
Chapter 60

Spanning Trees Short or Small

R. Ravi* R. Sundaramt M. V. Marathet D. J. Rosenkrantz 0 S. S. Ravin

Abstract

We study the problem of finding small trees. Classi-
cal network design problems are considered with the
additional constraint that only a specified number k
of nodes are required to be connected in the solu-
tion. A prototypical example is the kMST problem
in which we require a tree of minimum weight span-
ning at least k nodes in an edge-weighted graph. We
show that the kMST problem is NP-hard even for
points in the Euclidean plane. We provide approxi-
mation algorithms with performance ratio 34 for the
general edge-weighted case and O(k114) for the case
of points in the plane. Polynomial-time exact solu-
tions are also presented for the class of decompos-
able graphs which includes trees, series-parallel graphs
and bounded-bandwidth graphs, and for points on the
boundary of a convex region in the Euclidean plane.

We also investigate the problem of finding short
trees, and more generally, that of finding networks
with minimum diameter. A simple technique is used
to provide a polynomial-time solution for finding k-
trees of minimum diameter. We identify easy and
hard problems arising in finding short networks using
a framework due to T. C. Hu.

1 Introduction

1.1 Motivation: small trees The oil reconnais-
sance boats are back from their final trip off the coast

‘Dept. of Computer Science, University at California at Davis,
CA 95616. Email: ravi@cs.ucdavis.edu. Research done while this
author was at Brown University and was supported by an IBM
GraduateFellowship, NSF PYI award CCR-9157620 and DARPA
contract NOO014-91-J-4052 ARPA Order No. 8225.

tDept. of Computer Science, MIT LCS, Cambridge MA
02139. Email: koodsOtheory.lcs.mit.edu. Research supported by
DARPA contract N0014-92-J-1799 and NSF 92-12184 CCR.

t Dept. of Computer Science, SUNY, Albany, NY 12222.
Email: madhav@cs.albany.edu. Supported by NSF Grants CCR

89-03319.
5Dept. of Computer Science, SUNY, Albany, NY 12222.

Email: djr@cs.albany.edu. Supported by NSF Grams CCR 90-
06396.

VDept. of Computer Science, SUNY, Albany, NY 12222.
Email: ravi@cs.albany.edu. Supported by NSF Grants CCR 89-
05296.

of Norwayl, and present you with a detailed map of the
seas surrounding the coastline. Marked in this map are
locations which are believed to have a good chance of
containing oil under the sea bed. However your com-
pany has only a limited number of oil rigs. Your prob-
lem is to position these oil rigs at marked places so that
the cost of laying down pipelines between these rigs is
minimized. The problem at hand can be modeled as
follows: Given an edge-weighted graph and a specified
number k, find a tree of minimum weight spanning at
least k nodes. We call this problem the k-Minimum
Spanning Tree (or the kMST) problem. In this paper,
we study classical network-design problems such as the
MST problem with the additional constraint that only
a specified number of nodes need to be connected up in
the network. Unlike the MST problem which admits a
polynomial-time solution [3, 19,211, the kMST problem
is considerably harder to solve.

THEOREM 1.1. The
NP-complete.

LMST problem is

The above theorem holds even when all the edge
weights are drawn from the set {1,2,3) (or any set
containing three distinct values). It is not hard to show
a polynomial-time solution for the case of two distinct
weights. The problem remains NP-hard even for the
class of planar graphs as well as for points in the plane.

1.2 Approximation algorithms A P
approximation algorithm for a minimization problem is
one that delivers a solution of value at most p times the
minimum. Consider a generalization of the EMST prob-
lem, the k-Steiner tree problem: given an edge-weighted
graph, an integer k and a subset of at least k vertices
specified as terminals, find a minimum-weight tree span-
ning at least k terminals. We can apply approximation
results for the kMST problem to this problem by con-
sidering the auxiliary complete graph on the terminals
with edges weighted by shortest-path distances. A p
approximation for the LMST problem on the auxiliary
graph yields a 2papproximation for the k-Steiner tree
problem. Therefore we focus on approximations for the

‘Story reconstructed from a communication from Naveen Garg

[141.

546

SPANNING TREES SHORT OR SMALL 547

kMST problem. We provide the first approximation al-
gorithm for this problem.

THEOREM 1.2. There is a polynomial-time algo-
rithm that, given an undirected graph G on n nodes with
nonnegative weights on its edges, and a positive integer
k 5 n, constructs a tree spanning at least k nodes of
weight at most 34 times that of a minimum-weight
tree spanning any k nodes.

The above theorem provides a G&approximation
algorithm for the k-Steiner tree problem as well. More-
over, we can construct an example that demonstrates
that the performance guarantee of the approximation
algorithm is tight to within a constant factor.

We can derive a better approximation algorithm for
the case of points in the Euclidean plane.

THEOREM 1.3. There is a polynomial-time algo-
rithm that, given n points in the Euclidean plane, and
a positive integer k 5 n, constructs a tree spanning at
least k of these points such that the total length of the
tree is at most O(k)) times that of a minimum-length
tree spanning any k of the points.
As before, we can construct an example showing that
the performance ratio of the algorithm in Theorem 1.3
is tight.

1.3 Exact algorithms: special cases Since the
kMST problem is NP-complete even for the class of pla-
nar graphs, we focus on special classes of graphs and
provide exact solutions that run in polynomial time.
Bern, Lawler and Wong [6] introduced the class of de-
composable graphs. This class is defined using a fi-
nite number of primitive graphs and a finite collec-
tion of binary composition rules. Examples of decom-
posable graphs include trees, series-parallel graphs and
bounded-bandwidth graphs. We use a dynamic pro-
gramming technique to prove the following theorem.

THEOREM 1.4. For the class of decomposable
graphs, there is an O(nk2)-time algorithm for solving
the LMST problem.

Though the kMST problem is hard for arbitrary
configurations of points in the plane, we can derive the
following result using dynamic programming.

THEOREM 1.5. There is a polynomial-time algo-
rithm for solving the LMST problem for the case of
points in the Euclidean plane that lie on the boundary
of a convex region.

the maximum distance (path length) between any pair
of nodes in the tree. The problem of finding a minimum-
diameter spanning tree of an edge-weighted graph was
shown to be polynomially solvable by Camerini, Gal-
biati and Maffioli [S] when the edge weights are non-
negative. They also show that the problem becomes
NP-hard when negative weights are allowed. Camerini
and Galbiati [7] h ave proposed polynomial-time algo-
rithms for a bounded path tree problem on graphs with
nonnegative edge weights. Their result can be used to
show that the minimum-diameter spanning tree prob-
lem as well as its natural generalization to Steiner trees
can be solved in polynomial time. We use a similar
technique to show that the following minimum-diameter
k-tree problem is polynomially solvable: given a graph
with nonnegative edge weights, find a tree of minimum
diameter spanning at least k nodes.

THEOREM 1.6. There is a polynomial-time algo-
rithm for the minimum-diameter k-tree problem on
graphs with nonnegative edge weights.

We investigate easy and hard results in finding short
networks. For this, we use a framework due to T.
C. Hu [17]. In this framework, we are given a graph
with nonnegative distance values dij and nonnegative
requirement values rij between every pair of nodes i and
j in the graph. The communication cost of a spanning
tree is defined to be the sum over all pairs of nodes i, j
of the product of the distance between i and j in the
tree under d and the requirement rij. The objective is
to find a spanning tree with minimum-communication
cost. Hu considered the case when all the d values are
one and showed that a Gomory-Hu cut tree [16] using
the r values as capacities is an optimal solution. Hu also
considered the case when all the r values are one and
derived sufficient conditions under which the optimal
tree is a star. The general version of the latter problem
is NP-hard [8, 181.

We define the diameter cost of a spanning tree
to be the maximum cost over all pairs of nodes i, j
of the distance between i and j in the tree under d
multiplied by rij . In Table 1, we present current results
in this framework. All rij and dij values are assumed
to be nonnegative. The first two rows of the table
examine the cases when either of the two parameters
is uniform-valued. The last two rows illustrate that
the two problems become NP-complete when both the
parameters are two-valued.

1.4 Short trees Keeping the longest path in a 1.5 Short small trees We consider the k-

network small is often an important consideration in tree versions of the minimum-communication-cost and

network design. We investigate the problem of finding minimum-diameter-cost spanning tree problems and

networks with small diameter. The diameter of a tree is show the following hardness result.

548

Pij dij Comm. cost Dia. cost
Arb. {a} Cut-tree [17] Open
{al Arb. NP-complete [18] Poly-time [8]
{a, b} (0, c} Cut-tree variant* Poly-time’
{a,4a} {c, d} NP- complete [18] NP-complete*

Table 1: Results on minimum-communication-cost trees
and minimum-diameter-cost trees. (Asterisks denote
our result.)

THEOREM 1.7. The minimum-communication k-
tree problem and the minimum-diameter k-tree problem
are both hard to approximate within any factor even
when all the dij values are one and the rij values are
nonnegative.

Section 2 contains the 34 approxima.tion for the
kMST problem. In Section 3, we present the stronger
result for the case of points in the plane. Then we
address polynomially solvable cases of the problem. In
Section 5, we prove our results on short trees. We close
with a discussion of directions for future research.

2 The approximation algorithm for the general
case

In this section, we present the proof of Theorem 1.2.
As input, we are given an undirected graph G with
nonnegative edge weights and an integer k.

2.1 The algorithm and its running time It
is useful to think of the algorithm as running in two
distinct phases: a merge phase and a collect phase.

During the merge phase, the algorithm maintains
a set of clusters and a spanning tree on the vertex set
of each cluster. Initially each vertex forms a singleton
cluster. At each step of the merge phase, we choose an
edge of minimum cost between two clusters, and merge
them by using the edge to connect their spanning trees.

Define the size of a cluster to be the number of
vertices that it contains. During the course of the merge
phase, the clusters grow in size. The collect phase is
entered only when
(i) there exist at most 6 clusters whose sizes sum to

at least k, and

(ii) no cluster has size k or more.
In the collect phase, we consider each cluster in turn as
the root and perform a shortest-path computation be-
tween clusters using the weights on inter-cluster edges.
We determine for each cluster C, the shortest distance
dc such that, within distance dc from C, there exist at
most 4 clusters whose sizes sum to at least k. Note
that by the first precondition for starting the collect

RAW ET AL.

phase, the distance dc is well-defined. We choose the
cluster C with the minimum value of dc and connect
it using shortest paths of length at most dc to each of
these fi clusters. We can prune edges from some of
these shortest paths to output a tree of clusters whose
sizes sum to at most 2k. We may do this since any clus-
ter has less than k nodes at the start of this phase by
the second precondition.

The merge phase of the algorithm continues to run
until both the preconditions of the collect phase are
satisfied. Beginning with the step of the merge phase
after which both preconditions of the collect phase are
satisfied, at each subsequent step, the algorithm forks
off an execution of the collect phase for the current
configuration of clusters. The merge phase continues
to run until a cluster of size k or more is formed. At
this point, the merge phase terminates and outputs the
spanning tree of the cluster of size at least k. Note
that the size of this cluster is at most 2k. Each forked
execution of the collect phase outputs a spanning tree
of size between k and 2k as well. The algorithm itself
finally outputs the tree of least weight among all these
trees. It is easy to see that there are O(n) steps in the
merge phase and hence at most this many instances of
the collect phase to be run. Using Djikstra’s algorithm
[9] in each collect phase, the whole algorithm runs
in time O(n2(m + n logn)) where m and n denote
the number of edges and nodes in the input graph
respectively. The running time of the collect phase
dominates running time of the merge phase.

2.2 The performance guarantee Consider an
optimal kMST of weight OPT. During the merge
phase, nodes of this tree may merge with other nodes
in clusters. We focus our attention on the number of
edges of the optimal kMST that are exposed, i.e., remain
as inter-cluster edges. We show that at any step in
which a large number of edges of the kMST are exposed,
the spanning tree of each cluster has low average edge
weight.

LEMMA 2.1. If at the beginning of a step of the
merge phase, an optimal kMST has at least x exposed
edges (inter-cluster edges), then the spanning tree of any
cluster at the end of the step has average edge weight at
most q.

Proof. The proof uses induction on the number of
steps. Suppose that an optimal EMST has at least
x exposed edges at the beginning of the current step
of the merge phase. Then at the beginning of the
previous step, the optimal kMST must have had at
least x exposed edges as well. Thus by the induction
hypothesis, the spanning tree of any cluster at the end
of the previous step has average edge weight at most

SPANNING TREES SHORT OR SMALL

OPT -. Since only one new cluster is formed in the current
stzp, it remains to show that the spanning tree of the
new cluster has low average edge weight.

Note that the spanning trees of each of the two
clusters that form the new cluster have average edge
weight at most q by the inductive hypothesis. To
show that the new cluster has average edge weight at
most F it suffices to show that the edge added to
form this cluster has weight at most y. But this is
straightforward since there is an optimal LMST with at
least x exposed edges of total weight at most OPT.

We now prove the performance guarantee in The-
orem 1.2. The above lemma is useful as long as the
number of exposed edges is high. Applying the lemma
with x = 4 shows that the average edge weight of the
spanning tree of each cluster is at most 9. Consider
the scenario when the merge phase runs to completion
to produce a tree with at least k nodes even before the
number of exposed edges falls below 4. In this case,
since the resulting tree has at most 2k nodes, the cost
of the tree is at most 9 .2k 5 24. OPT.

Otherwise, the number of exposed edges falls below
4 before th e merge phase runs to completion. How-
ever, in this case, note that both preconditions for the
start of the collect phase will have been satisfied. Hence
the algorithm must have forked off a run of the collect
phase. We show that the tree output by this run has
low weight. Consider a shortest-path computation of
the collect phase rooted at a cluster containing a node
of the optimal kMST. Then clearly, within a distance
at most OPT, we can find at most 4 clusters whose
sizes sum to at least k. Since the number of exposed
edges is less than 4, the clusters containing nodes of
the optimal tree form such a collection. Since there are
at most & clusters to connect to, the weight of these
connections is at most 6. OPT. It remains to bound
the weight of the spanning trees within each of the clus-
ters retained in the output solution. This is not hard
since each of these trees has average edge weight at most
OPT T* Since the size of the output tree is at most 2k (as

a result of the pruning), the total weight of all these
spanning trees is at most 2& . OPT. Summing the
weight of these trees and the inter-cluster connections
shows that the output tree has cost at most 3&.OPT.
This proves the performance ratio of 34 claimed in
Theorem 1.2.

3 An approximation algorithm for points on
the plane

In this section, we present a heuristic for the kMST
problem for points on the plane and a proof of its
performance guarantee. Let S = {si, ~2, sn} denote

3.1 The heuristic
I. For each distinct pair of points si, sj in S do

(1)

(2)

(3)

Construct the circle C with diameter 6 =
&f(i, j) centered at the midpoint of the line
segment (Si , Sj).

Let 5’~ be the subset of S contained in C. If
SC contains fewer than k points, skip to the
next iteration of the loop (i.e., try the next
pair of points). Otherwise, do the following.

Let Q be the square of side 6 circumscribing
C. Divide Q into k square cells each with
side = a/&. Sort the cells by the number of
points from SC they contain and choose the
minimum number of cells so that the chosen
cells together contain at least k points. If
necessary, arbitrarily discard points from the
last cell chosen so that the total number of
points in all the cells is equal to k. Construct
a minimum spanning tree for the k chosen
points. The solution value for the pair (sir sj)
is the length of this MST.

549

the given set of points. For any pair of points si and sj ,
let d(i, j) denote the Euclidean distance between si and
Sj .

II. Output the smallest solution value found.
It is easy to see that the above heuristic runs in

polynomial time. In the next subsection, we show
that the heuristic provides a performance guarantee of
O(k’i4). We begin with some lemmas.

3.2 The performance guarantee
LEMMA 3.1. Let S denote a set of points on the

plane, with diameter A. Let a and b be two points
such that d(a, b) = A. Then the circle with diameter
fiA centered at the midpoint of the line segment (a, b)
contains S.

Proof. Suppose there exists a point p E S not
contained within the circle of diameter fiA centered
at the midpoint of the line segment (a, b). If p lies on
the perpendicular bisector of the line segment (a, b) then
it is clear that d(a,p) = d(b,p) > A, else p is closer to
one of a and b than the other. Say p is closer to a then
it is easy to see that d(b,p) > A. Thus, if there exists
a point outside the circle then it contradicts the fact
that the diameter of the set S is A. Hence S must be
contained within the circle.

LEMMA 3.2. The length of a minimum spanning
tree for any set of q points in a square with side CT is
length O(o&).

550

Proof. Paste a square-grid over the square where
each sub-cell in the grid has side u/fi. Connect each
point to a closest vertex in the grid. Consider the tree
consisting of one vertical line, all the horizontal lines
in the grid connected to the vertical line, and the lines
connecting each point to its nearest vertex in the grid.
It is clear that the grid lines in the tree have total length
O(b,jj) and the lines connecting the points to the grid
have total length q 1 O(a/& = O(aJTi). The lemma
follows.

The following lemma is used to establish a lower
bound on OPT.

LEMMA 3.3. Consider a square-grid on the plane
with the side of each cell being u. Then the length of an
MST for any set oft points, where each point is from a
distinct cell is Q(tu).

Proof. Pick a point from the set and discard all
points in the eight cells neighboring the cell containing
the chosen point. Doing this repeatedly we choose a
subcollection of t/9 = Q(t) points such that the distance
between any pair of points in the subcollection is at least
6. The lemma then follows from the observation that
the minimum length of a tree spanning R(t) points that
are pairwise a-distant is Q(k).

Let, P’ denote the set of points in an optimal
solution to the problem instance. Let A denote the
diameter of P’ (i.e., the maximum distance between a
pair of points in P’), and OPT denote the lengt,h of an
MST for P’. Consider an iteration in which the circle
constructed by the heuristic is defined by two points
a and b in P’ such that d(a, b) = A. Let g be the
number of square cells used by the heuristic in selecting
Ic points in this iteration. To establish the performance
guarantee of the heuristic, we show that the length
of the MST constructed by the heuristic during this
iteration is within a factor O(k’i4) of OPT.

It is easy to see that OPT > A because A is the
diameter of P’.

Since the heuristic uses a minimum number (g) of
square cells in selecting L points, the points in P’ must,
occur in g or more square cells. Note that the side of
each square cell is fiA/&. This gives us the following
corollary to Lemma 3.3.

COROLLARY 3.1. OPT = s2(gA/&)

LEMMA 3.4. The length of the spanning tree con-
structed by the heuristic is O(fiA).

Proof. Let Qi denote the set of points in the i”’ cell
chosen by the heuristic, 1 < i 5 g. Thus X:=1 I&;[=
k. Consider the following two-stage procedure for
constructing a spanning tree for the points in UyzlQi.

Stage I: Construct a minimum spanning tree for the
points in Qi, 1 5 i 5 g. Note that the point,s in Qi are

RAW ET AL.

within a square of side &A/&. Using Lemma 3.2, the
length of an MST for Qi is O(-$ m). Thus, the total . .-
length of all the minimum spanning trees constructed
in this stage is 0(3 Cyzl m) = O(fi A) by the
Cauchy-Schwartz inequality.

Stage II: Connect the g spanning trees constructed in
Stage I into a single spanning tree as follows. Choose
a point arbitrarily from each Qi (1 5 i 5 g), and
construct an MST for the g chosen points. Note that
these g points are within a square of side fi A. Thus,
by Lemma 3.2, the length of the MST constructed in
this stage is 0(&j A) as well.

Thus, the total length of the spanning tree con-
structed by the two-stage procedure is O(fi A).

We are now ready to complete the proof of the per-
formance bound. As argued above, OPT = R(A),
and from Corollary 3.1, OPT = n(gA/fi). Thus
OPT = fl(max{A,gA/fi}). Also from Lemma 3.4,
the length of the spanning tree produced by the heuris-
tic is O(fiA). Therefore, the performance ratio is
O(min{&, m}) = O(k’/4) as claimed.

4 Exact algorithms for special cases

4.1 kMST for Decomposable Graphs In this
section, we prove Theorem 1.4. A class of decompos-
able graphs l? is given by a set of rules satisfying the
following conditions [6].

The number of primitive graphs in I’ is finite.

Each graph in I? has an ordered set of special nodes
called terminals. The number of terminals in each
graph is bounded by a constant.

There is a finite collection of binary composition
rules that operate only at terminals, either by iden-
tifying two terminals or adding an edge between
terminals. A composition rule also determines the
terminals of the resulting graph, which must be
a subset, of the terminals of the two graphs being
composed.

Examples of decomposable graphs include trees, series-
parallel graphs, bounded-bandwidth graphs, etc. [S].

Let r be any class of decomposable graphs. The
kMST problem for I-’ can be solved optimally in polyne
mial time using dynamic programming. As in [6], it is
assumed that a given graph G is accompanied by a parse
tree specifying how G is constructed using the rules. It
ca.n be shown that the size of the parse tree is linear in
the number of nodes of G.

Consider a fixed class of decomposable graphs I’.
Suppose that G is a graph in I?. Let x be a partition of

SPANNING TREES SHORT OR SMALL 551

a nonempty subset of the terminals of G. We define the
following set of costs for G.

Cost;(G) = Minimum total cost of any forest
containing a tree for each block
of ?r, such that the terminal
nodes occurring in each tree are
exactly the members of the
corresponding block of K, no pair
of trees is connected, the total
number of edges in the forest
is i and each tree contains
at least one edge (1 5 i < R).

Cost:-JG) = M inimum cost of a tree within G
containing li - 1 edges, and
containing 110 terminal nodes of G.

For any of the above costs, if there is no forest satisfying
the required conditions, the value of Cost is defined to
be 00.

Note that because I’ is fixed, the number of cost
values associated with any graph in the parse tree for
G is O(k). We now show how the cost values can be
computed in a bottom-up manner, given the parse tree
for G.

To begin with, since r is fixed, the number of
primitive graphs is finite. For a primitive graph, each
cost value can be computed in constant time, since the
number of forests to be examined is fixed. Now consider
computing the cost values for a graph G constructed
from subgraphs G1 and Gz, where the cost values for
G1 and GZ have already been computed.

Let nGlj &, and & be the set of partitions of a
subset of the terminals of G1, G:! and G respectively.
Let A be the set of edges added to G1 and G:! by the
composition rule R used in constructing G from G1
and Gz. Corresponding to rule R, there is a partial
function fR : nG, X nG, X 2* + nG, such that a
forest corresponding to partition irl in nGl, a forest
corresponding to partition 1~2 in nG3, and a subset
B C A, combine to form a forest corresponding to
partition fR(?rl, ifs, B) of G. Furthermore, if the forest
corresponding to ~1 contains i edges, and the forest
corresponding to ~2 contains j edges, then the combined
forest in G contains i + j + IBI edges.

Similarly, there is a partial function QR : nG, X
2* + &!, such that a forest corresponding to partition
~1 in &I and a subset B C A combine to form a forest
corresponding to partition gR(?Tl, B) of G. If the forest
corresponding to ~1 contains i edges, then the combined
forest in G contains i+ IBI edges. There is also a simi1a.r
partial function hR : nG, X 2* + &. Finally, t,here is
a partial function jR : 2* + &.

Using functions fR, gR, hR and jR, cost values for
G can be computed from the set of cost values for G1
and G2. For instance, suppose that fR(?Tl, 7r2, B) =
?r. Then a contributor to computing Cost:(G) is
Cost:‘(G1) + Cost:2,-,s,(G2) + w(B), for each t such
that 1 5 t < i - IBI - 1. The value of Cost:(G) is the
minimum value among its contributors.

When all the cost values for the entire graph G have
been computed, the cost of an optimal LMST is equal
to Ty&{Cost;v.,(G)}, where the forest corresponding

to x consists of a single tree.
We now analyze the running time of the algorithm.

For each graph occurring in the parse tree, there are
O(k) cost values to be computed. Each of the cost values
can be computed in O(B) time. As mentioned earlier,
we assume that the size of the given parse tree for G is
O(n). Then the dynamic programming algorithm takes
time O(nk2). This completes the proof of Theorem 1.4.

4.2 kMST for points on the boundary of a
convex region We now restrict our attention to
the case where we are given n points that lie on the
boundary of a convex region, and show that the IzMST
on these points can be computed in polynomial time
using dynamic programming. We also provide a faster
algorithm when the points are constrained to lie on
the boundary of a circle. Throughout this section, we
assume that no three points are collinear.

LEMMA 4.1. Any optimal LMST on a set of points
in the plane is non self-intersecting.

LEMMA 4.2. Given n points on the boundary of a
convex polygon no vertex in an optimal LMST of these
points has degree greater than 4.

We now characterize the structure of an optimal solu-
tion in the following decomposition lemma and use it
to define the subproblems which we need to solve recur-
sively using dynamic programming.

LEMMA 4.3. (Decomposition lemma.) Let

VO,Vl,..*, v,-1 be the vertices of a convet polygon in
say, clockwise order. Let vi be a vertex of degree di in
an optimal kMST. Note that 1 5 di 5 4.
If di 2 2 let the removal of vi from the optimal
kMST produce connected components Cl, C’s,. . . , C,&.
Let ICil denote the number of vertices in component
Ci. Then there exists a partition of vi+l, vi+2, . . . , vi-l,
(indices taken mod n), into di contiguous subsegments

&,S2,..., Sd; such that Vj, 1 < j 5 di, the optimal
RMST induced on Sj U{vi} is an optimal (ICjl+l)MST
on Sj U{vi} in which the degree of vi is one.
If di = 1, let vj be vi ‘S neighbor in the optimal kMST.
Let vj be adjacent to djl vertices in vi+l,vi+2.. . ,vj-1

RAW ET AL.

and dj2 vertices in vj+i,vj+s,..., Vi-l. Let the
optimal LMST contain ICll vertices from the set
Vi+l,Vi+2.. . ,Vj-1 and lC2l vertices from the set

Vj+l, Vj+2,. . . , Vi-l. Then the optimal kh!ST induced
on lJ,i+l ,Vi+2 . . . ,Vj is an optimal (ICll + l)h!ST on
Vi+l,Vi+2...,Vj with degree of vj = djl and the op-
timal LMST induced on vj, vj+l . . . , vi-1 is an opti-
mal (lC21 + 1)MST on vj,vj+l . . . , vi-1 with degree of
vj = dj2.

Proof. If di 2 2 then it is easy to see that a parti-
tion Of Vi+l, Vi+2, . . . , vi- 1 into contiguous subsegments
&,S2,.*. , Sdi exists such that Vj, 1 5 j 5 di, Cj C Sj,
because the optimal kMST is non self-intersecting by
Lemma 4.1. Further, the optimal kMST induced on
Sj U{vi} must be an optimal (ICj I+ 1)MST on Sj U{ui}
with degree of vi = 1, for otherwise we could replace it
getting a lighter kMST. The proof of the case when
di = 1 is equally straightforward and is omitted.

Thus the subproblems we consider are specified
by the following four parameters: a size s, a ver-
tex vi, the degree di of vi, and a contiguous subseg-
ment vkl, vkl+l, . . . , vkz such that i @ [kl.. . k2]. A
solution to such a subproblem denoted by SOLN(s;
Vi; 4; vkl,Vkl+l,.--, vg2) is the weight of an op-
timal SMUT On {vi,Vkl,Vkl+l,. . .,vk2} in WhiCh V,i
has degree di. Using the decomposition lemma
above, we can write a simple recurrence relation for
SOLN(s; Vi; di; Vkl, Vkl+l,. . . , v&2). By solving these
recurrences using dynamic programming we can obtain
a polynomial time algorithm for the kMST problem as
claimed in Theorem 1.5.

We now provide a faster algorithm to find the
optimal kMST in the case when all n points lie on a
circle. We assume that no two points are diametrically
opposite. The algorithm is based on the following
observations.

LEMMA 4.4. Given n poin,ts VI, ~2,. . . , v,, on a cir-
cle no vertex in an optimal kMST has degree more than
2.

Lemma 4.4 implies that if the points lie on a circle then
every optimal kMST is a path. Moreover, if the path
zig-zags, then we can replace the crossing edge with a
smaller edge. Thus we have the following lemma.

5 Short trees and short small trees

5.1 Short trees In this subsection, we prove
our results on short trees. First, we address the
minimum-diameter k-tree problem: Given a graph with
nonnegative edge weights, find a tree of minimum
diameter spanning at least k nodes.

We use the notion of subdividing an edge in a
weighted graph. A subdivision of an edge e = (u,v)
of weight w, is the replacement of e by two edges
ei = (u, r) and ez = (r, v) where r is a new node. The
weights of er and e2 sum to we. Consider a minimum-
diameter k-tree. Let 2: and y be the endpoints of a
longest path in the tree. The weight of this path, D,
is the diameter of the tree. Consider the midpoint
of this path between z and y. If it falls in an edge,
we can subdivide the edge by adding a new vertex as
specified above. The key observation is that there exist
at least k vertices at a distance at most D/2 from this
midpoint. This immediately motivates an algorithm for
the case when the weights of all edges are integral and
bounded by a polynomial in the number of nodes. In
this case, all such potential midpoints lie in half-integral
points along edges of which there are only a polynomial
number. Corresponding to each candidate point, there
is a smallest distance from this point within which there
are at least k nodes. We choose the point with the least
such distance and output the breadth-first tree rooted
at this point appropriately truncated to contain only k
nodes.

When the edge weights are arbitrary, the number
of candidate midpoints are too many to check in this
fashion. However, we can use a graphical representation
of the distance of any node from any point along a given
edge to bound the search for candidate points. We can
think of an edge e = (u, v) of weight w as a straight line
between its endpoints of length w. For any node x in the
graph, consider the shortest path from x to a point along
the edge e at distance e (5 w) from u. The length of this
path is the minimum of e + d(x, u) and w - .!Y + d(v, x).
We can plot this distance of the node x as a function of
e. The resulting plot is a piecewise linear bitonic curve
that we call the roof curve of x in e (See Figure 1). For
each edge e, we plot the roof curves of all the vertices
of the graph in e. For any candidate midpoint in e, the
minimum diameter of a k-tree centered at this point can
be determined by projecting a ray upwards from this

LEMMA 4.5. Given n points VI, 02,. . . , v, on a cir- point in the plot and determining the least distance at

cle, let a minimum length k-path on these points be which it intersects the roof curves of at least k distinct

Vil,...,Vip. Then the line segment joining vi, and vi, nodes. The best candidate midpoint for a given edge is

along with the k-path forms a convex k-gon. one with the minimum such distance. Such a point can

Lemmas 4.4 and 4.5 lead to a straightforward be determined by a simple line sweep algorithm on the

dynamic programming algorithm to compute an optimal plot. Determining the best midpoint over all edges gives

kMST for points on a circle in O(n3) time. the midpoint of the minimum-diameter k-tree. This

SPANNING TREES SHORT OR SMALL

proves Theorem 1.6.
The following lemma gives yet another polynomial

time algorithm for finding a tree of minimum diameter
spanning k nodes.

LEMMA 5.1. Given two vertices in a graph, vi and
vj, such that every other vertex is within distance di of
vi or dj of vj, it is possible to find two trees, one rooted
at vi and of depth at most di and one rooted at vj of

depth at most dj which partition the set of all vertices.

Proof Consider the shortest path trees z and Tj
rooted at vi and vj of depth di and dj respectively.
Every vertex occurs in one tree or both trees. Consider
a vertex vk that occurs in both the trees. If it is the case
that di-depthT, (vk) is greater than dj -depthTj (vk)
then the same is true of all descendants of vk in Tj.
Hence we can remove vt and all its descendants from
Tj since we are guaranteed that all these vertices occur
in Ti. Repeating this procedure bottom-up we get two
trees satisfying the required conditions and partitioning
the vertex set.

For each vertex vi in the graph, using a shortest
path computation, find the shortest distance di such
that there are k vertices within distance di of vi. For
each edge (vi, vi) compute the least dij + d~j such that
there are k vertices within distance dij of vi or dij
Of Vj. Then compute the least of all the di’s and
dij + dfj + w(vi, vj)‘s. It is easy to see that this is the
minimum diameter among all the k-trees.

-
u

/\
mln (d(U.X) l I, d(v.x) + w - I 1

I)
Y

d(v,x)

-

Figure 1: A roof curve of a node z in edge e = (u, v).

We now address the results in the third row of Table
1.

LEMMA 5.2. If the rij values are drawn from the set
{a, b} and the dij values from (0, c} then the minimum-
communication-cost spanning tree can be computed in
poly-time.

553

Proof When the dij values are all uniform, Hu 1171
observed that the Gomory-Hu cut tree with the rij
values as capacities is a minimum-communication-cost
tree. We can use this result to handle the case when
zero-cost dij edges are allowed as well. We contract
the connected components of the graph using zero-cost
dij edges into supernodes. The requirement value rlJ

between two supernodes VI and irJ is the sum of the
requirement values rij such that i E VI and j E vJ. Now
we find a Gomory-Hu cut tree between the supernodes
using the PIJ values as capacities. By choosing an
arbitrary spanning tree of zero-dij-valued edges within
each supernode and connecting them to the Gomory-Hu
tree, we get a spanning tree of the whole graph. It is
easy to verify that this is a minimum-communication-
cost spanning tree in this case.

LEMMA 5.3. When all the dij values are uniform
and there are at most two distinct rij values (say a and
b) th.en the minimum-diameter-cost spanning tree can be
com.puted in poly-time.

Proof. Let the higher of the two rij values be
a. If the edges with requirement a form a cyclic
subgraph, then any spanning tree has diameter cost
2a. In this case, any star is an optimal solution.
Otherwise, consider the forest of edges with requirement
a. Determine a center for each tree in this forest.
Consider the tree formed by connecting these centers
in a star. The root of the star is a center of the tree of
largest diameter in the forest. If the diameter cost of
the resulting tree is less than 2a, it is easy to see that
this tree has optimum diameter cost. Otherwise any
star tree on all the nodes has diameter cost 2a and is
optimal. Note that we can extend this solution to allow
zero-cost dij edges by using contractions as before.

Now we address the results in the fourth row of
Table 1.

LEMMA 5.4. The minimum-diameter-cost span-
ning tree problem is NP-complete even when the rij ‘s
and dij ‘s can take on at most two distinct values.

Proof. We use a reduction from an instance of
SSAT. We form a graph that contains a special node
t (the “true” node), a node for each literal and each
clause. We use two dij values, c and d where we assume
c < d. Each literal is connected to its negation with
an edge of distance c. The true node is connected to
every literal with an edge of distance c. Each clause
is connected to the three literals that it contains with
edges of distance c. All other edges in the graph have
distance d. Now we specify the requirements on the
edges. We use requirement values from {a,4a}, where

554 RAW ET AL.

a # 0 and d > 4ac. The requirement value of an edge
between a literal and its negation is 4a. The requirement
value of all other edges is a (See Figure 2). It is easy
to check that there is a spanning tree of this graph
with diameter cost at most 4ac if and only if the 3SAT
formula is satisfiable.

Figure 2: Reduction from an instance of 3SAT to the
minimum-diameter-cost spanning tree problem.

5.2 Short small trees Finally we prove Theorem
1.7. We prove the theorem for the communication tree
case. The proof of the other part is similar. Suppose
there is a polynomial-time K-approximation algorithm
for the minimum-communication k-tree problem where
all the dij values are one and all rij values are nonnega-
tive. Then, we show that the k-independent set problem
can be solved in polynomial time. The latter problem
is well known to be NP-complete [13]. Given graph G
of the k-independent set problem, produce the following
instance of the communication k-tree problem: dij = 1
for every pair of nodes i,j; assign rij equals one if (i, j)
is no2 an edge in G, and Kp(p - 1) + 1 otherwise. If
G has an independent set of size k, then we can form
a star on these k nodes (choosing an arbitrary node as
the root). In the star, the distance between any pair of
nodes is at most 2 and the r value for each pair is 1.
Thus, the communication cost of an optimum solution
is at most p(p - 1). The approximation algorithm will
return a solution of cost at most Kp(p - 1). The nodes
in this solution are independent in G by the choice of
rij for nonedges (i, j) E G. On the other hand, if there
is no independent set of size k in G, the communication
cost of any k-tree is greater than Kp(p - 1).

6 Closing remarks

6.1 Future research A natural question is whether
there are approximation algorithms for the kMST prob-
lem which provide better performance guarantees than

those presented in this paper. An interesting obser-
vation in this regard is the following. Any edge in
an optimal kMST is a shortest path between its end-
points. This observation allows us to assume that the
edge weights on the input graph obey the triangle in-
equality without loss of generality. Though we have
been unable to exploit the triangle inequality prop-
erty in our algorithms, it is possible that this remark
holds the key to improving our results. In this direc-
tion, Garg and Hochbaum [15] have recently given an
O(log k)-approximation algorithm for the EMST prob-
lem for points on the plane using an extension of our
lower-bounding technique in Section 3.

Table 1 is incomplete. It would be interesting
to know the complexity of the minimum-diameter-
cost spanning tree problem when the distance values
are uniform. Note that any star tree on the nodes
provides a 2-approximation to the minimum-diameter-
cost spanning tree in this case. The above problem
can be shown to be polynomial-time equivalent to the
following tree reconstruction problem: given integral
nonnegative distances dij for every pair of vertices i, j,
is there a spanning tree on these nodes such that the
distance between i and j in the tree is at most dij?

6.2 Maximum acyclic subgraph In the course of
our research we considered the k-forest problem: given
an undirected graph is there a set of k nodes that in-
duces an acyclic subgraph? The optimization version
of this problem is the maximum acyclic subgraph prob-
lem. Since this problem is complementary to the mini-
mum feedback vertex set problem [13], NP-completeness
follows. While the feedback vertex set problem is
4-approximable [5], we can show that the maximum
acyclic subgraph problem is hard to approximate within
a reasonable factor using an approximation-preserving
transformation from the maximum independent set
problem [4]. This same result has also been derived
in a more general form in [20].

THEOREM 6.1. There is a constant e > 0 such
that the maximum acyclic subgraph problem cannot be
approximated within a factor Q(n’) unless P = NP.

Proof. Note that any acyclic subgraph of size S con-
tains a maximum independent set of size at least S/2,
since acyclic subgraphs are bipartite and each partition
is an independent set. Further, every independent set is
also an acyclic subgraph. These two facts show that the
existence of a papproximation algorithm for the maxi-
mum acyclic subgraph problem implies the existence of
a Ppapproximation algorithm for the maximum inde-
pendent set problem. But by the result in [4] we know
that there is a constant E > 0 such that the maximumin-
dependent set problem cannot be approximated within

SPANNING TREES SHORT OR SMALL 555

a factor n(n’) unless P = NP. Hence, the same is true 1993.
of the maximum acyclic subgraph problem. [16] R. E. Gomory and T. C. Hu, ‘Multi-terminal network

6.3

- - -

Coda
Writing “Spanning trees short or small”
For its authors was just a ball
But did this coda
In a submission to SODA
Make it an accept, not a close call?

c

flows,” SIAM J. Appl. Math., 9 (1961), pp. 551-570.
[17] T. C. Hu, UOptimum communication spanning trees,”

SIAM J. Comput., Vol. 3, No. 3 (1974), pp. 188-195.
[18] D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy

Kan, “The complexity of the network design problem,”
Networks, Vol. 8, (1978), pp. 279-285.

[19] J. B. Kruskal, “On the shortest spanning subtree of
a graph and the traveling salesman problem”, Proc.
American Mathematical Society, 7(l), pp. 48-50, 1956.

Reverences [20] C. Lund and M. Yannakakis, “On the hardness of

[l] D. Adolphson, and T. C. Hu, “Optimal linear order- the maximum subgraph problem”, Proc. &Uth Interna-

ing,” SIAM J. Appl. Math. , 25 (1973), pp. 403-423. tional Colloquium on Automata, Languages and Pro-

[2] A. Aggarwal, H. Imai, N. Katoh and S. Suri, “Finding gramming, (1993), pp. 40-51.

k points with Minimum Diameter and Related Prob- [21] R.C. Prim, “Shortest connection networks and some

lems”, J. Algorithms, Vol. 12, 1991, pp. 38-56. generalizations”, Bell System Tech Journal, 36(6), pp.

[3] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The design 1389-1401, 1957.

and Analysis of Computer Algorithms, Addison Wesley,
Reading MA., 1974.

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, ht. Szegedy,

“Proof verification and hardness of approximation
problems,” Proc. of the 33rd IEEE Symposium on the
Foundations of Computer Science (199?), pp. 14-23.

[5] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth,
“Approximation algorithms for the cycle-cover prob-
lem with applications to constraint satisfaction and
Bayesian inference,” these proceedings.

[6] M. W. Bern, E. L. Lawler and A. L. Wong, “Linear
Time Computation of Optimal Subgraphs of Decom-
posable Graphs”, J. Algorithms, Vol. 8, 1987, pp. 216-
235.

[7] P. M. Camerini, and G. Galbiati, “The bounded path
problem,” SIAM J. Alg. Disc., Meth. Vol. 3, No. 4
(1982), pp. 474-484.

[8] P. M. Camerini, G. Galbiati, and F. Maffioli, “Com-
plexity of spanning tree problems: Part 1,” Euro. J. of
0. R. 5, (1980), pp. 346-352.

[9] E. W. Djikstra, “A note on two probiems in connection
with graphs,” Numerische Muthemetik, 1, pp. 269-371
(1959).

[lo] D. P. Dobkin, R. L. Drysdale and L. J. Guibas, “Find-
ing Smallest Polygons”, in Advances in Computing Re-
search, Vol. 1, JAI Press, 1983, pp 181-214.

[ll] D. Eppstein, “New Algorithms for Minimum Area
k-gons”, Proceedings of the 3rd Annual ACM-SIAM
Symposium on Discrete Algorithms, (1992), pp 83-88.

[12] D. Eppstein and J. Erickson, “Iterated Nearest Neigh-
bors and Finding Minimal Polytopes”, Proceedings of
the 4th Annual ACM-SIAM Syposium on Discrete Al-
gorithms, (1993), pp. 64-73.

[13] M. R. Garey and D. S. Johnson, Computers ond In-
tractability: A guide to the theory of NP-completeness,
W. H. Freeman, San Francisco (1979).

[14] Naveen Garg, personal communication, June 1993.
[15] Naveen Garg and Dorit Hochbaum, “An O(logk) ap-

proximation algorithm for the k minimum spanning
tree problem in the plane,” manuscript, Sept.ember,

