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Spanning Trees Short or Small 

R. Ravi* R. Sundaramt M. V. Marathet D. J. Rosenkrantz 0 S. S. Ravin 

Abstract 

We study the problem of finding small trees. Classi- 
cal network design problems are considered with the 
additional constraint that only a specified number k 
of nodes are required to be connected in the solu- 
tion. A prototypical example is the kMST problem 
in which we require a tree of minimum weight span- 
ning at least k nodes in an edge-weighted graph. We 
show that the kMST problem is NP-hard even for 
points in the Euclidean plane. We provide approxi- 
mation algorithms with performance ratio 34 for the 
general edge-weighted case and O(k114) for the case 
of points in the plane. Polynomial-time exact solu- 
tions are also presented for the class of decompos- 
able graphs which includes trees, series-parallel graphs 
and bounded-bandwidth graphs, and for points on the 
boundary of a convex region in the Euclidean plane. 

We also investigate the problem of finding short 
trees, and more generally, that of finding networks 
with minimum diameter. A simple technique is used 
to provide a polynomial-time solution for finding k- 
trees of minimum diameter. We identify easy and 
hard problems arising in finding short networks using 
a framework due to T. C. Hu. 

1 Introduction 

1.1 Motivation: small trees The oil reconnais- 
sance boats are back from their final trip off the coast 
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of Norwayl, and present you with a detailed map of the 
seas surrounding the coastline. Marked in this map are 
locations which are believed to have a good chance of 
containing oil under the sea bed. However your com- 
pany has only a limited number of oil rigs. Your prob- 
lem is to position these oil rigs at marked places so that 
the cost of laying down pipelines between these rigs is 
minimized. The problem at hand can be modeled as 
follows: Given an edge-weighted graph and a specified 
number k, find a tree of minimum weight spanning at 
least k nodes. We call this problem the k-Minimum 
Spanning Tree (or the kMST) problem. In this paper, 
we study classical network-design problems such as the 
MST problem with the additional constraint that only 
a specified number of nodes need to be connected up in 
the network. Unlike the MST problem which admits a 
polynomial-time solution [3, 19,211, the kMST problem 
is considerably harder to solve. 

THEOREM 1.1. The 
NP-complete. 

LMST problem is 

The above theorem holds even when all the edge 
weights are drawn from the set {1,2,3) (or any set 
containing three distinct values). It is not hard to show 
a polynomial-time solution for the case of two distinct 
weights. The problem remains NP-hard even for the 
class of planar graphs as well as for points in the plane. 

1.2 Approximation algorithms A P 
approximation algorithm for a minimization problem is 
one that delivers a solution of value at most p times the 
minimum. Consider a generalization of the EMST prob- 
lem, the k-Steiner tree problem: given an edge-weighted 
graph, an integer k and a subset of at least k vertices 
specified as terminals, find a minimum-weight tree span- 
ning at least k terminals. We can apply approximation 
results for the kMST problem to this problem by con- 
sidering the auxiliary complete graph on the terminals 
with edges weighted by shortest-path distances. A p 
approximation for the LMST problem on the auxiliary 
graph yields a 2papproximation for the k-Steiner tree 
problem. Therefore we focus on approximations for the 
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kMST problem. We provide the first approximation al- 
gorithm for this problem. 

THEOREM 1.2. There is a polynomial-time algo- 
rithm that, given an undirected graph G on n nodes with 
nonnegative weights on its edges, and a positive integer 
k 5 n, constructs a tree spanning at least k nodes of 
weight at most 34 times that of a minimum-weight 
tree spanning any k nodes. 

The above theorem provides a G&approximation 
algorithm for the k-Steiner tree problem as well. More- 
over, we can construct an example that demonstrates 
that the performance guarantee of the approximation 
algorithm is tight to within a constant factor. 

We can derive a better approximation algorithm for 
the case of points in the Euclidean plane. 

THEOREM 1.3. There is a polynomial-time algo- 
rithm that, given n points in the Euclidean plane, and 
a positive integer k 5 n, constructs a tree spanning at 
least k of these points such that the total length of the 
tree is at most O(k)) times that of a minimum-length 
tree spanning any k of the points. 
As before, we can construct an example showing that 
the performance ratio of the algorithm in Theorem 1.3 
is tight. 

1.3 Exact algorithms: special cases Since the 
kMST problem is NP-complete even for the class of pla- 
nar graphs, we focus on special classes of graphs and 
provide exact solutions that run in polynomial time. 
Bern, Lawler and Wong [6] introduced the class of de- 
composable graphs. This class is defined using a fi- 
nite number of primitive graphs and a finite collec- 
tion of binary composition rules. Examples of decom- 
posable graphs include trees, series-parallel graphs and 
bounded-bandwidth graphs. We use a dynamic pro- 
gramming technique to prove the following theorem. 

THEOREM 1.4. For the class of decomposable 
graphs, there is an O(nk2)-time algorithm for solving 
the LMST problem. 

Though the kMST problem is hard for arbitrary 
configurations of points in the plane, we can derive the 
following result using dynamic programming. 

THEOREM 1.5. There is a polynomial-time algo- 
rithm for solving the LMST problem for the case of 
points in the Euclidean plane that lie on the boundary 
of a convex region. 

the maximum distance (path length) between any pair 
of nodes in the tree. The problem of finding a minimum- 
diameter spanning tree of an edge-weighted graph was 
shown to be polynomially solvable by Camerini, Gal- 
biati and Maffioli [S] when the edge weights are non- 
negative. They also show that the problem becomes 
NP-hard when negative weights are allowed. Camerini 
and Galbiati [7] h ave proposed polynomial-time algo- 
rithms for a bounded path tree problem on graphs with 
nonnegative edge weights. Their result can be used to 
show that the minimum-diameter spanning tree prob- 
lem as well as its natural generalization to Steiner trees 
can be solved in polynomial time. We use a similar 
technique to show that the following minimum-diameter 
k-tree problem is polynomially solvable: given a graph 
with nonnegative edge weights, find a tree of minimum 
diameter spanning at least k nodes. 

THEOREM 1.6. There is a polynomial-time algo- 
rithm for the minimum-diameter k-tree problem on 
graphs with nonnegative edge weights. 

We investigate easy and hard results in finding short 
networks. For this, we use a framework due to T. 
C. Hu [17]. In this framework, we are given a graph 
with nonnegative distance values dij and nonnegative 
requirement values rij between every pair of nodes i and 
j in the graph. The communication cost of a spanning 
tree is defined to be the sum over all pairs of nodes i, j 
of the product of the distance between i and j in the 
tree under d and the requirement rij. The objective is 
to find a spanning tree with minimum-communication 
cost. Hu considered the case when all the d values are 
one and showed that a Gomory-Hu cut tree [16] using 
the r values as capacities is an optimal solution. Hu also 
considered the case when all the r values are one and 
derived sufficient conditions under which the optimal 
tree is a star. The general version of the latter problem 
is NP-hard [8, 181. 

We define the diameter cost of a spanning tree 
to be the maximum cost over all pairs of nodes i, j 
of the distance between i and j in the tree under d 
multiplied by rij . In Table 1, we present current results 
in this framework. All rij and dij values are assumed 
to be nonnegative. The first two rows of the table 
examine the cases when either of the two parameters 
is uniform-valued. The last two rows illustrate that 
the two problems become NP-complete when both the 
parameters are two-valued. 

1.4 Short trees Keeping the longest path in a 1.5 Short small trees We consider the k- 

network small is often an important consideration in tree versions of the minimum-communication-cost and 

network design. We investigate the problem of finding minimum-diameter-cost spanning tree problems and 

networks with small diameter. The diameter of a tree is show the following hardness result. 
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Pij dij Comm. cost Dia. cost 
Arb. {a} Cut-tree [17] Open 
{al Arb. NP-complete [18] Poly-time [8] 
{a, b} (0, c} Cut-tree variant* Poly-time’ 
{a,4a} {c, d} NP- complete [18] NP-complete* 

Table 1: Results on minimum-communication-cost trees 
and minimum-diameter-cost trees. (Asterisks denote 
our result.) 

THEOREM 1.7. The minimum-communication k- 
tree problem and the minimum-diameter k-tree problem 
are both hard to approximate within any factor even 
when all the dij values are one and the rij values are 
nonnegative. 

Section 2 contains the 34 approxima.tion for the 
kMST problem. In Section 3, we present the stronger 
result for the case of points in the plane. Then we 
address polynomially solvable cases of the problem. In 
Section 5, we prove our results on short trees. We close 
with a discussion of directions for future research. 

2 The approximation algorithm for the general 
case 

In this section, we present the proof of Theorem 1.2. 
As input, we are given an undirected graph G with 
nonnegative edge weights and an integer k. 

2.1 The algorithm and its running time It 
is useful to think of the algorithm as running in two 
distinct phases: a merge phase and a collect phase. 

During the merge phase, the algorithm maintains 
a set of clusters and a spanning tree on the vertex set 
of each cluster. Initially each vertex forms a singleton 
cluster. At each step of the merge phase, we choose an 
edge of minimum cost between two clusters, and merge 
them by using the edge to connect their spanning trees. 

Define the size of a cluster to be the number of 
vertices that it contains. During the course of the merge 
phase, the clusters grow in size. The collect phase is 
entered only when 
(i) there exist at most 6 clusters whose sizes sum to 

at least k, and 

(ii) no cluster has size k or more. 
In the collect phase, we consider each cluster in turn as 
the root and perform a shortest-path computation be- 
tween clusters using the weights on inter-cluster edges. 
We determine for each cluster C, the shortest distance 
dc such that, within distance dc from C, there exist at 
most 4 clusters whose sizes sum to at least k. Note 
that by the first precondition for starting the collect 
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phase, the distance dc is well-defined. We choose the 
cluster C with the minimum value of dc and connect 
it using shortest paths of length at most dc to each of 
these fi clusters. We can prune edges from some of 
these shortest paths to output a tree of clusters whose 
sizes sum to at most 2k. We may do this since any clus- 
ter has less than k nodes at the start of this phase by 
the second precondition. 

The merge phase of the algorithm continues to run 
until both the preconditions of the collect phase are 
satisfied. Beginning with the step of the merge phase 
after which both preconditions of the collect phase are 
satisfied, at each subsequent step, the algorithm forks 
off an execution of the collect phase for the current 
configuration of clusters. The merge phase continues 
to run until a cluster of size k or more is formed. At 
this point, the merge phase terminates and outputs the 
spanning tree of the cluster of size at least k. Note 
that the size of this cluster is at most 2k. Each forked 
execution of the collect phase outputs a spanning tree 
of size between k and 2k as well. The algorithm itself 
finally outputs the tree of least weight among all these 
trees. It is easy to see that there are O(n) steps in the 
merge phase and hence at most this many instances of 
the collect phase to be run. Using Djikstra’s algorithm 
[9] in each collect phase, the whole algorithm runs 
in time O(n2(m + n logn)) where m and n denote 
the number of edges and nodes in the input graph 
respectively. The running time of the collect phase 
dominates running time of the merge phase. 

2.2 The performance guarantee Consider an 
optimal kMST of weight OPT. During the merge 
phase, nodes of this tree may merge with other nodes 
in clusters. We focus our attention on the number of 
edges of the optimal kMST that are exposed, i.e., remain 
as inter-cluster edges. We show that at any step in 
which a large number of edges of the kMST are exposed, 
the spanning tree of each cluster has low average edge 
weight. 

LEMMA 2.1. If at the beginning of a step of the 
merge phase, an optimal kMST has at least x exposed 
edges (inter-cluster edges), then the spanning tree of any 
cluster at the end of the step has average edge weight at 
most q. 

Proof. The proof uses induction on the number of 
steps. Suppose that an optimal EMST has at least 
x exposed edges at the beginning of the current step 
of the merge phase. Then at the beginning of the 
previous step, the optimal kMST must have had at 
least x exposed edges as well. Thus by the induction 
hypothesis, the spanning tree of any cluster at the end 
of the previous step has average edge weight at most 
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OPT -. Since only one new cluster is formed in the current 
stzp, it remains to show that the spanning tree of the 
new cluster has low average edge weight. 

Note that the spanning trees of each of the two 
clusters that form the new cluster have average edge 
weight at most q by the inductive hypothesis. To 
show that the new cluster has average edge weight at 
most F it suffices to show that the edge added to 
form this cluster has weight at most y. But this is 
straightforward since there is an optimal LMST with at 
least x exposed edges of total weight at most OPT. 

We now prove the performance guarantee in The- 
orem 1.2. The above lemma is useful as long as the 
number of exposed edges is high. Applying the lemma 
with x = 4 shows that the average edge weight of the 
spanning tree of each cluster is at most 9. Consider 
the scenario when the merge phase runs to completion 
to produce a tree with at least k nodes even before the 
number of exposed edges falls below 4. In this case, 
since the resulting tree has at most 2k nodes, the cost 
of the tree is at most 9 .2k 5 24. OPT. 

Otherwise, the number of exposed edges falls below 
4 before th e merge phase runs to completion. How- 
ever, in this case, note that both preconditions for the 
start of the collect phase will have been satisfied. Hence 
the algorithm must have forked off a run of the collect 
phase. We show that the tree output by this run has 
low weight. Consider a shortest-path computation of 
the collect phase rooted at a cluster containing a node 
of the optimal kMST. Then clearly, within a distance 
at most OPT, we can find at most 4 clusters whose 
sizes sum to at least k. Since the number of exposed 
edges is less than 4, the clusters containing nodes of 
the optimal tree form such a collection. Since there are 
at most & clusters to connect to, the weight of these 
connections is at most 6. OPT. It remains to bound 
the weight of the spanning trees within each of the clus- 
ters retained in the output solution. This is not hard 
since each of these trees has average edge weight at most 
OPT T* Since the size of the output tree is at most 2k (as 

a result of the pruning), the total weight of all these 
spanning trees is at most 2& . OPT. Summing the 
weight of these trees and the inter-cluster connections 
shows that the output tree has cost at most 3&.OPT. 
This proves the performance ratio of 34 claimed in 
Theorem 1.2. 

3 An approximation algorithm for points on 
the plane 

In this section, we present a heuristic for the kMST 
problem for points on the plane and a proof of its 
performance guarantee. Let S = {si, ~2, . . . . sn} denote 

3.1 The heuristic 
I. For each distinct pair of points si, sj in S do 

(1) 

(2) 

(3) 

Construct the circle C with diameter 6 = 
&f(i, j) centered at the midpoint of the line 
segment (Si , Sj). 

Let 5’~ be the subset of S contained in C. If 
SC contains fewer than k points, skip to the 
next iteration of the loop (i.e., try the next 
pair of points). Otherwise, do the following. 

Let Q be the square of side 6 circumscribing 
C. Divide Q into k square cells each with 
side = a/&. Sort the cells by the number of 
points from SC they contain and choose the 
minimum number of cells so that the chosen 
cells together contain at least k points. If 
necessary, arbitrarily discard points from the 
last cell chosen so that the total number of 
points in all the cells is equal to k. Construct 
a minimum spanning tree for the k chosen 
points. The solution value for the pair (sir sj) 
is the length of this MST. 

549 

the given set of points. For any pair of points si and sj , 
let d(i, j) denote the Euclidean distance between si and 
Sj . 

II. Output the smallest solution value found. 
It is easy to see that the above heuristic runs in 

polynomial time. In the next subsection, we show 
that the heuristic provides a performance guarantee of 
O(k’i4). We begin with some lemmas. 

3.2 The performance guarantee 
LEMMA 3.1. Let S denote a set of points on the 

plane, with diameter A. Let a and b be two points 
such that d(a, b) = A. Then the circle with diameter 
fiA centered at the midpoint of the line segment (a, b) 
contains S. 

Proof. Suppose there exists a point p E S not 
contained within the circle of diameter fiA centered 
at the midpoint of the line segment (a, b). If p lies on 
the perpendicular bisector of the line segment (a, b) then 
it is clear that d(a,p) = d(b,p) > A, else p is closer to 
one of a and b than the other. Say p is closer to a then 
it is easy to see that d(b,p) > A. Thus, if there exists 
a point outside the circle then it contradicts the fact 
that the diameter of the set S is A. Hence S must be 
contained within the circle. 

LEMMA 3.2. The length of a minimum spanning 
tree for any set of q points in a square with side CT is 
length O(o&). 
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Proof. Paste a square-grid over the square where 
each sub-cell in the grid has side u/fi. Connect each 
point to a closest vertex in the grid. Consider the tree 
consisting of one vertical line, all the horizontal lines 
in the grid connected to the vertical line, and the lines 
connecting each point to its nearest vertex in the grid. 
It is clear that the grid lines in the tree have total length 
O(b,jj) and the lines connecting the points to the grid 
have total length q 1 O(a/& = O(aJTi). The lemma 
follows. 

The following lemma is used to establish a lower 
bound on OPT. 

LEMMA 3.3. Consider a square-grid on the plane 
with the side of each cell being u. Then the length of an 
MST for any set oft points, where each point is from a 
distinct cell is Q(tu). 

Proof. Pick a point from the set and discard all 
points in the eight cells neighboring the cell containing 
the chosen point. Doing this repeatedly we choose a 
subcollection of t/9 = Q(t) points such that the distance 
between any pair of points in the subcollection is at least 
6. The lemma then follows from the observation that 
the minimum length of a tree spanning R(t) points that 
are pairwise a-distant is Q(k). 

Let, P’ denote the set of points in an optimal 
solution to the problem instance. Let A denote the 
diameter of P’ (i.e., the maximum distance between a 
pair of points in P’), and OPT denote the lengt,h of an 
MST for P’. Consider an iteration in which the circle 
constructed by the heuristic is defined by two points 
a and b in P’ such that d(a, b) = A. Let g be the 
number of square cells used by the heuristic in selecting 
Ic points in this iteration. To establish the performance 
guarantee of the heuristic, we show that the length 
of the MST constructed by the heuristic during this 
iteration is within a factor O(k’i4) of OPT. 

It is easy to see that OPT > A because A is the 
diameter of P’. 

Since the heuristic uses a minimum number (g) of 
square cells in selecting L points, the points in P’ must, 
occur in g or more square cells. Note that the side of 
each square cell is fiA/&. This gives us the following 
corollary to Lemma 3.3. 

COROLLARY 3.1. OPT = s2(gA/&) 

LEMMA 3.4. The length of the spanning tree con- 
structed by the heuristic is O(fiA). 

Proof. Let Qi denote the set of points in the i”’ cell 
chosen by the heuristic, 1 < i 5 g. Thus X:=1 I&;[ = 
k. Consider the following two-stage procedure for 
constructing a spanning tree for the points in UyzlQi. 

Stage I: Construct a minimum spanning tree for the 
points in Qi, 1 5 i 5 g. Note that the point,s in Qi are 
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within a square of side &A/&. Using Lemma 3.2, the 
length of an MST for Qi is O( -$ m). Thus, the total . .- 
length of all the minimum spanning trees constructed 
in this stage is 0( 3 Cyzl m) = O(fi A) by the 
Cauchy-Schwartz inequality. 

Stage II: Connect the g spanning trees constructed in 
Stage I into a single spanning tree as follows. Choose 
a point arbitrarily from each Qi (1 5 i 5 g), and 
construct an MST for the g chosen points. Note that 
these g points are within a square of side fi A. Thus, 
by Lemma 3.2, the length of the MST constructed in 
this stage is 0(&j A) as well. 

Thus, the total length of the spanning tree con- 
structed by the two-stage procedure is O(fi A). 

We are now ready to complete the proof of the per- 
formance bound. As argued above, OPT = R(A), 
and from Corollary 3.1, OPT = n(gA/fi). Thus 
OPT = fl(max{A,gA/fi}). Also from Lemma 3.4, 
the length of the spanning tree produced by the heuris- 
tic is O(fiA). Therefore, the performance ratio is 
O(min{&, m}) = O(k’/4) as claimed. 

4 Exact algorithms for special cases 

4.1 kMST for Decomposable Graphs In this 
section, we prove Theorem 1.4. A class of decompos- 
able graphs l? is given by a set of rules satisfying the 
following conditions [6]. 

The number of primitive graphs in I’ is finite. 

Each graph in I? has an ordered set of special nodes 
called terminals. The number of terminals in each 
graph is bounded by a constant. 

There is a finite collection of binary composition 
rules that operate only at terminals, either by iden- 
tifying two terminals or adding an edge between 
terminals. A composition rule also determines the 
terminals of the resulting graph, which must be 
a subset, of the terminals of the two graphs being 
composed. 

Examples of decomposable graphs include trees, series- 
parallel graphs, bounded-bandwidth graphs, etc. [S]. 

Let r be any class of decomposable graphs. The 
kMST problem for I-’ can be solved optimally in polyne 
mial time using dynamic programming. As in [6], it is 
assumed that a given graph G is accompanied by a parse 
tree specifying how G is constructed using the rules. It 
ca.n be shown that the size of the parse tree is linear in 
the number of nodes of G. 

Consider a fixed class of decomposable graphs I’. 
Suppose that G is a graph in I?. Let x be a partition of 
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a nonempty subset of the terminals of G. We define the 
following set of costs for G. 

Cost;(G) = Minimum total cost of any forest 
containing a tree for each block 
of ?r, such that the terminal 
nodes occurring in each tree are 
exactly the members of the 
corresponding block of K, no pair 
of trees is connected, the total 
number of edges in the forest 
is i and each tree contains 
at least one edge (1 5 i < R). 

Cost:-JG) = M inimum cost of a tree within G 
containing li - 1 edges, and 
containing 110 terminal nodes of G. 

For any of the above costs, if there is no forest satisfying 
the required conditions, the value of Cost is defined to 
be 00. 

Note that because I’ is fixed, the number of cost 
values associated with any graph in the parse tree for 
G is O(k). We now show how the cost values can be 
computed in a bottom-up manner, given the parse tree 
for G. 

To begin with, since r is fixed, the number of 
primitive graphs is finite. For a primitive graph, each 
cost value can be computed in constant time, since the 
number of forests to be examined is fixed. Now consider 
computing the cost values for a graph G constructed 
from subgraphs G1 and Gz, where the cost values for 
G1 and GZ have already been computed. 

Let nGlj &, and & be the set of partitions of a 
subset of the terminals of G1, G:! and G respectively. 
Let A be the set of edges added to G1 and G:! by the 
composition rule R used in constructing G from G1 
and Gz. Corresponding to rule R, there is a partial 
function fR : nG, X nG, X 2* + nG, such that a 
forest corresponding to partition irl in nGl, a forest 
corresponding to partition 1~2 in nG3, and a subset 
B C A, combine to form a forest corresponding to 
partition fR(?rl, ifs, B) of G. Furthermore, if the forest 
corresponding to ~1 contains i edges, and the forest 
corresponding to ~2 contains j edges, then the combined 
forest in G contains i + j + IBI edges. 

Similarly, there is a partial function QR : nG, X 
2* + &!, such that a forest corresponding to partition 
~1 in &I and a subset B C A combine to form a forest 
corresponding to partition gR(?Tl, B) of G. If the forest 
corresponding to ~1 contains i edges, then the combined 
forest in G contains i+ IBI edges. There is also a simi1a.r 
partial function hR : nG, X 2* + &. Finally, t,here is 
a partial function jR : 2* + &. 

Using functions fR, gR, hR and jR, cost values for 
G can be computed from the set of cost values for G1 
and G2. For instance, suppose that fR(?Tl, 7r2, B) = 
?r. Then a contributor to computing Cost:(G) is 
Cost:‘(G1) + Cost:2,-,s,(G2) + w(B), for each t such 
that 1 5 t < i - IBI - 1. The value of Cost:(G) is the 
minimum value among its contributors. 

When all the cost values for the entire graph G have 
been computed, the cost of an optimal LMST is equal 
to Ty&{Cost;v.,(G)}, where the forest corresponding 

to x consists of a single tree. 
We now analyze the running time of the algorithm. 

For each graph occurring in the parse tree, there are 
O(k) cost values to be computed. Each of the cost values 
can be computed in O(B) time. As mentioned earlier, 
we assume that the size of the given parse tree for G is 
O(n). Then the dynamic programming algorithm takes 
time O(nk2). This completes the proof of Theorem 1.4. 

4.2 kMST for points on the boundary of a 
convex region We now restrict our attention to 
the case where we are given n points that lie on the 
boundary of a convex region, and show that the IzMST 
on these points can be computed in polynomial time 
using dynamic programming. We also provide a faster 
algorithm when the points are constrained to lie on 
the boundary of a circle. Throughout this section, we 
assume that no three points are collinear. 

LEMMA 4.1. Any optimal LMST on a set of points 
in the plane is non self-intersecting. 

LEMMA 4.2. Given n points on the boundary of a 
convex polygon no vertex in an optimal LMST of these 
points has degree greater than 4. 

We now characterize the structure of an optimal solu- 
tion in the following decomposition lemma and use it 
to define the subproblems which we need to solve recur- 
sively using dynamic programming. 

LEMMA 4.3. (Decomposition lemma.) Let 

VO,Vl,..*, v,-1 be the vertices of a convet polygon in 
say, clockwise order. Let vi be a vertex of degree di in 
an optimal kMST. Note that 1 5 di 5 4. 
If di 2 2 let the removal of vi from the optimal 
kMST produce connected components Cl, C’s,. . . , C,&. 
Let ICil denote the number of vertices in component 
Ci. Then there exists a partition of vi+l, vi+2, . . . , vi-l, 
(indices taken mod n), into di contiguous subsegments 

&,S2,..., Sd; such that Vj, 1 < j 5 di, the optimal 
RMST induced on Sj U{vi} is an optimal (ICjl+l)MST 
on Sj U{vi} in which the degree of vi is one. 
If di = 1, let vj be vi ‘S neighbor in the optimal kMST. 
Let vj be adjacent to djl vertices in vi+l,vi+2.. . ,vj-1 
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and dj2 vertices in vj+i,vj+s,..., Vi-l. Let the 
optimal LMST contain ICll vertices from the set 
Vi+l,Vi+2.. . ,Vj-1 and lC2l vertices from the set 

Vj+l, Vj+2,. . . , Vi-l. Then the optimal kh!ST induced 
on lJ,i+l ,Vi+2 . . . ,Vj is an optimal (ICll + l)h!ST on 
Vi+l,Vi+2...,Vj with degree of vj = djl and the op- 
timal LMST induced on vj, vj+l . . . , vi-1 is an opti- 
mal (lC21 + 1)MST on vj,vj+l . . . , vi-1 with degree of 
vj = dj2. 

Proof. If di 2 2 then it is easy to see that a parti- 
tion Of Vi+l, Vi+2, . . . , vi- 1 into contiguous subsegments 
&,S2,.*. , Sdi exists such that Vj, 1 5 j 5 di, Cj C Sj, 
because the optimal kMST is non self-intersecting by 
Lemma 4.1. Further, the optimal kMST induced on 
Sj U{vi} must be an optimal (ICj I+ 1)MST on Sj U{ui} 
with degree of vi = 1, for otherwise we could replace it 
getting a lighter kMST. The proof of the case when 
di = 1 is equally straightforward and is omitted. 

Thus the subproblems we consider are specified 
by the following four parameters: a size s, a ver- 
tex vi, the degree di of vi, and a contiguous subseg- 
ment vkl, vkl+l, . . . , vkz such that i @ [kl.. . k2]. A 
solution to such a subproblem denoted by SOLN(s; 
Vi; 4; vkl,Vkl+l,.--, vg2) is the weight of an op- 
timal SMUT On {vi,Vkl,Vkl+l,. . .,vk2} in WhiCh V,i 
has degree di. Using the decomposition lemma 
above, we can write a simple recurrence relation for 
SOLN(s; Vi; di; Vkl, Vkl+l,. . . , v&2). By solving these 
recurrences using dynamic programming we can obtain 
a polynomial time algorithm for the kMST problem as 
claimed in Theorem 1.5. 

We now provide a faster algorithm to find the 
optimal kMST in the case when all n points lie on a 
circle. We assume that no two points are diametrically 
opposite. The algorithm is based on the following 
observations. 

LEMMA 4.4. Given n poin,ts VI, ~2,. . . , v,, on a cir- 
cle no vertex in an optimal kMST has degree more than 
2. 

Lemma 4.4 implies that if the points lie on a circle then 
every optimal kMST is a path. Moreover, if the path 
zig-zags, then we can replace the crossing edge with a 
smaller edge. Thus we have the following lemma. 

5 Short trees and short small trees 

5.1 Short trees In this subsection, we prove 
our results on short trees. First, we address the 
minimum-diameter k-tree problem: Given a graph with 
nonnegative edge weights, find a tree of minimum 
diameter spanning at least k nodes. 

We use the notion of subdividing an edge in a 
weighted graph. A subdivision of an edge e = (u,v) 
of weight w, is the replacement of e by two edges 
ei = (u, r) and ez = (r, v) where r is a new node. The 
weights of er and e2 sum to we. Consider a minimum- 
diameter k-tree. Let 2: and y be the endpoints of a 
longest path in the tree. The weight of this path, D, 
is the diameter of the tree. Consider the midpoint 
of this path between z and y. If it falls in an edge, 
we can subdivide the edge by adding a new vertex as 
specified above. The key observation is that there exist 
at least k vertices at a distance at most D/2 from this 
midpoint. This immediately motivates an algorithm for 
the case when the weights of all edges are integral and 
bounded by a polynomial in the number of nodes. In 
this case, all such potential midpoints lie in half-integral 
points along edges of which there are only a polynomial 
number. Corresponding to each candidate point, there 
is a smallest distance from this point within which there 
are at least k nodes. We choose the point with the least 
such distance and output the breadth-first tree rooted 
at this point appropriately truncated to contain only k 
nodes. 

When the edge weights are arbitrary, the number 
of candidate midpoints are too many to check in this 
fashion. However, we can use a graphical representation 
of the distance of any node from any point along a given 
edge to bound the search for candidate points. We can 
think of an edge e = (u, v) of weight w as a straight line 
between its endpoints of length w. For any node x in the 
graph, consider the shortest path from x to a point along 
the edge e at distance e (5 w) from u. The length of this 
path is the minimum of e + d(x, u) and w - .!Y + d(v, x). 
We can plot this distance of the node x as a function of 
e. The resulting plot is a piecewise linear bitonic curve 
that we call the roof curve of x in e (See Figure 1). For 
each edge e, we plot the roof curves of all the vertices 
of the graph in e. For any candidate midpoint in e, the 
minimum diameter of a k-tree centered at this point can 
be determined by projecting a ray upwards from this 

LEMMA 4.5. Given n points VI, 02,. . . , v, on a cir- point in the plot and determining the least distance at 

cle, let a minimum length k-path on these points be which it intersects the roof curves of at least k distinct 

Vil,...,Vip. Then the line segment joining vi, and vi, nodes. The best candidate midpoint for a given edge is 

along with the k-path forms a convex k-gon. one with the minimum such distance. Such a point can 

Lemmas 4.4 and 4.5 lead to a straightforward be determined by a simple line sweep algorithm on the 

dynamic programming algorithm to compute an optimal plot. Determining the best midpoint over all edges gives 

kMST for points on a circle in O(n3) time. the midpoint of the minimum-diameter k-tree. This 
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proves Theorem 1.6. 
The following lemma gives yet another polynomial 

time algorithm for finding a tree of minimum diameter 
spanning k nodes. 

LEMMA 5.1. Given two vertices in a graph, vi and 
vj, such that every other vertex is within distance di of 
vi or dj of vj, it is possible to find two trees, one rooted 
at vi and of depth at most di and one rooted at vj of 

depth at most dj which partition the set of all vertices. 

Proof Consider the shortest path trees z and Tj 
rooted at vi and vj of depth di and dj respectively. 
Every vertex occurs in one tree or both trees. Consider 
a vertex vk that occurs in both the trees. If it is the case 
that di-depthT, (vk) is greater than dj -depthTj (vk) 
then the same is true of all descendants of vk in Tj. 
Hence we can remove vt and all its descendants from 
Tj since we are guaranteed that all these vertices occur 
in Ti. Repeating this procedure bottom-up we get two 
trees satisfying the required conditions and partitioning 
the vertex set. 

For each vertex vi in the graph, using a shortest 
path computation, find the shortest distance di such 
that there are k vertices within distance di of vi. For 
each edge (vi, vi) compute the least dij + d~j such that 
there are k vertices within distance dij of vi or dij 
Of Vj. Then compute the least of all the di’s and 
dij + dfj + w(vi, vj)‘s. It is easy to see that this is the 
minimum diameter among all the k-trees. 

- 
u 

/\ 
mln ( d(U.X) l I, d(v.x) + w - I 1 

I ) 
Y 

d(v,x) 

- 

Figure 1: A roof curve of a node z in edge e = (u, v). 

We now address the results in the third row of Table 
1. 

LEMMA 5.2. If the rij values are drawn from the set 
{a, b} and the dij values from (0, c} then the minimum- 
communication-cost spanning tree can be computed in 
poly-time. 
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Proof When the dij values are all uniform, Hu 1171 
observed that the Gomory-Hu cut tree with the rij 
values as capacities is a minimum-communication-cost 
tree. We can use this result to handle the case when 
zero-cost dij edges are allowed as well. We contract 
the connected components of the graph using zero-cost 
dij edges into supernodes. The requirement value rlJ 

between two supernodes VI and irJ is the sum of the 
requirement values rij such that i E VI and j E vJ. Now 
we find a Gomory-Hu cut tree between the supernodes 
using the PIJ values as capacities. By choosing an 
arbitrary spanning tree of zero-dij-valued edges within 
each supernode and connecting them to the Gomory-Hu 
tree, we get a spanning tree of the whole graph. It is 
easy to verify that this is a minimum-communication- 
cost spanning tree in this case. 

LEMMA 5.3. When all the dij values are uniform 
and there are at most two distinct rij values (say a and 
b) th.en the minimum-diameter-cost spanning tree can be 
com.puted in poly-time. 

Proof. Let the higher of the two rij values be 
a. If the edges with requirement a form a cyclic 
subgraph, then any spanning tree has diameter cost 
2a. In this case, any star is an optimal solution. 
Otherwise, consider the forest of edges with requirement 
a. Determine a center for each tree in this forest. 
Consider the tree formed by connecting these centers 
in a star. The root of the star is a center of the tree of 
largest diameter in the forest. If the diameter cost of 
the resulting tree is less than 2a, it is easy to see that 
this tree has optimum diameter cost. Otherwise any 
star tree on all the nodes has diameter cost 2a and is 
optimal. Note that we can extend this solution to allow 
zero-cost dij edges by using contractions as before. 

Now we address the results in the fourth row of 
Table 1. 

LEMMA 5.4. The minimum-diameter-cost span- 
ning tree problem is NP-complete even when the rij ‘s 
and dij ‘s can take on at most two distinct values. 

Proof. We use a reduction from an instance of 
SSAT. We form a graph that contains a special node 
t (the “true” node), a node for each literal and each 
clause. We use two dij values, c and d where we assume 
c < d. Each literal is connected to its negation with 
an edge of distance c. The true node is connected to 
every literal with an edge of distance c. Each clause 
is connected to the three literals that it contains with 
edges of distance c. All other edges in the graph have 
distance d. Now we specify the requirements on the 
edges. We use requirement values from {a,4a}, where 
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a # 0 and d > 4ac. The requirement value of an edge 
between a literal and its negation is 4a. The requirement 
value of all other edges is a (See Figure 2). It is easy 
to check that there is a spanning tree of this graph 
with diameter cost at most 4ac if and only if the 3SAT 
formula is satisfiable. 

Figure 2: Reduction from an instance of 3SAT to the 
minimum-diameter-cost spanning tree problem. 

5.2 Short small trees Finally we prove Theorem 
1.7. We prove the theorem for the communication tree 
case. The proof of the other part is similar. Suppose 
there is a polynomial-time K-approximation algorithm 
for the minimum-communication k-tree problem where 
all the dij values are one and all rij values are nonnega- 
tive. Then, we show that the k-independent set problem 
can be solved in polynomial time. The latter problem 
is well known to be NP-complete [13]. Given graph G 
of the k-independent set problem, produce the following 
instance of the communication k-tree problem: dij = 1 
for every pair of nodes i,j; assign rij equals one if (i, j) 
is no2 an edge in G, and Kp(p - 1) + 1 otherwise. If 
G has an independent set of size k, then we can form 
a star on these k nodes (choosing an arbitrary node as 
the root). In the star, the distance between any pair of 
nodes is at most 2 and the r value for each pair is 1. 
Thus, the communication cost of an optimum solution 
is at most p(p - 1). The approximation algorithm will 
return a solution of cost at most Kp(p - 1). The nodes 
in this solution are independent in G by the choice of 
rij for nonedges (i, j) E G. On the other hand, if there 
is no independent set of size k in G, the communication 
cost of any k-tree is greater than Kp(p - 1). 

6 Closing remarks 

6.1 Future research A natural question is whether 
there are approximation algorithms for the kMST prob- 
lem which provide better performance guarantees than 

those presented in this paper. An interesting obser- 
vation in this regard is the following. Any edge in 
an optimal kMST is a shortest path between its end- 
points. This observation allows us to assume that the 
edge weights on the input graph obey the triangle in- 
equality without loss of generality. Though we have 
been unable to exploit the triangle inequality prop- 
erty in our algorithms, it is possible that this remark 
holds the key to improving our results. In this direc- 
tion, Garg and Hochbaum [15] have recently given an 
O(log k)-approximation algorithm for the EMST prob- 
lem for points on the plane using an extension of our 
lower-bounding technique in Section 3. 

Table 1 is incomplete. It would be interesting 
to know the complexity of the minimum-diameter- 
cost spanning tree problem when the distance values 
are uniform. Note that any star tree on the nodes 
provides a 2-approximation to the minimum-diameter- 
cost spanning tree in this case. The above problem 
can be shown to be polynomial-time equivalent to the 
following tree reconstruction problem: given integral 
nonnegative distances dij for every pair of vertices i, j, 
is there a spanning tree on these nodes such that the 
distance between i and j in the tree is at most dij? 

6.2 Maximum acyclic subgraph In the course of 
our research we considered the k-forest problem: given 
an undirected graph is there a set of k nodes that in- 
duces an acyclic subgraph? The optimization version 
of this problem is the maximum acyclic subgraph prob- 
lem. Since this problem is complementary to the mini- 
mum feedback vertex set problem [13], NP-completeness 
follows. While the feedback vertex set problem is 
4-approximable [5], we can show that the maximum 
acyclic subgraph problem is hard to approximate within 
a reasonable factor using an approximation-preserving 
transformation from the maximum independent set 
problem [4]. This same result has also been derived 
in a more general form in [20]. 

THEOREM 6.1. There is a constant e > 0 such 
that the maximum acyclic subgraph problem cannot be 
approximated within a factor Q(n’) unless P = NP. 

Proof. Note that any acyclic subgraph of size S con- 
tains a maximum independent set of size at least S/2, 
since acyclic subgraphs are bipartite and each partition 
is an independent set. Further, every independent set is 
also an acyclic subgraph. These two facts show that the 
existence of a papproximation algorithm for the maxi- 
mum acyclic subgraph problem implies the existence of 
a Ppapproximation algorithm for the maximum inde- 
pendent set problem. But by the result in [4] we know 
that there is a constant E > 0 such that the maximumin- 
dependent set problem cannot be approximated within 
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a factor n(n’) unless P = NP. Hence, the same is true 1993. 
of the maximum acyclic subgraph problem. [16] R. E. Gomory and T. C. Hu, ‘Multi-terminal network 

6.3 

- - - 

Coda 
Writing “Spanning trees short or small” 
For its authors was just a ball 
But did this coda 
In a submission to SODA 
Make it an accept, not a close call? 
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