
Preprocessing DNS Log Data
for Effective Data Mining

Mark E. Snyder
Department of Computer Science

Missouri S&T
Rolla, MO 65409, USA

Email: mark.snyder@mst.edu

Ravi Sundaram
Department of Computer and Information Science

Northeastern University
Boston, MA 02115, USA

Email: koods@ccs.neu.edu

Mayur Thakur
Google Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043

Email: mayurthakur@google.com

Abstract—The Domain Name Service (DNS) provides a critical
function in directing Internet traffic. Defending DNS servers from
bandwidth attacks is assisted by the ability to effectively mine
DNS log data for statistical patterns. Processing DNS log data can
be classified as a data-intensive problem, and as such presents
challenges unique to this class of problem. When problems occur
in capturing log data, or when the DNS server experiences an
outage (scheduled or unscheduled), the normal pattern of traffic
for that server becomes clouded. Simple linear interpolation of
the holes in the data does not preserve features such as peaks
in traffic (which can occur during an attack, making them of
particular interest). We demonstrate a method for estimating
values for missing portions of time sensitive DNS log data. This
method would be suitable for use with a variety of datasets
containing time series values where certain portions are missing.

I. INTRODUCTION

The Domain Name Service (DNS) is an example of a system
that is highly susceptible to denial of service (DoS) type
attacks. Numerous examples have been documented, including
[8]. When analyzing DNS traffic, capturing log data and using
data mining techniques to discover trends and other knowledge
can lead to the development of tools and techniques for
preventing such attacks[4][5]. During the data mining process,
care must be taken to verify the quality of the source data. In
the case of DNS log data, one deficiency that arises is the
presence of holes in the data where for one reason or another
the DNS server failed to log the activity during a period of
time. Due to the difficulty of obtaining log data, it is often
not possible to simply obtain another dataset, and data must
be cleaned before it is used to draw conclusions.

Our dataset was obtained from a large company central
to the management of the DNS network. The dataset was
collected at 26 root servers over a 10 day period in January
2004. For each server, we have log data that includes all DNS
requests made from client DNS servers. The log files consist
of over 400 gigabytes of raw DNS log data.

A variety of methods for adjusting data to account for these
outages are available, such as linear interpolation. However,
such methods fail to preserve features common to DNS traffic,
namely the correllation of traffic patterns from day to day.
The method we illustrate in this paper involves a form of
imputation. Aggregating the data first and then adjusting the
aggregate values provides a balance between storage, speed in

getting answers to queries, and the level of accuracy desired
for our analysis.

II. RELATED WORK

Numerous works have discussed the topic of filling missing
values in data sets being used for data mining. In [6] many
techniques are described, including multiple imputation and
hot deck imputation. These terms refer to generating a value
to stand in for the missing value while the data set is being
processed, and then continuing to process the data set as if the
stand-in was the observed value. This is similar to the process
we are using, except that we do not use stochastic or statistical
techniques, but rather knowledge of the expected pattern of a
DNS server and scaling based on other real observations in
the time series to generate replacement values. This can be
considered a pattern- or model-based imputation technique.

Other sources evaluate the value of these techniques, such
as [2][7]. We could certainly analyze the variance and quality
of our process using similar techniques but do not for brevity.

Numerical analysis techniques such as interpolation and
linear regression are also a valuable reference, but many
of these techniques do not incorporate knowledge of the
expected behavior or in their generality become too expensive
to incorporate.

Other sampling techniques, such as listwise deletion[1] are
not acceptable since nearly every sample has some amount of
missing data, and the data we have is judged to be useful in
our problem domain even with the holes. Similar issues were
discussed in [9].

Statistical methods have been applied to a wide range of
problem domains, from the analysis of large sensor networks,
the study of financial market trends, and for predictive purpose
such as occurrence of diseases such as cancer. Our contribution
provides a technique for handling missing data in large datasets
using patterns that occur over periodic time intervals with high
correlation.

Data mining concepts and techniques are elaborated in [3].
Our efforts focus on the data cleaning stage of knowledge
discovery, with elaborations into how the resulting dataset was
mined.



III. DATA SUFFICIENCY

There are two reasons why we might perceive a hole in
the server data, either (a) the server became unavailable due
to power failure, communication failure, or for some other
reason, or (b) the server just appeared to be unavailable
because we simply do not have the logged data during the
time period.

One method of explaining a hole would be to examine the
server traffic, specifically the hour of data following a hole.
Within the algorithm used by clients to load balance across
DNS servers, sometimes referred to as explore and exploit,
when a DNS server becomes unavailable, clients and client
name servers bound to that DNS server will start utilizing
other DNS servers instead. The unavailable DNS server will
receive a heavy penalty for not responding, but will still be
polled periodically. For this reason, the log data should show
that when the DNS server becomes available once more, many
clients will have begun relying on other DNS servers, but
assuming the DNS server comes back online with the same
responsiveness it had before, eventually it should begin to
receive traffic volumes consistent with the pattern established
prior to it becoming unavailable. Thus, if a hole was due to a
server becoming unavailable, then the time period following
the hole should show a notable reduction in traffic from what
a reasonable projection would have predicted. If this is the
case, then we should discard the data from this server as not a
candidate for analysis. There were no such patterns observed.

Another method would be to examine client traffic, specif-
ically the traffic during the time of the hole. If the hole were
caused by reason (a) then the aggregate client traffic across all
servers to which it is bound should remain consistent as the
client simply looks to other DNS servers to fulfill its needs.
However, if the hole were due to reason (b) then there should
be a drop in traffic to the server with the hole while the traffic
to other servers to which the client is bound should remain
statistically consistent with their previous pattern.

IV. FILLING HOLES IN SERVER DATA

We observe a statistical correlation between days of DNS
server traffic on all DNS servers. In other words, the behavior
on Tuesday is likely to be very similar (above 90% correlation)
to Monday. These patterns typically hold on weekends as well,
however the volume drops sharply on all servers on Saturday
and Sunday of each week. Our technique uses this business
knowledge to fill holes. This technique provides better results
than simple interpolation because it preserves features such as
peaks and valleys that would be lost if we used interpolation.

The algorithm used for filling the holes in the server data
requires several steps. The first step was to count all traffic
that each server received for each day and hour of the analysis
period. For our data, this amounted to 10 days of data.

The next step was to identify which hours provide complete
data, which hours are missing, and for hours with partial data,
how many minutes of data are present. The method of data
capture made this relatively easy. The log files for each server
provide a continuous record of all requests while the log file

Fig. 1. Diagram showing request volume (unadjusted) for one server.

Fig. 2. Diagram showing request volume (adjusted) for one server.

was being created. So each log file was examined and the
date-time stamp for the first and last entry was recorded. Once
these start and end date-time values were sorted and examined,
a value from zero to 60 was assigned to each server-day-hour
that represents the number of minutes of data available.

The next step was to sort the days by the overall reliability
of the day relative to the rest of the days. In this way, we
process days from most reliable to least reliable. A future
step will use the pattern established by more reliable days
to compute an adjusted value.

The next step was to calculate a scaling factor from zero to
one for each server-day-hour, and then compute an adjusted
traffic value. This was calculated as the number of minutes of
data available divided by 60. For complete hours, this results in
a scaling factor of 1.0. For missing hours, the scaling factor is
0.0. One optimization that was applied to the algorithm that is
designed to improve accuracy for “light” clients (which could
be observed to have only one request per hour in some cases)
was to consider any server-day-hour with less than 30 minutes
of data available as unreliable and so the scaling factor for
these data points was set to 0.0 as well. Once the scaling
factor was determined, the adjusted traffic value was simply
computed as the scaling factor times the original traffic value.

Processing each day in order from most reliable to least
reliable as determined above, the next step is to generate the
imputed values. For the first (most reliable) day, we calculate
the adjusted traffic value by simply interpolating between
known values. If the first (or last) hour of a day was missing,
the first (or last) available adjusted value present was used.

Once the first day has been repaired by computing an
adjusted traffic volume value, we moved on to successive



less reliable days. For holes in each day, we calculated new
volumes as the sum of all non-missing hours this day times
the sum of values for this hour for days already processed
divided by the sum of all non-missing hours for days already
processed.

At this point, the data represents a complete picture of the
nature of the traffic for the server with the holes filled in.
Figure 1 shows a graph of the original traffic from the available
log files for one server. Figure 2 shows a graph of the same
server, after the data has been adjusted to allow for the holes.
As a pleasant surprise, the graph of the adjusted traffic volume
values has fewer and less erratic ripples while still preserving
the features one would expect to be present. For example,
near hours 14 and 15 on day 8, the original data shows a
hole. But in the cleaned data, this range is shown as a peak
in the data, which is what we would expect to happen during
this range. This feature is present in a more reliable day, and
so is extended into the day with missing hours, resulting in a
pattern much closer to our business understanding of the way
it would look.

As can be seen, since the formula adjusts for the traffic
pattern for a day in general, adjusted based on the observed
volume for a specific day, even on days with lower traffic, the
pattern of traffic is preserved. This is illustrated in Figure 2 by
the two relatively lower volume plots, which represent traffic
on Saturday and Sunday.

Since clients are predominantly tied to a particular server
(or set of servers), a hole in the server data would generally
correspond directly with holes in the client data. Another way
to say this is to say that if a client is communicating with
a server and we are missing data for the server, then it is
reasonable to assume that some of the missing traffic came
from that client and so its traffic value will need to be adjusted
in proportion to the adjustment made to the server traffic.

Fig. 3. Diagram of client polygamy (number of servers used by clients).

V. CLIENT TRAFFIC ANALYSIS

With the server traffic volume data in hand, we began to
analyze the client traffic. The method used to adjust the client
data parallels the adjustments made to the server traffic and
uses those results. The primary difference between adjusting
the server traffic and adjusting the client traffic is that there
are many more clients (over 2.5 million) to process than there

are servers (26), and since each client must be processed for
each server to which it is bound (this is where client polygamy
becomes an issue), this increases the list to over 8.5 million.
This is due to the fact that the bulk of clients talk to as many
as 8 different servers for which we have data (see figure 3).

The traffic for different clients can exhibit very different
patterns. For the client traffic analysis, it is helpful to aggregate
numerous clients together in order to start to see similar
patterns form. The trick is to try to be clever so that clients
with a similar pattern are grouped together. Intuition tells us
to start by grouping high-volume clients together, and low-
volume clients together. Later, we can verify our intuition by
analyzing the variance of certain clients from the aggregate
pattern developed. The approach we took for grouping clients
involves examining the traffic volumes calculated for each
client and assigning a percentile rank. From there, several
options are possible for aggregating the clients. First, we
could sort the clients based on the total volume each client
generates and then divide them into 10 even groups where
each group contains the same number of clients. The problem
with this approach is that the highest-volume clients will be
disproportionally represented over the lower volume clients.
The grouping we used involves dividing the groups into deciles
(groups of 10 percentiles) based on cumulative traffic volume
(see table I). Each decile group represents roughly 10% of the
total volume of requests. Even though the number of clients
in each group varies, each group is equally represented based
on volume of traffic.

Clients Min Max Aggregate
Decile Per Decile Volume Volume Volume

1 2477307 0 1379 202886210
2 80322 1380 4708 202806972
3 28813 4709 10618 202825584
4 13958 10619 20051 202841854
5 7756 20052 34542 202830513
6 4639 34543 55950 202843126
7 2930 55951 87116 202820052
8 1860 87117 138966 202893117
9 1177 138967 215926 202803433

10 440 215927 6901682 202833014

TABLE I
CLIENT DECILE GROUPS EACH REPRESENTING (ROUGHLY) EQUIVALENT

CUMULATIVE TRAFFIC VOLUME.

Once the client decile groups have been established, we
aggregate the traffic for each client decile group by server.
At this point, each server must be checked for a hole. If a
hole exists, then the volume for that hour must be prorated to
account for the missing traffic (from the discussion previously
on data sufficiency, we are only working with data from servers
with holes we believe are due to missing log data). The entire
algorithm is outlined below.

Step 1: Aggregate volume for the clients in the client decile
group by server and for each server, look up minutes of data
and scaling factor values.

Step 2: Process servers individually. First, sort days based
on server minutes of data available.



Step 3: Examine each decile-server-day-hour value and
compute adjusted volume. As before, the first day is handled
differently than the others. Where a scaling factor is greater
than zero, we multiply the scaling factor by the volume to
get the adjusted volume. If hours are missing at the beginning
and the end of the first day, we simply copy values from the
first available or last available hour, respectively. If hours are
missing in the middle of the data for the first day, we simply
interpolate the missing values from the prior and next available
hours.

For subsequent days, we revisit the algorithm and results
from server traffic analysis. There are two cases to consider
when examining a given client-server-hour volume value. If
the server-day-hour scaling factor is non-zero, this means that
the traffic value we have for this decile-server-day-hour must
be multiplied by the scaling factor to get an adjusted decile-
server-day-hour value. The volume could be zero if the clients
in this decile group generated no traffic to that server during
that hour, in which case the adjusted value will still be zero.

If the server-day-hour scaling factor is zero, this indicates
that either we have no data from the server for this hour or the
number of minutes of data for that server-hour is less than our
established threshold of 50%, in which case we considered this
an unreliable hour and treated it as if it was a missing hour.
This means that we imputed the value for the server traffic so
we must likewise impute the value for the decile-server-day-
hour. For a particular decile-server-day-hour value, the formula
to compute the adjusted value is to add up the decile-server-
day-hour values for this day where the server scaling factor
is not zero, multiply that times the sum of the adjusted server
volumes for this hour, then divide the result by the sum of
the adjusted server volumes for hours with non-zero scaling
factors this day. As with the server adjustment process, this
gives an updated set of decile-server-day-hour traffic volume
values that takes the volume of traffic of the day as well as the
relative traffic volume of this hour of the day from other days
into consideration. In order to ensure reliability, we processed
each day in order from most reliable to least reliable based on
total minutes of log data available for each day.

As with the server analysis, there is a dramatic improvement
in regularity between the adjusted and unadjusted datasets.
Figure 4 shows the aggregate traffic for one client decile group
(consisting of the clients that generate the top 10% of the total
volume of traffic) across all of the servers to which it is bound
(for which we have data).

As before, we next examine figure 5 which shows the traffic
for the same group of clients once it has been adjusted to
account for the holes in the server data using the technique
described above.

VI. DOMAIN TRAFFIC ANALYSIS

Next, we analyze the traffic for each domain name re-
quested. The method used to aggregate and adjust the domain
name data is nearly identical to the adjustments made to the
client traffic and again uses the results of the server analysis.
The only difference between adjusting the domain name traffic

Fig. 4. Traffic for heaviest client decile group.

Fig. 5. Adjusted traffic for heaviest client decile group.

and adjusting the client traffic is using the domain name
column instead of the client IP address column in the database.
As with the client processing, there are many domain names
(over 3 million) to process.

For the domain name traffic analysis, it is once again
helpful to aggregate numerous domain names together in
order to examine the patterns between like domain names.
As with the client processing, we group high-volume domain
names together and low-volume domain names together. The
grouping we used involves dividing the domain names into
deciles (groups of 10 percentiles) based on cumulative traffic
volume (see table II). Each decile group represents roughly
10% of the total volume of requests. As with the client decile
groups, the number of domain names in each group varies, but
each group is equally represented based on volume of traffic.
A slight difference with the domain names, however, is that
there is more of a discrepancy between the volume requested
of high frequency domain names and low frequency domain
names. In the table, the top three deciles are dominated each by
only one domain name, and the fourth decile aggregates only
two domain names. This leaves a disproportionate number of
domain names in the tenth decile. However, for our purposes,
this doesn’t constitute a significant problem and we could
always reproportion the domain names into alternate groups
manually.

Once the domain name decile groups have been established,
we aggregate the traffic for each domain name decile group



Domains Min Max Aggregate
Decile Per Decile Volume Volume Volume

1 1 265940087 265940087 265940087
2 1 142193910 142193910 142193910
3 1 121219666 121219666 121219666
4 2 94370237 116432237 210802474
5 4 42150988 91905649 252276144
6 7 27443752 37836078 217956083
7 9 18378494 27057672 203110531
8 20 6499397 15942293 208851647
9 50 2095633 6496745 201621665

10 3044001 1 2062561 204411668

TABLE II
DOMAIN NAME DECILE GROUPS EACH REPRESENTING (ROUGHLY)

EQUIVALENT CUMULATIVE TRAFFIC VOLUME.

by server. At this point, each server must be checked for a
hole. If a hole exists, then the volume for that hour must be
prorated to account for the missing traffic (from the discussion
previously on data sufficiency, we are only working with data
from servers with holes due to missing log data). The entire
algorithm is omitted, due to the fact that it is exactly the same
as the algorithm used in client processing.

At the end of processing each of the server-day-hour values
above we can begin to examine the traffic pattern for a
“normal” heavy domain name. As with the client and server
analyses, there is a dramatic improvement toward expectations
between the adjusted and unadjusted datasets. Figure 6 shows
the aggregate traffic for one domain name decile group (con-
sisting of the domain name in the first decile that generates
the top 10% of the total volume of traffic) across all of the
servers from which the domain name was requested (for which
we have data).

Fig. 6. Traffic for heaviest domain name decile group.

As before, we next examine figure 7 which shows the traffic
for the same domain name once it has been adjusted to account
for the holes in the server data using the technique described
above.

VII. CONCLUSION

We started with a set of raw DNS logs capturing volumetric
data regarding frequency of requests of a set of DNS servers.
However, this data was not useful in its raw form because

Fig. 7. Adjusted traffic for heaviest domain name decile group.

of gaps in coverage. After preprocessing the data using the
demonstrated model-based imputation technique we were able
to perform robust, useful analysis against the cleaned data.
This method can be applied to other problem domains involv-
ing time series data. We believe portions of this technique can
also be adapted to real-time monitoring of streaming data that
encounter periodic gaps or outages in coverage. By detailing a
reproducible method for analyzing server log data to identify
habitual patterns for the traffic processed by DNS servers, we
have demonstrated a technique to assist in detecting attacks on
Domain Name Service (DNS) servers that rely on statistical
analysis.

REFERENCES

[1] Paul D. Allison. Missing data. Sage Publications, Inc., Thousand Oaks,
CA, USA, 2002.

[2] Marvin L. Brown and John F. Kros. The impact of missing data on data
mining. pages 174–198, 2003.

[3] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Tech-
niques (The Morgan Kaufmann Series in Data Management Systems).
Morgan Kaufmann, 2000.

[4] Seong Soo Kim and A. L. Narasimha Reddy. Statistical techniques for
detecting traffic anomalies through packet header data. IEEE/ACM Trans.
Netw., 16(3):562–575, 2008.

[5] Keunsoo Lee, Juhyun Kim, Ki Hoon Kwon, Younggoo Han, and Sehun
Kim. Ddos attack detection method using cluster analysis. Expert Syst.
Appl., 34(3):1659–1665, 2008.

[6] Roderick J A Little and Donald B Rubin. Statistical analysis with missing
data. John Wiley & Sons, Inc., New York, NY, USA, 1986.

[7] Ingunn Myrtveit, Erik Stensrud, and Ulf H. Olsson. Analyzing data sets
with missing data: An empirical evaluation of imputation methods and
likelihood-based methods. IEEE Trans. Softw. Eng., 27(11):999–1013,
2001.

[8] R. Naraine. Massive ddos attack hit dns root servers.
www.internetnews.com/dev-news/article.php/1486981, October 2002.

[9] W. Eric Wong, Jin Zhao, and Victor K. Y. Chan. Applying statistical
methodology to optimize and simplify software metric models with
missing data. In SAC ’06: Proceedings of the 2006 ACM symposium
on Applied computing, pages 1728–1733, New York, NY, USA, 2006.
ACM.


