot

have k-alternating-prover proof systems with one sided error.

100

Lemma 65 If languages in EP have (k+ 1)-alternating-proverproofsystem with error (0, e), then the polynomial-

time hierarchy collapses to its EPl .

Proof: We prove the lemma for the case k = 1. The extension is straightforward.

Let L be a language in NP, and assume it has a two-alternating-prover proof system with verifier V and

provers Po and P 1 quantified by 3 and V respectively. Assume that w is the input to the alternating-prover

proof system. For i E { 0, 1 }, let q(i) (r) be the question that V on random string r sends to Pi, Qj be the

set of all possible question that Pi can receive, and Ai be the set of possible answers of Pi. Moreover, let R

the set of random strings that V can select, and let V(w, r, ao, al) = accept if V accepts on input w, random

string r, and if given response ao from Po and al from P1 .

If the two-alternating-prover proof system under consideration has one sided error (0, e), then, the follow-

ing are equivalent:

- there exists a strategy Po for prover Po, such that for any strategy P1 for prover P1, for all random

strings r E R, V (w, r, ao, al) = accept, where ao = Po(q(O)(r)) and al = Pl(q(1)(r)),

- Vqo E Qo, 3ao E Ao, such that Val E A 1 and Vr E R such that q(O)(r) = qo, V(w, r, ao, al) = accept.

The first statement holds, if and only if, w E L. Since IAol, jIA1 = O (1), IRI, IQol, IQ1I = 20(0og Iw1),

and V(., -, -, -) is polynomial-time computable, the truth value of the last statement above can be decided in

polynomial time. Thus, the language L can be recognized in polynomial time. Hence, the polynomial-time

hierarchy collapses to P. 0

Under complexity theoretic assumptions we can use Theorem 50 and Theorem 58 to prove hardness of

approximation results. This results hold for either artificially constructed optimization problems or problems

of only theoretical importance. We hope non-approximability results for non-artificially constructed problems

will be found.

5.8 Concluding Remarks

More direct proofs - ones that avoid the Feige and Kilian lemmas - of the results presented in this chapter

are desirable. Algebraic arguments are a natural candidate for simplifying our proofs. We hope this will be

accomplished in the near future.

101

102

Chapter 6

Symmetric Alternation

6.1 Motivation

Since the inclusion of randomness among those resources for which we have agreeable computational mod-

els, determination of the exact relationship between randomness and other such computational resources has

become a major project. The relationship between space and randomness, elucidated by startling pseudo-

random constructions [AKS87, NZ93], is remarkably well understood. These constructions demonstrate that

space-bounded computation benefits little by the use of randomness. The analogous relationship with time

has proved less tractable: the only (non-trivial) relationships depend on unproven complexity-theoretic as-

sumptions [ILL89, Yao82]. We continue the study initiated by Sipser [Sip83] of the relationship between ran-

domness and quantification, that is, the relationship between BPP and classes arising by appropriate quan-

tification of polynomial-time predicates (e.g., NP, coNP and other classes in the polynomial-time hierarchy

[Sto76b]).

6.2 Summary of Results

BPP was first shown to lie in the polynomial-time hierarchy in [Sip83] which demonstrates that BPP C EP
(and hence that BPP C E n HIP). We introduce a natural quantified class, SP, and demonstrate that

BPPC SC E nH .

Given the unnaturality of E IIn P, the naturality of SP suggests that SP g EP n IIP and hence that this

containment is more than a solely conceptual improvement.

The class S(consists of those languages £ which may be decided by a polynomial-time machine that re-

ceives counsel from two provers in such a manner that when the input a E £ there is a "witness" wz which

the first prover may provide so that regardless of the information provided by the second prover, the machine

103

accepts and, similarly, when x £,- there is a "witness" w2 which the second prover may supply so that,

regardless of the information supplied by the first prover, the machine rejects. The special sort of alterna-

tion involved here we refer to as symmetric alternation. The S 2 operator enjoys some remarkable structural

properties:

* S2 BP P C S2-P,

* p(S2.P) = S2 ' P.

We use these structural properties to conclude that

* BPP C MA C SP , and

AP = pNP C SP.

Considering the strong structural properties which SP enjoys, it seems unlikely that S2P = CP H I P . In

light of the above containment theorems, however, we would like to present as much evidence as possible in

this direction. One standard method of offering evidence that two classes are different is to demonstrate an

oracle which separates them. In §6.5 we construct an oracle which separates S2P from f2P n 2P under the

assumption that the machines involved are monotone. The framework we develop to build this oracle can be

used to simplify the construction given by [BS79] of an oracle separating E•2 and HIIP.

6.3 Previous Work

The original motivation for defining and studying the notion of symmetric alternation was a question posed by

Uriel Feige. Independently, Ran Canetti has studied an alternative notion of symmetric alternation, and defined

a class O2P . He shows that BPP C •P2 [Can95]. In fact, an easy argument shows that SP = bP . [FST88]

and [FKS94] study situations, in an interactive setting, where the provers do not have complete access to each

other's strategies. As a step towards characterizing the class of languages accepted by such interactive proof

systems we decided to formalize and study the associated non-interactive version.

Section 6.4 contains some definitions and our containment results; Section 6.5 contains the relativized

result showing the separation between monotone S2 and E2P n HIP; Section 6.6 contains some final remarks.

6.4 Containment Results

r is used to denote the alphabet and may be assumed to be {0, 1} without loss of generality. Throughout,

the variable n denotes IwI, the length of the input in question. For m E N, we use 3mx as shorthand for

3x(JxI = m), m!'x if such x is unique. V'" and Vm !x is similarly used.

Definition 16 (S2 - () For a complexity class i we define S 2 .- to be the complexity class consisting of those

languages £ for which there exists C E (and a polynomial q so that

104

* w E £ =. 3q(n)), Vq(n)y, (w, x, y) E C, and

* w £ 3q(n)y, Vq(n)x, (w, x, y) € C.

Notice that the acceptance criteria for the S2 operator has the form of the acceptance criteria for E2P.The

rejection criteria is similarly related to that of IIP. S2 -P, then, is clearly inside E2P n U7IP. Notice that S2P,

like BPP and IP, is a promise class - the criteria for acceptance and rejection are not complements of each

other.

Definition 17 (SP) SP def S2 P.

k

Definition 18 (SP) SP def
2k 2k - S2 " S2 .S 2 .P.

Theorem66 rfP u npc st c a2 pn IP.
Proof: EP C S~' C EPJ and S2P is closed under complement.

0

Corollary 67 Ek U riP C S2 C 2Ek fl IIk2 -

This allows us to conclude that PH def Uk Uk S, so that S2 for k = 1, 2... form a hierarchy

which collapses if and only if the polynomial hierarchy collapses.

Theorem 68 pS C S P.

Proof: Let 6 E S~' and S(., , .) be a polynomial time machine accepting 6 according to the definition

of SP. Let £ E pO and let DG be a deterministic polynomial-time machine deciding £. A computation

suggestion of D (w) consists of a sequence of pairs (Di, ai) for i = 1,... ,t so that

* each Di is an instantaneous description (see [HU79]) of DO,

* Z1 is the initial instantaneous description of D0 (w),

* Dt is a final instantaneous description of DO,

* if Di does not find De in its query state, then Oi '-D ?i+1,

* if 0i finds De querying qi, then there is a response ri so that Di F-D Di+1 with response ri and ai is a

string of length appropriate for the quantified inputs of S on input w.

We construct a machine T(., -, .) accepting £ according to the definition of S2P .T(w, x, y) first examines x,

rejecting unless x is a computation suggestion for DO so that x = (T, a)i<t_,. T then examines y, accepting

unless y is a computation suggestion for DG (so that y = (0y, ay)i<t,). If t, = t, and Vi E {1,... t } we

have that DT = OD then T accepts exactly when Of = ot is an accepting description. Otherwise there is io so

105

that o = o but io+1 I .o+1. Evidently, Zo is a query state of De (otherwise there is a unique next state,

upon which both x and y must agree if they are computation suggestions). Let qio be the query appearing in

this description. Assume without loss of generality that the computation suggestion of x claims that qio E 6.

T then simulates S(qio, a o , ayo) accepting exactly when S accepts. Notice that for input w, there is a correct

computation suggestion Aw = (Di, ai)i<t (that is, one in which every oracle query is answered correctly) so

that for each query qi,

* if qi E 6 then Vz, S(qi, ai, z) accepts, and

* if qi ý 6 then Vz, S(qi, z, ai) rejects.

Then

* if w E L, then Vq(")y, T(w, Aw, y) accepts, and

* if w 4 £, then Vq(n)z, T(w, x, A,) rejects,

as desired.

O

Corollary 69 A P = pNP C pS C SP.

Corollary 70 Ak+ 1 C S2Pk.

The proof of Theorem 71 below is a generalization of the argument of Lautemann [Lau83].

Theorem 71 S2 - BP - P C S2 P.

Proof: Let L E S2 - BP - P. Let D E P and q, r be polynomials such that

* w E £ == 3q(n)x, Vq(n)y, Prrnr(n) [(w, x, y, r) E D] > 1 - 2- q(n) - n

* w / £ =L 3q(n)y, Vq(D)x, PrERtr(,) [(w , x, r) E D] < 2 -q(n)-n

Fix w E E* and let e E q(n) be so that for all y E Eq(n) , PrERE,(,) [(w, , y, r) E D] 1 - 2 -q(n)-n . Let

W, C Er(n) be the collection of random strings r for which (w, &, y, r) E D and let W def y, W, (these are

the random strings r such that (w, * , y, r) E D for all y). For a set B let It(B) denote the measure of the set.

Then Vy, O(W,) > 1 - 2- q(n)- n so that 0i(W) > 1 - 2- n . As in [Lau83], we demonstrate that there exists

a set {T d= al,... , rUr(n)} of elements of E~(n) so that for every 7 r E r(n), there is some i so that aoi E 7 E

W (E stands for the binary operator that returns the bitwise XOR of the operands). Selecting ol,... , 0r(n)

uniformly and independently at random from Er(n), let 3, be the event that for each i, oi D -r " W. Then

Pr[B,] < 2- n r (n) so that

Pr(V BI • ZPr[B,] = 2r(n)2-nr(n) = 2r(n)(1-n) < 1.

rE3 r(n)

106

Hence there is a set {a = a1,... , r,(n) } so that for all 7, there is i so that oi 7T E W.

Suppose now that w § L. There is then 6 E () so that for all x E "q(n) , Pr,[(w,x, ,r) E D] 5

2 -q(n)-n . As before, let Wx def r E (n) I (w,x,, r) E) } .Define W d efU, Wx so that It(W) <

2-n. Then we show that there is a set f 71, i , Tr(n)2 } Of elements of Eq(n) so that for all o- = {Jl, , r.(,) },

3j, Vi, oi e rj § W. Selecting 7T,... Tr(,,)2 independently and uniformly at random, let B8, be the event

that Vj, 3i, ai a rj E W. Then

r(n) r(n)
Pr[B,] < J 1 Pr[o- e rj E W] = 11 2- = (r(n

j i=,1 j i=1

Hence,

PrlV tB] 5 Pr[B,] = 2'(n)2 r < 1.
a 2n

<

Therefore, there is a set {r71,... , 7,n)2 } with the property that for any set {al,... , Ur(n) }, there is some j

so that oi E rj 0 W for all i. In light of this, consider the deterministic polynomial time machine M(., , .)

which, on input (w, a, 3),

* checks the format of a, rejecting unless a = (x; al,... , ,r(n)),

* checks the format of 8, accepting unless 3 = (y; 71,... , 7,(,)2), and

* accepts iff for each Tj, there is some •i so that (w, x, y, ai -rj) E D.

From above, if x E C then setting a to be the (!; al,... , U~(n)) promised in the first part of the above discus-

sion we have that D accepts regardless of 3. Similarly, if x ý L then setting 3 to be the (1; i, ... , Tr(n)2)

promised in the second part of the above discussion, we have that D rejects regardless of a.

O

Corollary 72 MA C SPP .

Corollary 73 BPP C SP2

6.5 An Oracle Separating Monotone SP and Monotone P n IIP

Definition 19 We shall call an oracle Turing machine M (.,... , .) monotone iffor any inputs of the machine

Xl,... IXn,

01 C 0 2 A M •' (xl,... ,x2) accepts ==- M02 (x 1 ,... , n) accepts.

We then define mS P'0 to be the class of languages accepted by some monotone machine according to the S P

acceptance rules with oracle O. mE P'0 and mlI P' are defined similarly.

107

The above conclusion that BPP C S2P C 2P l IP is interesting commensurate with the extent to which

we believe that the inclusion SP C EP n HP is strict. We offer evidence for the strictness of this inclusion

by demonstration of an oracle O so that mS ,' C mE P',o n mlIP'

We begin with some definitions relevant to our construction. For n > 0, consider subsets T of E2, sat-

isfying the IIP predicate V~x2"y, xy E T. This predicate is monotone. Collect together the minterms to

form

T = {T C E2n I Vnx3'!y, xy E T}.

This set has size 2 n2". Given a family of minterms T C T and a set W C E2n we define

Tw e{T E T IW C T}

which we shall call T pinched at W. A family T C T is said to be e-concentratedat w if PrTTE [w E T] > e.

We shall say that T # 0 is e-diffuse on S if for all w E S, T is not E-concentrated at w. A family T which is

E-concentrated at 7 may be pinched at {r}, resulting in T{)}, with IT{f, I Ž EjTI. A e-concentration sequence

for a family T is a sequence T1, .. . , , such that

* T is E-concentrated at T1,

* for i E {1, ... , r - 1}, T{rx,..-,1 } is E-concentrated at i+l,

* and T{1, .. . ~ } is E-diffuse on E2n - {T,... , Tr }.

Lemma 74 Let 1, .. , Tr be an e-concentration sequence for T C T. Then

r < - log /(T)
loge + n

where A(T) is the density of T in T.

Proof: Let 7 = {T71,... ,Tr}. Since T C T, T, C T, so that

E•rz(T) < (•(T,) • A(T,)= 2-nr

and hence
- log A(T)
log + n

as desired.

Theorem 75 There exists an oracle 0 so that mSP' O mC P' n mIIP'o

108

Proof: For a pair of oracles 0 1 ,0 2 C E*, define O1 e0 2 4 { x O E 01} U {ly I y E 02}. Let C be the

set of all oracles O = 01 e 02 so that Vn > 0,

3 xVny, y E 01 e=• VxB•3ny, xy E 0 2.

Let An = {Co C 1 E C I 3n, Vny, xy E Co)}. Define 1(O1 e 02) = {1 n I 3nxVny, xy E O1} and notice

that for O E C, we have that £(O) E mr,P' n mIIPo. We shall construct an oracle C = C1 E C2 E C so

that £(C) §' mSP'Ic. Let {Di(-,-, -)} be an enumeration of monotone oracle-SzP machines so that for every

0, mS2P o = {L(D°)}. Define Qj((n) to be the maximum size, over all oracles, x values, and y values, of

any query made by Di(1' , x, y). C shall be constructed in stages C1 C C 2 C ... so that C = Ui Ci, stage i

constructed to foil a specific monotone S2' machine. We shall have that

* for i < j, Ci C Cj and Cj - Ci C Ckj for some kj,

* i <j ==# ki < kj,

* for any oracle 0 with Of n) E<2k = C,, 1£(0) # L(D°) for any i < s.

Assume we have constructed the first t - 1 stages, thus defining the oracle to length kt-1 and foiling the first

t - 1 machines. We shall construct Ct, foiling Dr. Let p(n) be the running time of Dt. Select n so that

2n > kt- 1 , 2n > Qt-1 (kt-1), and 2n > 2p(n). Set kt = 2n. Assume, for contradiction, that regardless of

our choice of Ct E C (with Ct n <l = Ct- 1), Dt (1n, ., .) accepts exactly when Ct E An.

For each u En, let S {uv I |vl = n} and consider the family of oracles

{Ct-I u Su(T I T E }.

Associate with each oracle 0 in this family an appropriate x so that Vy, DP(1", x, y) accepts. There are at

most 2p(n) various values for x, so some x, is associated with a fraction of this family of density at least

2-p("). Let F(u) be the (sub) family so associated with this x,. Then define T(u) = {T I Ct-1 U Su, E T E

Y,,}. Let r(u)i, r(u)2,... , r(u)t(U) bea p(n) -- concentration sequence for T(u) and r(u) = {r(u)1 , -(u) 2,

S.. , r(u),t()}. By Lemma 74 the length of this sequence, t(u), is at most

- log u(T(u)) p(n) (*)
log p(n)- 1 + n n - log p(n)

where the second inequality follows because 2" > 2p(n). Reiterating, for each u E •", we have selected a

family of minterms .(u) all associated with a certain xu and a p(n)-I -concentration sequence r(u) for T(u).

We similarly construct such sets of maxterms. For a subset X C E2n, let ± def E2n - X be the relative

complement of X. For each v E E", consider

{Ct-1 UT E S, IT E T}.

109

As above, let y, be associated with a family of these maxterms 0(v) f {Ct-1 U T , I T E T(v)} so that

1.i(T(v)) > 2-p(n) (so that for any oracle O in this set and any x, DO (1", x, y,) rejects). Let r(v)1 ,.... , r(v)t()

be a p(n)-l-concentration sequence for T(v) and r(v) = {r(v)1,... , r(v)t(,) }. Again.t(v) 5 p(n).

Selecting u and v uniformly and independently at random from En , we have that

t(u) + ttv) 2p(n)Pr[3i, 7(u)i E S, or 3j, 7(v)j E Su] 5 t(u) <2 < 1

so that there exists a pair (ii, D) with the property that

* Vi, r(fii)i S, and

" Vj, r(i)j V S.

Notice that an oracle O selected from .F(i) U 0(ib) is accepted by D°(1, x.&, y?) exactly when O E F(fi).

Let M = E2
n - r(i) (r(ii) and consider the behavior of DM(1", Xz, ye). Suppose that D M(1", x•, yj)

accepts. Since D is monotone, every oracle O E {Ct- 1 U T f, I| T E T(i),(f)} must disagree with M

in one of the at most p(n) places which DM(It , za, y•,) queries, which contradicts that T(),(j()) is p(n) - 1-

diffuse on E2n - r(i5). The case when D M (1", x&, yf) rejects is handled dually.

0

6.6 Concluding Remarks

In this note we studied the notion of symmetric alternation by defining the complexity class SP. We observed

certain structural properties of the S2 operator which allowed us to prove some interesting containment results.

We were able to show that BPP C S~' using a nontrivial variant of Lautemann's proof [Lau83].

It is an interesting open problem to construct an oracle separating S2P and ECP 2n H. This would provide

more evidence of the fact that the two classes are indeed different. The interactive version of symmetric al-

ternation, the original motivation for this study, has not been characterized exactly and continues to remain an

area of active study.

110

Bibliography

[ABP90] B. Awerbuch, A. Baratz, and D. Peleg. Cost-sensitive analysis of communication protocols.

In Proceedings of the 9th Symposium on Principles of Distributed Computing, pages 177-187,

1990.

[ACPS93] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph reduc-

tion. Journal of the ACM, 40(5):1134-1164, 1993.

[AFMP94] E. M. Arkin, S. P. Fekete, J. S. B. Mitchell, and C. D. Piatko. Optimal covering tour problems.

In Proceedings of the 5th International Symposium on Algorithms and Computation, 1994.

[AH91] E. M. Arkin and R. Hassin. Approximation algorithms for the geometric covering salesman

problem. Technical Report 968, School of OR&IE, Cornell University, July 1991.

[AKR95] A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm for the

generalized steiner problem on networks. SIAM Journal on Computing, 24:440-456, 1995.

[AKS87] Mikl6s Ajtai, JMnos Koml6s, and E. Szemer6di. Deterministic simulation in LOGSPACE. In

Proceedings of the Nineteenth Annual A CM Symposium on Theory of Computing, pages 132-

140, New York City, 25-27 May 1987.

[ALM+92a] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness

of approximation problems. In 33rd Annual Symposium on Foundations of Computer Science,

pages 14-23, Pittsburgh, Pennsylvania, 24-27 October 1992. IEEE.

[ALM+92b] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and intractability

of approximation problems. In Proceedings of the 33rd Annual Symposium on Foundations of

Computer Science, pages 14-23, Pittsburgh, Pennsylvania, October 1992. IEEE.

[ALS91] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. Journal

of Algorithms, 12:308-340, 1991.

[AR95] Y Aumann and Y. Rabani. Improved bounds for all optical routing. In Proceedings of the 6th

ACM-SIAM Symposium on Discrete Algorithms, pages 567-576. SIAM, 1995.

[Aro94] S. Arora. Probabilistic checking of proofs and hardness of approximation problems. PhD the-

sis, University of California, Berkeley, 1994.

[AS92a] N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete

Mathematics and Optimization. John Wiley & Sons, Inc., first edition, 1992.

[AS92b] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. In

Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pages 2-

13, Pittsburgh, Pennsylvania, October 1992. IEEE.

[Bab85] L. Babai. Trading group theory for randomness. In Proceedings of the Seventeenth Annual

ACM Symposium on Theory of Computing, pages 421-429, Providence, Rhode Island, 6-8

May 1985.

[Bab92] L. Babai. Transparent proofs and limits to approximation. In A. Joseph, F. Mignot, F Murat,

B. Prum, and R. Rentschler, editors, Proceedings of the first European Congress ofMathemat-

ics, volume I of Progress in Mathematics, pages 31-91, Paris, France, July 1992. Birkhdiuser

Verlag.

[BFL90] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover inter-

active protocols. In Proceedings of the 31st Annual Symposium on Foundations of Computer

Science, pages 16-25, St. Louis, Missouri, October 1990. IEEE.

[BFLS91] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polylogarithmic

time. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages 21-

31, New Orleans, Louisiana, May 1991. ACM.

[BH92] R. A. Barry and P. A. Humblet. Bounds on the number of wavelengths needed in WDM net-

works. In LEOS Summer Topical Meeting Digest, pages 21-22, 1992.

[BH93] R. A. Barry and P. A. Humblet. Latin routers, design and implementation. IEEE/OSA Journal

of Lightwave Technology, pages 891-899, May/June 1993.

[BLW87] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation of optimal subgraphs of

decomposable graphs. Journal ofAlgorithms, 8:216-235, 1987.

[Bod88] H. L. Bodlaender. Dynamic programming on graphs of bounded treewidth. In Proceedings of

the 15th International Colloquium on Automata Language and Programming, volume 317 of

LNCS, pages 105-118, 1988.

[Bod92] H. L. Bodlaender. A tourist guide through treewidth. Technical Report RUU-CS-92-12, Utrecht

University, 1992.

112

[BOGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs: How

to remove intractability assumptions. In Proceedings of the 20th Annual ACM Symposium on

Theory of Computing, pages 113-131, Chicago, Illinois, May 1988. ACM.

[BRV96] A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation algorithm for the k-MST

problem. In Proceedings of the 28th Annual A CM Symposium on the Theory of Computation,

1996. To appear.

[BS79] Theodore P. Baker and Alan L. Selman. A second step toward the polynomial hierarchy. The-

oretical Computer Science, 8:177-187, 1979.

[Can95] Ran Canetti. More on BPP and the polynomial-time hierarchy. Manuscript, April 1995.

[CB95] C. Chen and S. Banerjee. Optical switch configuration and lightpath assignment in wavelength

routing multihop lightwave networks. In Proceedings oflNFOCOM, pages 1300-1307. IEEE,

1995.

[CFLS93] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. Probabilistically checkable debate systems

and approximation algorithms for PSPACE-hard functions. In Proceedings of the 25th Annual

ACM Symposium on Theory of Computing, pages 305-314, San Diego, California, May 1993.

ACM.

[CFLS94] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. Random debaters and the hardness of ap-

proximting stochastic functions. In Proceedings of the 9th Annual Conference on Structure in

Complexity Theory, pages 280-293, Amsterdam, The Netherlands, June 1994. IEEE.

[CG82] P. M. Camerini and G. Galbiati. The bounded path problem. SIAM Journal on Algebraic and

Discrete Methods, 3(4):474-484, 1982.

[CGK92] I. Chlamtac, A. Ganz, and G. Karmi. Lightpath communications: An approach to high band-

width optical WANs. IEEE Transactions on Communication, 40(7):1171-1182, July 1992.

[Cha77] R. Chandrasekaran. Minimum ratio spanning trees. Networks, 7:335-342, 1977.

[Cho91] C. H. Chow. On multicast path finding algorithms. In Proceedings oflEEE INFOCOM, pages

1274-1283, 1991.

[CK95] P. Crescenzi and V. Kann. A compendium of np-optimization problems. Manuscript, 1995.

[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. of the Association for

Computing Machinery, 28(1): 114-133, January 1981.

[CLR90a] T. H. Cormen, C. E. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, Boston,

1990.

113

[CLR90b] T. H. Cormen, C. E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MIT Press,

first edition, 1990. Thirteenth printing, 1994.

[CNW90] N. K. Cheung, K. Nosu, and G. Winzer, editors. JSAC: Special Issue on Dense WDMNetworks,

volume 8. IEEE, August 1990.

[Co184] C. J. Colbourn. The complexity of completing partial latin squares. Discrete Applied Mathe-

matics, 8:25-30, 1984.

[Con88] A. Condon. Computational models of games. PhD thesis, University of Washington, 1988.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Conference Record of Third

Annual ACM Symposium on Theory of Computing, pages 151-158, Shaker Heights, Ohio, 3-5

1971 1971.

[CS89] J. T. Current and D. A. Schilling. The covering salesman problem. Transportation Science,

23:208-213, 1989.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information

Theory, IT-22(6):644-654, 1976.

[DK74] J. Denes and A. D. Keedwell. Latin Squares and Their Applications. Academic Press, Inc.,

New York, 1974.

[DK91] J. Denes and A. D. Keedwell. Latin Squares: New Developments in the Theory and Applica-

tions. Number 46 in Annals of Discrete Mathematics. North-Holland, 1991.

[Edm65] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449-467, 1965.

[Eva60] T. Evans. Embedding incomplete latin squares. American Mathematical Monthly, 67:958-961,

1960.

[Fei96] U. Feige. A threshold of In n for approximating set cover. In Proceedings of the 28th Annual

ACM Symposium on the Theory of Computation, 1996. To appear.

[FGL + 91a] U. Feige, S. Goldwasser, L. Lovisz, S. Safra, and M. Szegedy. Approximating clique is almost

NP-complete (preliminary version). In 32ndAnnual Symposium on Foundations of Computer

Science, pages 2-12, San Juan, Puerto Rico, 1-4 October 1991. IEEE.

[FGL + 91b] U. Feige, S. Goldwasser, L. Lovaisz, S. Safra, and M. Szegedy. Approximating clique is almost

NP-complete. In Proceedings of the 32nd Annual Symposium on Foundations of Computer

Science, pages 2-12, San Juan, Puerto Rico, October 1991. IEEE.

114

[FK94] U. Feige and J. Kilian. Two prover protocols - low error at affordable rates. In Proceedings of

the 26th Annual A CM Symposium on Theory of Computing, pages 172-183, Montr6al, Quebec,

Canada, May 1994. ACM.

[FKS94] J. Feigenbaum, D. Koller, and P. Shor, November 1994. Unpublished Manuscript.

[FKS95] J. Feigenbaum, D. Koller, and P. Shor. A game-theoretic classification of interactive complexity

classes. In Proceedings of the 10th Annual Conference on Structure in Complexity Theory,

pages 227-237, Minneapolis, Minnesota, June 1995. IEEE.

[FL92] U. Feige and L. Lovisz. Two-prover one-round proof systems: Their power and their problems.

In Proceedings of the 24th Annual A CM Symposium on Theory of Computing, pages 733-744,

Victoria, British Columbia, Canada, May 1992. ACM.

[FRS88] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive protocols. In

Proceedings of the 3rd Annual Conference on Structure in Complexity Theory, pages 156-161,

Georgetown University, Washington D.C., June 1988. IEEE.

[FST87] U. Feige, A. Shamir, and M. Tennenholtz. The noisy oracle model. In Advances in Cryptology

- CRYPTO'87, pages 284-296, August 1987.

[FST88] U. Feige, A. Shamir, and M. Tennenholtz. The noisy oracle problem. In Proceedings of

CRYPTO 1988, pages 284-296, 1988.

[FWB85] A. Frank, L. Wittie, and A. Bernstein. Multicast communication in network computers. IEEE

Software, 2(3):49-61, 1985.

[GGP+94] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, E. Tardos, and D. P. Williamson.

Improved approximation algorithms for network design problems. In Proceedings of the Fifth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 223-232, 1994.

[GGS95] J. L. Ganley, M. J. Golin, and J. S. Salowe. The multi-weighted spanning tree problem. In

Proceedings of the First Conference on Combinatorics and Computing, LNCS, pages 141-150,

1995.

[Gil77] J. Gill. Computation complexity of probabilistic turing machines. SIAM Journal ofComputing,

6(4):675-695, 1977.

[GJ79a] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-

completeness. W. H. Freeman, San Francisco, 1979.

[GJ79b] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-

completeness. W. H. Freeman and Company, first edition, 1979.

115

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-

systems. In Proceedings of the 17th Annual ACM Symposium on Theory of Computing, pages

291-304, Providence, Rhode Island, May 1985. ACM.

[Go180] M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, 1980.

[Go194] O. Goldreich. Probabilistic proof systems (A survey). Technical Report TR94-008, Electronic

Colloquium on Computational Complexity, 1994.

[GOT77] F R. Giles, T. Oyama, and L. E. Trotter. On completing partial latin squares. In Proceedings of

the Eighth Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages

523-543, 1977.

[Gre92] P. E. Green. Fiber-Optic Networks. Prentice-Hall, 1992.

[GW92] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained

forest problems. In Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Al-

gorithms, pages 307-316, 1992.

[Hal48] M. Hall. Distinct representatives of subsets. Bulletin of the American Mathematical Society,

54:922-926, 1948.

[Has92] R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics of

Operations Research, 17(1):36-42, 1992.

[HK73] J. E. Hopcroft and R. M. Karp. An n0 algorithm for maximum matchings in bipartite graphs.

SIAM Journal of Computing, 2(4):225-231, December 1973.

[HLCW89] J. Ho, D. T. Lee, C. H. Chang, and C. K. Wong. Bounded diameter spanning tree and related

problems. In Proceedings of the Annual ACM Symposium on Computational Geometry, pages

276-282, 1989.

[Hoc95] D.S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS Publishing

Company, Boston, MA, 1995.

[HS65] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transactions

of the American Mathematical Society, 117:285-306, 1965.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley Series in Computer Science. Addison-Wesley, Reading, Mas-

sachusetts, 1979.

[IEE93] IEEE. IEEE/OSA Journal of Lightwave Technology, special issue on Broad-Band Optical Net-

work, volume 11, May/June 1993.

116

[IK92] M. Irshid and M. Kavehrad. A WDM cross-connected star topology for multihop lightwave

networks. IEEE/OSA Journal of Lightwave Technology, pages 828-835, June 1992.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from

one-way functions (extended abstracts). In Proceedings of the Twenty-First Annual ACM Sym-

posium on Theory of Computing, pages 12-24, Seattle, Washington, 15-17 May 1989.

[JCGP+96] J.-C.Bermond, L. Gargano, S. Perennes, A. A. Rescigno, and U. Vaccaro. Efficient collective

communication in optical networks. In Proceedings of the 23rd International Colloquium on

Automata, Languages, and Programming, page To appear., 1996.

[Joh74a] D. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer Sys-

tem Sciences, 9:256-278, 1974.

[Joh74b] D. Johnson. Fast algorithms for bin-packing. Journal of Computer System Sciences, 8:272-

314, 1974.

[Joh88] D. S. Johnson. The NP-completeness column: An ongoing guide. J. ofAlgorithms, 9(3):426-

444, September 1988.

[Joh92] D. S. Johnson. The NP-completeness column: An ongoing guide. J. ofAlgorithms, 13(3):502-

524, September 1992.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,

editors, Complexity of Computer Computations, pages 85-103. Plenum Press, New York, 1972.

[KJ83] B. Kadaba and J. Jaffe. Routing to multiple destinations in computer networks. IEEE Trans-

actions on Communications, COM-31:343-351, March 1983.

[KLR+94] M. Kiwi, C. Lund, A. Russell, R. Sundaram, and D. Spielman. Alternation in interaction. In

Proceedings of the 9th Annual Conference on Structure in Complexity Theory, pages 294-303,

Amsterdam, The Netherlands, June 1994. IEEE.

[KP95] G. Kortsartz and D. Peleg. Approximation algorithms for minimum time broadcast. SIAM

Journal on Discrete Mathematics, 8(3):401-427, 1995.

[KPP92a] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicasting for multimedia applications.

In Proceedings of IEEE INFOCOM, May 1992.

[KPP92b] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Two distributed algorithms for the con-

strained steiner tree problem. Technical Report CAL-1005-92, Computer Systems Laboratory,

University of California, San Diego, October 1992.

117

[KPP93] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing for multimedia commu-

nication. IEEE/ACM Transactions on Networking, pages 286-292, 1993.

[KPRS96] S. R. Kumar, R. Panigrahy, A. Russell, and R. Sundaram. A note on optical routing. Unpub-

lished manuscript, 1996.

[KR95] P. N. Klein and R. Ravi. A nearly best-possible approximation for node-weighted steiner trees.

Journal ofAlgorithms, 19:104-115, 1995.

[KRS96a] S. R. Kumar, A. Russell, and R. Sundaram. Approximating Latin square extensions. To appear

in the Proceedings of the Second Annual International Computing and Combinatorics Confer-

ence, November 1996.

[KRS96b] S. R. Kumar, A. Russell, and R. Sundaram. Faster algorithms for optical switch configuration.

Submitted to the IEEE Global Telecommunications Conference, 1996.

[Kru56] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.

Proceedings of the AMS, 7(1):48-50, 1956.

[KRY95] S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning and shortest path

trees. Algorithmica, 14(4):305-321, 1995.

[KV94] S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. Journal of the

ACM, 41:214-235, 1994.

[Lau83] C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters, 17:215-

217, 1983.

[LE77] C. C. Lindner and T. Evans. Finite Embedding Theorems for Partial Designs and Algebras.

Les Presses de L'Universite de Montreal, Montreal, 1977.

[Len83] H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Mathematics of

Operations Research, 8:538-548, 1983.

[Lev73] L. Levin. Universal sequential search problems. Problems of Information Transaction,

9(3):265-266, 1973.

[LFKN90] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof sys-

tems. In Proceedings of the 31st Annual Symposium on Foundations of Computer Science,

pages 2-10, St. Louis, Missouri, October 1990. IEEE.

[LL93] K. C. Lee and V. Li. Routing and switching in a wavelength convertible optical network. In

Proceedings of INFOCOM, pages 578-585. IEEE, March 1993.

118

[LS91] D. Lapidot and A. Shamir. Fully parallelized multi prover protocols for NEXP-time. In Pro-

ceedings of the 32nd Annual Symposium on Foundations of Computer Science, pages 13-18,

San Juan, Puerto Rico, October 1991. IEEE.

[Meg83] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. Jour-

nal of the ACM, 30:852-865, 1983.

[MKR95] M. Mihail, C. Kaklamanis, and S. Rao. Efficient access to optical bandwidth. In Proceedings

of the 36th Annual IEEE Foundations of Computer Science, pages 134-143, 1995.

[MRS+95] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III. Bicri-

teria network design problems. In Proceedings of the International Colloquium on Automata,

Languages and Programming, number 944 in LNCS, pages 487-498, 1995.

[MRS96] M. Marathe, R. Ravi, and R. Sundaram. Service-constrained network design problems. In

Proceedings of the 5th Scandinavian Workshop on Algorithm Theory, 1996.

[MS77] F. J. MacWilliams and N. J. A Sloane. The theory of error-correcting codes. Elsevier Science

Publisher B.V., first edition, 1977. (Eight impression: 1993).

[NZ93] Noam Nisan and David Zuckerman. More deterministic simulation in logspace. In Proceedings

of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pages 235-244, San

Diego, California, 16-18 May 1993.

[Phi93] C. Philips. The network inhibition problem. In Proceedings of the 25th Annual ACM Sympo-

sium on the Theory of Computing, pages 776-785, 1993.

[PR79] G. L. Peterson and J. H. Reif. Multiple-person alternation. In Proceedings of the 20th An-

nual Symposium on Foundations of Computer Science, pages 348-363, San Juan, Puerto Rico,

October 1979. IEEE.

[Pri57] R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical

Journal, 36:1389-1401, 1957.

[Ram93] R. Ramaswami. Multi-wavelength lightwave networks for computer communication. IEEE

Communications Magazine, 31 (2):78-88, February 1993.

[Rav94] R. Ravi. Rapid rumor ramification: approximating the minimum broadcast time. In Proceed-

ings of the 35th Annual IEEE Foundations of Computer Science, pages 202-213, 1994.

[Raz95] R. Raz. A parallel repetition theorem. In Proceedings of the 27th Annual A CM Symposium on

Theory of Computing, pages 447-456, Las Vegas, Nevada, June 1995. ACM.

119

[Rei79] John H. Reif. Complexity of the mover's problem and generalizations (extended abstract).

In 20th Annual Symposium on Foundations of Computer Science, pages 421-427, San Juan,

Puerto Rico, 29-31 October 1979. IEEE.

[RG96] R. Ravi and M. X. Goemans. The constrained spanning tree problem. In Proceedings of the

5th Scandanavian Workshop on Algorithmic Theory, 1996. To appear.

[RMR+93] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III. Many birds with

one stone: multi-objective approximation algorithms. In Proceedings of the 25th Annual ACM

Symposium on the Theory of Computing, pages 438-447, 1993.

[Ros77] A. Rosa. Problem session. Proceedings of the Second Caribbean Conference on Combinatorics

and Computing, 1977.

[RS86] N. Robertson and P. Seymour. Graph minors ii. algorithmic aspects of tree-width. Journal of

Algorithms, 7:309-322, 1986.

[RS94] R. Ramaswami and K. Sivarajan. Optimal routing and wavelength assignment in all-optical

networks. In Proceeding of INFOCOM, pages 970-979. IEEE, June 1994.

[RS95] A. Russell and R. Sundaram. Symmetric alternation captures BPP. Technical Report MIT-

LCS-TM-541, MIT, 1995.

[RSM+94] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning trees short

or small. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 546-555, 1994.

[RU94] P. Raghavan and E. Upfal. Efficient routing in all-optical networks. In Proceedings of the 26th

Annual ACM Symposium on the Theory of Computation, pages 548-557, 1994.

[Sch86] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, first edition,

1986.

[Sha90] Adi Shamir. IP = PSPACE. In 31st Annual Symposium on Foundations of Computer Science,

volume I, pages 11-15, St. Louis, Missouri, 22-24 October 1990. IEEE.

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the

Fifteenth Annual ACM Symposium on Theory of Computing, pages 330-335, Boston, Mas-

sachusetts, 25-27 April 1983.

[Sme81] B. Smetaniuk. A new construction of latin squares I. A proof of the Evans conjecture. Ars

Combinatorica, 11:155-172, 1981.

120

[Sto76a] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1): 1-22,

October 1976.

[Sto76b] L. J. Stockmeyer. The polynomial time hierarchy. Theoretical Computer Science, 3:1-22,

1976.

[Sud92] M. Sudan. Efficient checking of polynomials and proofs and the hardness of approximation

problems. PhD thesis, University of California, Berkeley, May 1992.

[Tar83] R. E. Tarjan. Data Structures and Network Algorithms, volume 44 of Regional Conference

Series in Applied Mathematics. Society for Industrial and Applied Mathematics, 1983.

[War87] A. Warburton. Approximation of Pareto optima in multiple-objective, shortest path problems.

Operations Research, 35:70-79, 1987.

[WM91] O. Wolfson and A. Milo. The multicast policy and its relationship to replicated data placement.

A CM Transactions on Database Systems, 16:181-205, 1991.

[Yao82] Andrew C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd

Annual Symposium on Foundations of Computer Science, pages 80-91, Chicago, Illinois, 3-5

November 1982. IEEE.

[ZA94] Z. Zhang and A. Acampora. A heuristic wavelength assignment algorithm for multihop WDM

networks with wavelength routing and wavelength reuse. In Proceedings of the INFOCOM,

pages 534-543. IEEE, June 1994.

[ZPD94] Q. Zhu, M. Parsa, and W. W. M. Dai. An iterative approach for delay-bounded minimum steiner

tree construction. Technical Report UCSC-CRL-94-39, UC Santa Cruz, Santa Cruz, 1994.

