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TREEWIDTH OF CIRCULAR-ARC GRAPHS*
RAVI SUNDARAM!, KARAN SHER SINGH#?, AND C. PANDU RANGANS

Abstract. The treewidth of a graph is one of the most important graph-theoretic parameters
from the algorithmic point of view. However, computing the treewidth and constructing a corce-
sponding tree-decomposition for a general graph is NP-complete. This paper presents an algorithm
for computing the treewidth and constructing a corresponding tree-decomposition for circular-are
graphs in O(z®) time.
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1. Introduction. The notion of the treewidth of & graph has a large number of
applications in meny areas, like algorithmic graph theory, VLSI design, and so forth
[Ar85]. Recently there has been a growing interest in the study of the treewidth and
the tree-decomposition of a graph from the algorithmic point of view.

Robertson and Seymour, in their classic series of Dapers on graph minors, intro-
duced the notion of tree-decomposition and treewidth of a graph [RS86]. Most of their
results are existential in nature. Several classes of problems that are NP-complete for
an arbitrary graph admit polynomial-time solutions on graphs with bounded treewidth
[ALSS88]. Bodlaender [Bo88], [Bo89), [Bo93] has dore extensive studies on the sequen-
tial and parallel algorithmic aspects of graphs with bounded treewidth.

Computing the treewidth and the corresponding tree-decomposition is known to
be NP-complete for general graphs [ACP87]. For fixed &, the problem of determining
whether the treewidth of & given graph is at most k can be solved in polynomial time
with dynamic programming [ACP87], and in O(n?) time with graph minor theory
(RS86]. The only known! algorithm for computing the treewidth of special classes
of graphs is for cographs [BM90]. In this paper, we show that the treewidth of
circular-arc graphs and the corresponding tree-decomposition can be found in 0O(n%)
time. We do this by showing that among all possible tree-decompositions of the
given circular-arc graph, only a small fraction need be considered to find one with
minimum tree-width, namely, those corresponding to the planar triangulations of a
certain circuit—and such tree-decompuositions can be investigated quite easily with a
polynomial-time elgorithm. :

The organization of the rest of the paper is as follows. In §2 basic definitions and
preliminary results are given. Section 3 contains constructions, lemmas, and theorems
that are essential to the proof of correctness of the algorithm. In §4 the actual
algorithm and its analysis are presented. Section 5 contains concluding remarks.
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2. Definitions and Preliminary Results. If S is & set, then let |S| denote
the cardinality of S. Let G = (V, E) be a graph. We also refer to the vertex set and
edge set of G by V(G) and E(G), respectively.

A tree-decomposition of G is a pair ({X:li € I}, T = {I,F}), with {XslieI}a
family of subsets of V', and T a tree with the following properties:

(1) Uses X =V

(2) Yeuvyer Jier (u € XA e X;);

(3) Yuev, the set {ij(i € I A(v € X;)} forms a connected subtree of T.

The treewidth of a tree-decomposition (Xili € IN,T = {I,F}), denoted by
treewidth(({X;li € I},T = {I,F})), is maxse;(}X,| — 1). The treewidth of s graph
G, denoted by treewidth(G), is the minimum treewidth of a tree-decomposition of &
taken over all possible tree-decompositions of (7.

A graph is said to be chordal {Go80] if it has no chordless cycle of size greater
. than 3. The treewidth of a graph G can be similarly defined to be ope less than the
smallest clique number of & chordal graph containing G.

A eircudar-are graph [GoB0), [SP8Y) is the intersection graph of arcs around the
unit circle. Consider a unit circle with a fixed reference, say O, on it. Any point on
the circumference of the circle can be uniquely identified by its distance from O along
the circle, say, in the clockwise direction. Thus, we use the same symbol for the point
as well as its distance from O. Let AF — {Aos A1,...,An_3} be & family of arcs on &
unit circle, and let G = (V, E), |V| = n,|E| = m, be the circular-arc graph with AF
as its intersection model. The arc A4; is represented by the ordered pair (1A, v(4,)),
where I(A4;) and r(4;) denote its left and right end points, respectively. The arc A,
exists on the circle as a traversal in the clockwise direction from I(4;) to r(A4;), along
the circumference of the circle. Further, we assume that {(4;) < 1(A4;41),0<i<n—2.
We represent arcs in AF by uppercase letters and the corresponding vertices in G by
lowercase letters. (See Figs. 1 and 2.}

FIG. 1. An intersection model

Unless otherwise stated, we assume G = (V,E) to be a circular-arc graph with
an arbitrary tree-decomposition ({X.|v e V(T)}, 1.

In general, the arc segment (z, y) exists on the circle as a traversal in the clockwise
direction from z to y. (z,y) is said to contain position s if either 2 < s < ¢, or
(229 AlszzVs<y).

Every vertex a; € & defines a’ left cligue S, comprising the set of vertices
{a;|A; contains ? (A:)}. An intersection cligue Q; for the vertex q; is the clique made



TREEWIDTH OF CIRCULAR-ARC GRAPHS 649

G

F1G. 2. The circular-are graph.

up of the vertices in the set {a;|a; € (5:[S:41)}. (Ses Fig. 3.).

SO={aDs a,;, as}>
Q,

= { a,, a;}
31-—-{30.31.85}\ | _
52={30, a2|a5}<01= {aG’ as}

—Q,; = {az, as}
S: = {a,, a,, 2 s}~
S, = @, = { a2, a,}
¢+ = {az, a;, 34}\ ,
S. = — Q. = { a;, a4}
5*-{33,34,35}\\
So= {a0, a5, ag} — Qs = { a;, as}

Fia. 3. Corresponding left cliques and intersection cliques.

Note, Unless otherwise mentioned, all indices are assumed to be modulo n.
Let :

n—-1
ve =@
=0

Let GQ be the subgraph of @ induced by V.

For every v € V, let $T(v) be the subtree of T with vertices {il(i € V(I A(v €
X;)} in the tree-decomposition ({Xii e V(T)},T). Let ST(Y) = (MNvey ST(v), where
Y is a subset of V.

By definition, the vertices of ST(Y) also form a connected subtree of T, although
it may be empity. '

LeMMA 2.1 (clique containment lemma.). In any tree-decomposition of G, for
any cligue K of G, ST(K) is nonempty [Bog8), [BM90).

- LEMMA 2.2. The intersection graph of a set of subtrees of & tree is chordal [Go80].

LEMMA 2.3. Given a eycle C of n vertices, the sei of minimal chordal graphs,
which contain C as a subgraph, is equal to the sei of planar triangulations of C with
n — 3 diagonel edges,
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LeMMA 2.4. Any vertez v of G is contained in o nonemply consecutive subset
Si, 8541, 8; of the set of left cliques Jor some i and j, and in o consecutive subset
Qi, Qi+1,- .., Q-1 of the set of intersection cliques, which is empty if i = j.

LEMMA 2.5. In any tree-decomposition of the circular-arc graph G, ST(S;) and
ST(Siy1) are subirees of ST(Q;).

Further, we assume no Q; is empty, otherwise the graph reduces to an interval
graph whose treewidth is trivial to compute. '

COROLLARY 2.6. ST(Q;) () ST(Qi41) is nonempty for any tree-decomposition of
G.

LEMMA 2.7. Let G be a groph. Let v be o vertes in G with degree d whose
neighbours form a cligue. Then treewidth(G) = max(treewidth{G — v), d).

Proof. 1t is obvious that treewidth(G) > max(treewidth(G — v), d). To prove the
upper bound, consider any chordal graph containing G — v; adding v yields a chordal
graph containing G. (Recall that the treewidth of (7 is one less than the smallest
clique number of a chordal graph containing G.) G

COROLLARY 2.8. Treewidth(G) = max({max;e;(|S;| — 1),treewidth(GQ)).

Proof. From the definition of treewidth, it follows that treewidth{G) > max(max;cr
(18:[ — 1), treewidth(GQ)). The upper bound follows from Lemma 2.7 and the defini-
tion of GQ. a

By corcllary 2.8, we see that computing treewidth(GQ) is the key to computing
the treewidth of G. In what follows, we are mainly concerned with the treewidth of
GQ. Note that GQ is also a circular-arc graph.

Let G" = (V', E') = IGST({X,|v € V(T)},T) be the intersection graph of the
subtrees §T(Q;),0 < i < n—1, for a tree-decomposition ({Xalv € V(T)},T) of the

circular-arc graph GQ. Let V' = v, v{,...,v/,_, , where v/ is the vertex corresponding
to ST(Q:). From corollary 2.6, we see that (vi,viy1) € E'. Let CYQ be the cycle
consisting of the vertices v}, 1, ..., v/,_, in that order. CYQ may also be referred to

as the cycle corresponding to the intersection cliques.

LEMMA 2.9. For any tree-decomposition ({X, jv € V(T)}.T) of the circular-are
groph GQ, IGST({Xylv € V(T)),T) (1) is chordal, and (2) contains CYQ as a
subgreph.

Proof. Part (1} follows from Lemma 2.2. (2) follows from Corollary 2.6. 0

3. Constructions and Results.

Construction 1. For a given planar triangulation of CYQ, construct & tree-
decomposition ({X,lv € V(T'Q)}, TQ) of GQ as follows: Generate TQ to equal the
dual of the planar triangulation without the vertex corresponding to the external face.
Let v be any vertex of TQ and v, ¥;, and vy, be the vertices of the triangular face
whose dual is the vertex v. Now, let X, = @Q; U@ U@k be the set associated with
the vertex v. For each v € V(T'Q) generate X,. (See Fig. 4.) '

Note. Henceforth, we assume the absence of a vertex corresponding to the external
face in all references to the dual of a (planar) graph. :

THEOREM 3.1. Construction 1 generates a tree-decomposition of (GQ.

Proof. Tt is easy to see that TQ is indeed a tree.

(i) We prove that UU'ETQ X, = VQ. Forany vertex a; € VQ, g; € (2, and since
v; occurs in some triangular face, the corresponding dual vertex v has an associated
set X, that contains @;, and hence a;. Therefore, for every vertex a; € VQ, there
exists a v € V(T'Q) such that a; € X,,. Further, by construction, Yycv iz Xy C VQ.
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v 2y

Planar triangulation
of CYQ

2 _..JIQ

Vs AN
Vs V)

X.= {a o 8, , @, }

X, = {fa,, a 2 » @;, a .}

Xe = {a,, a;, a 30 a5}

xd = { a 2, 4 3z a £ 3 a 5}

F16. 4. Construction 1.

Therefore,
(1) U x.=vaQ.

veTQ

(i) We prove that Vot )€ B(GQ) Fwevirg)(ar € Xu) Ao € Xw). For any
edge (ay, @) € E(GQ), (ak € Sk)/\(ag € 5;), or {ar € S0 /\(a; € 8), say ar,q; € S,
without loss of generality. Ther a; € Q; and Gi € Qr_,. Since v, and v} _, are
adjacent in CY¢), they occur in some triangular face, say, one whose corresponding
dual vertex is'w. Then w has an associated set X, that contains G and Qy_1, and
therefore both a; and a;. Therefore,

(2) Y(ar a6 5(0Q) Twev o) (ak € Xu) A (2 € X,.).

(iti) We prove that Vaevag, {v|(v € V{TQ)) Ala; € Xy)} forms a connected
subtree of TQ. By Lermnma 2.4, any vertex a; of GQ occurs in a consecutive subset
@i, Qiv1s . -, (2;-1 of the intersection cliques. Let a triangular face be said to intersect
a set of vertices if at least one of the three vertices of the face belongs to the set.
Thus we must prove that, given a planar triangulation of & cycle and a segment of the
cycle, the set of vertices in the dual, whose corresponding triangular faces intersect
the segment, forms a connected subtree (in the dual). The proof follows by induction
on the number of vertices in the segment. If the segment contains exactly one vertex,
then the corresponding subtree is simply a path in the dual tree. Assume that it holds
for all segments containing & vertices. Consider a segment contalning k + 1 vertices,
numbered 1 to £+ 1 in order along the cycle. Consider the subsegment of k£ vertices
formed by dropping one of the end vertices, say the k + 1th. Corresponding to the
subsegment, we have a connected subtree in the dual (by the induction Lypothesis),
and corresponding to the dropped end vertex, we have s path that intersects with the
subtree (the intersection contains at least the dual {vertex) of the common triangular
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face of the kth and &+ 1th vertices in the segment). Since the dual (TQ) is & tree, we
obtain a connected subtree in the dual that is the union of the subtree corresponding
to the subsegment of k vertices and the path corresponding to the one end vertex of
the segment. Therefore,

(3) Vaieve, {v](v € V(TQ)) A (e: € X))}

is a connected subtree of TQ.

From (1), (2), and (3) we conclude that Construction 1 generates a tree-
decomposition of GQ. 0O

Consider any tree-decomposition ({X,jv € V(T)},T') of GQ such thet & =
IGST({X,lv € V(T")},T"), the intersection graph of the subtrees corresponding to
the intersection cliques, is not & planar triangulation of CYQ. By Lemmas 2.9, ¢ is
chordal and contains CY' Q. Consider any minimal subgraph SG' of ¢ that contains
CYQ and is chordal (obviously, SG” is an edge-induced subgraph). By Lemma 2.3,
SG’ must be a planar triangulation of CYQ. Let ({X,|v e V{TQ')}, TQ') be the
tree-decomposition corresponding to SG' obtained by Construction 1.

THEOREM 3.2. Treewidth({X,|v € V(TQ')},TQ) < treewidth({ X, jv € V(T")},
™).
Proof. By theorem 3.1, ({X,|v € V(TQ)},TQ) is a tree-decomposition of GQ.
To prove the theorem, it is sufficient to show that Yuev(rn) Jvevir) : Xu € X,.

Consider any v € V(T'Q’). By Construction 1, X, = Q: U Q;1JQx for some
t,J, and k. (Remember that in CYQ, there is a vertex v; for each ();.) Hence,
SG' contains the edges (v}, ¥5), (v}, v3), and (v}, v}). Since $G” is only & subgraph of
G’, these edges are also present in &', This implies that the sets $T(Q;), ST(Q;),
and ST((Q) pairwise overlap, but because these are subtrees, they have a nonempty
intersection in 77, Le., ST(Q:) (N ST(Q;)N ST(Qk) in T” is nonempty. Consider
some vertex v € V(T) in this nonempty intersection. X, contains @i, Q; and Q.
Therefore, X, 2 X,, . »

Herce, it has been proved that treewidth ({X,|v € V(TQ")},T¢Q") < treewidth({ X,
lv e V(T)},T. 0

COROLLARY 3.3. The treewidth of GQ is equal o the minimum treewidth over
all tree-decompositions ({X,|v € V(T'Q}},TQ) of GQ that satisfy the following: G' =
IGST({X,|v € V(TQ)}, TQ) the corresponding intersection graph of the intersection

eliques, conteins CY'Q and 43 a planar triangulation of CYQ.

Proof. 1t follows from Theorems 3.1 and 3.2, and the fact that IGST({X,|v €
V(T)}, T) is chordal and cantains CY Q for any tree-decomposition ({Xuv e V(T)},T)
of GQ. 0 '

Construction. 2. Given any tree-decomposition ({X,|v € V(TQ)},TQ) of GQ
such that G’ = IGST({X,|v € V(TQ)},7Q) contains CY'Q and is chordal, construct
a tree-decomposition of G as follows: For each a; € V, add a new vertex &; to TQ,
attach b; by an edge to any one vertex v € V(T'Q) such that X, contains ;1 and
Qi and set Xy, = G, Let ({X,|v € V{T'Qe)}, TQg) denote the resulting tree-
decomposition. (See Fig, 5.).

It is easy to see that Construction 2 is well defined and that it generates a tree-
decomposition of G. Further, by Corollary 2.8, if the tree decomposition ({X,|jv €
V{TQ)}.TQ) achieves the minimum tree-width for G, then the treewidth of the
tree-decomposition ({X,|v € V(T'Q5)}, TQg) equals the treewidth of G.

4. Algorithm and Its analysis. The basic algorithm now boils down to com-
puting treewidth(GQ), and a corresponding tree-decomposition. The problem of com-
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Xp,= S,

d b Xp, = 81

b5 Xp; = Sz_
X5y = S3

Xog = S

Xos = Ss

Fic. 5. Construction 2.

puting treewidth(GQ) can be rephrased -as follows.

Given an n-gon g, vy,...,v,-1, and sets A; associated with each vertex v; such
that every element occurs in a consecutive subset A i, ... ,Aj;, define the cost
of a triangle with vertices v,, v;, and vy to be [A;|JA4;{JAx| ~ 1. Define the cost
of a planar triangulation to be the maximum cost over all triangular faces in the
triangulation. The problem (restated) involves finding the minimum cost over all
planar triangulations, and the corresponding planar triangulation {refer to Coroliary
3.3).

Specifically, in this case it is required to find the mimimum-cost planar triangn-
lation of the n-gon v§,v!,... . Un_1, with the set associated with v} being Q;. This:
Is done by a dynamic programming approach. TWCY @;(t) is defined to be the
minimum cost over all planar triangulations of the subpolygon vf,v}_,,...,v} 1t
Therefore, treewidth(GQ) = TWCYQ,(0).

ALGORITHM.
Input (i(A;),7(A:)) representation of the vertices a; of the circular-arc graph
G

Steps

1. Construct S;,0 <4 < n—1 (in sorted order).

2. Construct @;,0<i<n—1 (in sorted order).

3. Compute treewidth(GQ) = TWCYQ,,(0) using dynamic programming,
and find a corresponding planar triangulation.

4. Employ Construction 1 on the planar triangulation to obtain the tree-

" decomposition of GQ.

5. Employ Construction 2 (using the tree-decomposition of G() obtained
from step 4) to obtain the tree-decomposition of G and compute the
corresponding treewidth. ‘

. Output Treewidth{G) and corresponding tree-decomposition.

Details of step 3.
3.1 Forall{,0<i<n—1, compute

TWCYQ1(5) = TWCYQ(i) =0,

TWCYQs(i) = |Q: U Quga U Quyaf ~ 1.
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3.2. For j =4 ton, and
for i=0ton— 1, compute

TWCYQ,;() =
IE}EI?L{H]&X(TWCYQ};_H(‘IZ), TW"CYQJ'_k(i + k),
QiU Qi U Qirja| - D}

To actually find the corresponding planar triangulation, pointers and additional
book-keeping, information could be stored so that, by retracing, the optimum trian-
gulation can be constructed. :

Proof of correctness. It follows from Theorems 3.1 and 3.2 and Corollary 3.3. D

Time complesity. The dynamic programming employed in step 3 itself takes
O(n®) time. But the bottleneck is finding all the |Q;|JQi+x [ JQ:i-;-1|. Since the
union in the innermost loop takes O(n) time, naively it would seem that step 3 takes
O(n?) time. However, finding all the |Q; UQitx U Qit;-1] can be done faster than
O(n?). Note that the sets (; and the elements they contain can be represented as
a circular list of events. The events represent the start of an element, the end of an
clement, and a set. An element is considered to belong to all those sets whose event
- les in the clockwise traversal from the start event, to the end event of this element.
To show that all the |Q; | Qitx!J Qir;1] can be computed in O(n®) time, all we
must show is that for any fixed set B, all the |B(JQ;| can be computed in O(r) time,
This is done as follows: Remove all events corresponding to elements in B from the
list, then do a sweep around the circle maintaining a counter that represents the arcs
of Q; — B covering the point you are at, decrement the counter when you hit the
end of an arc, and increment it at the start of an arc. When you arrive at the event
corresponding to a set, output the counter plus {B].

5. Final remarks. In this paper, we presented an algorithm to compute the
treewidth of a circular-arc graph in O(n®) time. Since our algorithm simply uses
straightforward dynamic programming, we conjecture that it is possible to improve
the time complexity substantially. 'We note that there is an O(nlog n) algorithm for
the following problem (which is syntactically very similar to the one we solve).

Given an n-gon v, v1,. . .,%n—1, and numbers A; associated with each vertex v;,
~ define the cost of a triangle with vertices v,, v; and vy to be A; x A; x A;. Define the
cost of a planar triangulation to be the sum over all triangular faces in the triangu-
lation. The problem involves finding the minimum cost over all planar triangulations
and the corresponding planar triangulation.

The fastest known algorithm for this problem was the straightforward O(n®
dynamic programming algorithm, until Hu and Shing devised an extremely clever
O(nlogn) algorithm [HS80], [¥aB0]. So it is possible that a closer analysis of the
underlying problem will yield a faster algorithm. Another interesting direction is
to develop ar algorithm to compute the treewidth for a substantially larger class of

graphs.
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