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Abstract—We introduce a game-theoretic framework for rea-
soning about bandwidth attacks, a common form of distributed
denial of service (DDoS) attacks. In particular, our traffic injection
game models the attacker as a rational but limited-resource entity
who uses limited knowledge of traffic patterns to launch IP
spoofing based bandwidth attacks on a server. We model the
defender as a coarse-grained, relative volume based statistical
filter.

We analyze the effectiveness of the defender against the
attacker by analyzing the payoffs of various strategies in the
traffic injection game. Furthermore, we analyze how these payoffs
change in the presence of random noise.

Our results show that there is potential for using statistical
methods for creating defense mechanisms that can detect a DDoS
attack and that even when an attacker has a priori knowledge
of the expected traffic volume for the dimension and divisions
employed in the attack, the attack traffic can still be exposed to
the defender.

I. INTRODUCTION

IP spoofing—changing the source address of IP packets—
has been used in DDoS attacks on popular websites (Ya-
hoo!) and root DNS servers. Examples of DDoS attacks that
use IP spoofing are Smurf and SYN attacks. IP spoofing-based
attacks are dangerous because they can bypass filters that
drop packets based on IP addresses. Even though techniques
such as backscatter can detect IP spoofing-based attacks, one
needs more sophisticated filtering mechanisms to detect more
intelligent attacks. However, these filtering mechanisms cannot
be too fine-grained because they have to be installed on
routers. Also, simple volume-based detection mechanisms are
unlikely to be effective because of the busyness of the Internet
traffic. We thus study the effectiveness of relative volume and
coarse-grained measures against IP spoofing attacks.

During a Distributed Denial of Service (DDoS) attack, the
attacker increases the amount of illegitimate traffic originating
from machines under his control. This results in a positive
increase by some ratio relative to the traffic that was present
in the system to begin with. We will refer to this ratio as α,
where 0 ≤ α ≤ 1.

We view the attacker as choosing a distribution by which
traffic is added to the system by the machines under his
control. The attacker can view this from a number of di-
rections, which we will call dimensions. For example, an
attacker might choose to have all controlled machines use

only spoofed IP addresses that are even-numbered. In this
case, divisibility by 2 becomes a dimension, and there are
2 divisions within this dimension, even and odd. Traffic can
be increased using a geographical distribution. The attacker
may decide to increase traffic only to target machines in
New York, or to add twice as much traffic coming from
New York machines as from Los Angeles machines. Thus the
geographical location of machines becomes a dimension and
there could be numerous divisions within this dimension. The
attacker is able to choose a distribution across the divisions
of any dimension he envisions. In any set the number of
groupings is only limited by the power set, which, while
very large is still finite. In each case, the attacker identifies a
dimension and then chooses a distribution across the divisions
within that dimension.

The defender views the traffic in much the same way. As
traffic is received, the defender counts it and monitors how the
traffic is distributed amongst the divisions of some dimension.
If the defender can detect a change from the base distribution,
then it knows that an attack may be underway. The challenge
for the defender, however, is that even though it can detect that
an attack may be happening, there is still the matter of sorting
the legitimate requests from the illegitimate. The solution that
we will propose is to merely tag each division within the
observed dimension with a measurement of suspiciousness.
The more suspicious a group of traffic is, the more scrutiny it
will be subjected to and thus the longer it will take to process,
but it will not be dropped. Whereas traffic that is not suspicious
is not delayed at all. Therefore, the defender in our game must
only identify the groups of traffic that are more suspicious than
other groups of traffic.

This is a very different approach than, say, that employed
by synkill[8] where the goal is to spend as few resources as
possible on suspicious traffic, but our approach is meant as a
first line filter to incoming traffic, and the goal is to advise
subsequent processes about which traffic merits additional
scrutiny using more definitive techniques.

Since neither the attacker nor defender has perfect in-
formation about all dimensions and divisions within those
dimensions, we define a “hidden” distribution of traffic to
represent these hidden dimensions. We take care to note that
our model is equivalent to one that allows the attacker to



control, defender to monitor, multiple dimensions as these
multiple dimensions can be projected onto a new dimension so
that it can be represented as a single dimension again. When
an attacker adds traffic according to its chosen distribution,
the hidden distribution is applied to the traffic across all other
dimensions to produce the counts that the defender views
from the perspective of his chosen dimension. Thus, even
if the attacker is aware of or tries to approximate the base
distribution with the attack distribution, the hidden distribution
disseminates the traffic in such a way that the defender can
still observe an anomaly with a careful choice of dimension
to observe.

The Traffic Injection Game is a two person, zero sum,
competitive game with imperfect knowledge. We represent the
game in normal form as a sensitivity matrix in the form of a
bimatrix of summed difference of new traffic to base traffic
once the attack traffic is added [9].

Our game consists of two d-dimensional matrices—base
distribution (representing the relative volume of traffic dis-
tribution) and a hidden distribution (representing the relative
entity distribution). The attacker and defender (the two players
in the game) each choose (independently) a dimension. We
assume that the attacker and the defender both have knowledge
of the base distribution along the dimension of their choice.
The attacker chooses to inject traffic in the network (based on
its knowledge of the distribution along a dimension), while
the defender uses statistical means to measure the change
in distribution from the normal distribution. The change in
distribution per unit of attack traffic injected is the payoff to
the defender.

We show that knowledge of traffic distribution helps both
the attacker and the defender. When an attacker chooses a
strategy (the amount of attack traffic that it generates per
division of the attack dimension) that closely matches the base
distribution for the attack dimension, then the payoff is best
for the attacker. As the strategy deviates more and more from
the base distribution, the attack traffic becomes more exposed
to the defender.

We also show that even when the attacker knows the base
distribution for the attack dimension and utilizes it to its
best advantage, the attack is still detectable, given favorable
signal-to-noise ratio and a careful choice of dimension by the
defender in which to monitor traffic.

II. RELATED WORK

A variety of methods of dealing with the problem of denial
of service (DoS) attacks have been explored. The idea of
comparing incoming to outgoing flows of network traffic was
explored in [7]. Using game theory to identify another kind
of DoS attack, that attempted by nodes in wireless sensor
networks, was investigated in [1]. Cominetti, et al., examined
the cost of anarchy in network games[2], following work by
Roughgarden and Tardos[6]. Many of the defense mechanisms
that have been proposed to combat these attacks are described,
and advantages and disadvantages of each proposed scheme
are outlined in [3]. In [4] techniques to thwart IP address

spoofing in DNS DDoS attacks are detailed in the form of a
firewall process, but this work also highlights the disadvantage
to such definitive techniques, in that they have the potential
to create a bottleneck themselves. The danger of indiscrim-
inately dropping suspected traffic is described in [5]. They
compare DDoS attacks to flash crowds which look similar
to a DDoS attack but constitute legitimate traffic. Schuba, et
al., contributed a detailed analysis of the SYN flooding attack
and a discussion of existing and proposed countermeasures[8].
Calculating Nash equibria in bimatrix games in normal form
was detailed by von Stengel[9].

III. TRAFFIC INJECTION GAME

We now define a game which would allow us to analyze
IP-spoofing based bandwidth attacks. Our game is a 2-player
game. We call the two players attacker and defender. We
will refer to the server under consideration as the server. The
attacker’s motive is to attack the server using an IP-spoofing
based bandwidth attack, while the defender’s motive is to
detect these attacks using coarse-grained statistical filtering.

A. Base and Hidden Distributions

The coarse granularity of filtering is modeled using a set of
dimensions. Each dimension is a partition of the IP address
space, and a corresponding partition of the total typical IP
traffic reaching the server. We call the former the hidden
distribution and the latter the base distribution. (The reason
for these names will become clear shortly.) For example, if our
dimension is the “autonomous system” (AS) dimension, then
the ith component of the hidden distribution is the fraction of
IP addresses in the ith AS, and the ith component of the base
distribution is the fraction of traffic reaching the server that
originates in the ith AS.

First, we need to model typical (or base) traffic, which we
do by defining an n-dimensional matrix of traffic values T .
Let di denote the number of divisions (or buckets) along the
ith dimension. Each value in this matrix represents a fraction
of the overall traffic. Thus, the sum of all entries in T is 1.

We also define matrix H as what we call the hidden
distribution. Each cell in H represents a fraction of traffic
generating entities (IP addresses). The attacker specifies how
traffic is spread across the divisions of the attack dimension,
but for all other dimensions, the hidden dimension is used to
distribute attack traffic. The matrices T and H represent the
board setup for a single game.

Example 1. Say there are two dimensions 1 and 2 (each with
2 divisions). The base and hidden distributions can each be
represented as 2× 2 matrices. Let the base distribution be

T =
[

0.1 0.3
0.4 0.2

]
.

Note, for example, that the amount of traffic reaching the
server from IP addresses that fall in division 1 of the first
dimension (rows) and division 2 of the second dimension



(columns) is 0.3 (= T [1, 2]) fraction of the total traffic
reaching the server. Let the hidden distribution be

H =
[

0.3 0.2
0.2 0.3

]
.

Note, for example, that the number of IP addresses that fall in
division 1 of the first dimension and division 2 of the second
dimension is 0.2 (= H[1, 2]).

B. Attacker’s and Defender’s Knowledge

We will assume limited knowledge for both the attacker and
the defender. The defender can know the typical (non-attack)
distribution for each IP address. However, for two reasons the
defender cannot apply statistical filtering at this fine-grained
level. First, the amount of noise at this fine-grained level is
significant. Second, even if the noise was negligible, there is a
significant price to be paid for implementing a statistical filter
at this level. For example, in the simplest scheme, 232 numbers
(one per IP address) must be stored and looked up for each
packet. For these reasons, we will assume that the defender
uses only aggregate information. In particular, the defender
uses the base distribution along one, say the jth dimension.

We will assume that the attacker has knowledge of one
dimension, say the ith dimension. What this means is that
the attacker knows how much traffic is typically generated
by nodes in each division of dimension i, and the attacker
knows the set of IP addresses in each division of dimension
i. In particular, it can use this knowledge to inject traffic with
spoofed IP addresses such that the distribution of traffic (or
relative traffic) along dimension i does not change from its
base distribution.

C. Injecting Traffic

Continuing with Example 1 above, say the attacker has a
priori knowledge about the typical historical distribution for
dimension 1. Suppose he decides to inject a total α amount of
traffic (relative to the base traffic) with distribution [β, 1− β]
along dimension 1 (that is, the first division of dimension 1
gets α ∗β additional traffic, etc). How much traffic is injected
in the cell [1, 1], for example? More formally, let i be the
dimension that the attacker knows. Let δj be the amount of
attack traffic that the attacker decides to add to division j
of dimension i. Then we assume that the attacker uniformly
spreads δj across all IP addresses that fall in division j of
dimension i. This is a reasonable assumption because the
attacker has no knowledge about the other dimensions. Thus,
in our example above, cell [1, 1] will get α ∗ β ∗ 0.3

0.3+0.2
amount of additional traffic. After new values for each cell
are calculated and the matrix is normalized, we calculate the
sensitivity matrix.

D. Payoff: Sensitivity Matrix

We analyze the game by analyzing the payoff matrix of
the game. Let the dimension that the attacker knows be i and
let the dimension that the defender uses be j. The attacker’s
goal is to inject one unit of traffic such that the change in

the distribution along dimension j is minimized. The defender
wants to detect such a change. The payoff to the defender is
the change in the distribution along the jth dimension if a unit
amount of attack traffic is introduced using the ith dimension.
We call this quantity sensitivity to the ith dimension along the
jth dimension and denote it as S[T,H, i, j]. When T and H
are clear from the context, we refer to S[T,H, i, j] as S[i, j]. S
is called the sensitivity matrix. Periodically we will also refer
to simply the sensitivity of an experiment, in which case we
mean the maximum sensitivity value of a sensitivity matrix.
This value represents the best payoff for the defender. Since
the game is a zero-sum game, the payoff to the attacker is the
negation of the payoff to the defender.

It is easy to see that in general the sensitivity function is
asymmetric with respect to dimensions. That is, for a given
attack A, and dimensions i and j, S[i, j] is not necessarily
equal to S[j, i].

E. Effect of Injecting Attack Traffic

Given the base and hidden matrices, we now show how to
analytically compute the effect of injecting attack traffic. As
a special case we get how to compute the sensitivity matrix.

Let T be the base distribution and let H be the hidden
distribution on n dimensions such that dimension i has di

divisions. Let α be the amount of traffic to be injected
relative to the total amount of traffic represented by the base
distribution. Let q be the attacker’s dimension and let r be
the defender’s dimension. Let A be a dq-dimensional vector
representing the attack traffic distribution. (The rth entry in A
denotes the fraction of attack traffic that is added to the rth
division of dimension q.)

Let H[1 : i1, 2: i2, . . . , n : in] denote the cell of H
whose label along dimension j is ij , for each j ∈
{1, 2, . . . , n}. Let H[k : `] denote an n − 1 dimensional
matrix H ′ with dimensions {1, 2, . . . , k − 1, k + 1, . . . n}
such that the H ′[1 : i1, 2: i2, . . . , k − 1: ik−1, k + 1: ik+1 : in]
is H[1 : i1, 2: i2, . . . , k − 1: ik−1, k : `, k + 1: ik+1, . . . , n : in].
Thus, informally speaking, H[k : `] denotes a n−1 dimensional
slice of H containing all cells for which the dimension k label
is `. Note that 0 ≤ ij < di, for each dimension i in H .

We also define operator H|j (the projection of H along
dimension j) as a vector of size di such that the i-th component
is the sum of entries in the matrix H[i : j]. Next, we define the
operator agg(H) which is the set of all n sum vectors of H ,
where vector i of agg(H) is H|j and has di values.

We calculate the fraction of attack traffic that will be added
to a cell C labeled [1 : i1, 2: i2, . . . , n : in]:

∆[1: i1, 2: i2, . . . , n : in] = A[iq]
H[1 : i1, 2: i2, . . . , n : in]

agg(H[q : iq])

Note that the A[iq] term denotes the fraction of attack traffic
added to the iqth division of dimension q and the fractional
term is the number of IP addresses that lie in cell C as a
fraction of the number of IP addresses that lie in the iqth
division of dimension q. Note that agg(∆) = 1.



Finally, we can calculate the new base matrix T ′ that results
when the attack traffic is added to the original base matrix T :

T ′ =
T + α∆
1 + α

(1)

The new distribution along dimension r is T ′
|r. The effect

of attack A volume α in the qth dimension as observed in the
rth dimension is

E(A,α, q, r) =
∑

1≤i≤dq

|T|r[i]− T ′
|r[i]|.

The sensitivity of attack A in the qth dimension as observed
in the r dimension is defined as

S(A, q, r) = E(A, 1, q, r).

Note that the sensitivity is the effect of a unit attack traffic.
We show below how the effect of of an attack A with an

arbitrary amount of traffic is related to the sensitivity of the
same attack.

Lemma 2. For each α ≥ 0, E(A,α, q, r) = 2α
1+αS(A, q, r).

Proof omitted due to space considerations.

F. Modeling Noise

The base distribution represents a historical pattern devel-
oped from a snapshot of traffic, and the traffic injection game is
played based on something assumed to resemble this historical
pattern, thus we need to model the effect that noise has on the
game and calculate the new traffic matrix T ′ that results when
the noise and attack traffic are added to the original base matrix
T .

Let N be the noise distribution on n dimensions such that
dimension i has di divisions. Thus the noise distribution is
the same shape as the base and hidden distributions. We will
consider the noise as a normal distribution that is independent
of the base distribution, and we define ν as the noise level
relative to the base traffic volume.

Using this definition of noise, we can now calculate the new
traffic matrix T ′ as:

T ′ =
T + νN + α∆

1 + ν + α
(2)

If we set ν = 0 then Equation 2 is equivalent to Equation 1.

G. Metrics

The sum of the positive differences between the new volume
and the base volume when the volumes are projected onto each
dimension constitute a sensitivity measurement for a given
defense dimension. A table of sensitivity measurements by
attack dimension and defender dimension constitutes the n×n
sensitivity matrix. From the sensitivity matrix, we calculate the
six metrics described below.

We identified a number of aggregations we want to capture
about this game. For a set of sensitivity matrices, we want
to know what the max payoff (plus mean, stdev), min payoff
(plus mean, stdev), maxmin payoff (plus mean, stdev), and
minmax payoff (plus mean, stdev) are across all the cells of

the sensitivity matrices. This should allow us to identify the
expected payoff under various scenarios.

We have taken six key measurements from the sensitivity
matrices generated by the game.

• BIMA: Best independent move for the attacker. This is
the max-minimum value for any row in the sensitivity
matrix.

• BIMD: Best independent move for the defender. This is
the min-maximum value for any column in the sensitivity
matrix.

• AOS: Average overall sensitivity. Simple average of all
values in the sensitivity matrix.

• AOP: Average overall payoff. This is the average of the
value at the intersection of the sensitivity matrix of the
BIMA row and the BIMD column.

• DDA: Delta defection to best move for the attacker.
Starting at the intersection of the BIMA row and BIMD
column in the sensitivity matrix, find the lowest value in
that column that the attacker could choose if he changed
moves.

• DDD: Delta defection to best move for the defender.
Starting at the intersection of the BIMA row and BIMD
column in the sensitivity matrix, find the highest value
in that row that the defender could choose if he changed
moves.

H. Attack Types

We have analyzed four kinds of attacker:
• Random: The ratio of attack traffic for each division of

the attack dimension is a randomly chosen normalized
distribution.

• Base: Attack traffic is spread so that it matches the
distribution for divisions in the base traffic distribution
for the attack dimension.

• Uniform: Attack traffic is spread evenly amongst the
divisions in the attack dimension. For example, if there
are 10 divisions, each gets 10% of the attack traffic.

• Loaded: This kind of attacker directs all of the attack
traffic at division 0 of the attack dimension.

For each of the four attacker strategies, our analysis con-
sisted of generating many base and hidden distributions, and
for each of these an attack distribution and noise distribution
are generated many times. For each of these, a sensitivity ma-
trix was generated so that we could analyze all possible moves
for attacker and defender. The results were aggregated and the
average and standard deviation reported by the program.

I. Equilibrium and Distribution Difference Analysis

One important aspect of the the traffic injection game
to discuss is the equilibrium of the game. Assuming full
information and no noise given that there are n dimensions or
actions for each party then it is easy to go exhaustively over
all n2 possibilities to check for pure Nash Equilibrium (NE) in
polynomial time. Mixed NE can be computed exactly using
linear programming. However our goal here is not to solve
for NE since that assumes full information and in reality the



attacker and defender may be unaware of H , T , etc. We are
after an understanding in the imperfect information model, so
we study how the sensitivity varies with the difference between
the distributions in our model. There are two basic types of
distributional differences:

Interdimensional distributional differences occur between
distributions along two dimensions of the base distribution
or they occur between distributions along two dimensions
of the hidden distribution. Intuitively speaking, if there is a
large interdimensional difference between the attacker’s and
defender’s dimensions, then the sensitivity is high.

Base-Hidden distributional differences occur between two
distributions—a projection along a dimension of the base
distribution and a projection along a dimension of the hidden
distribution.

Because of the complex relationship between the base
and the hidden distributions, a complete analysis of these
differences and the equilibrium of the game are outside the
scope of this paper (and is left as future work). However,
we present an analysis of a special case of base-hidden
difference. In particular, we study the change in sensitivity
in the following case. We are given a base distribution T̂ .
The attacker’s dimension is 1 and the defender’s dimension is
2. (Note that this is not a restriction because we can rename
dimensions.) We want to find hidden distributions H such that
the sensitivity is maximized and the following hold for each
dimension j 6= 2:

H|j = T̂|j .

That is, the base and hidden distributions match in all dimen-
sions except the defender’s dimension.

This problem can be expressed as the following optimization
problem:

max S[T̂ , H, 1, 2]

s.t.

H|j = T̂|j , ∀j = 1, 3, 4, . . . , n.

Formally, a distribution with k divisions is a k-dimensional
vector [x1, x2, . . . , xk] such that each 0 ≤ xi ≤ 1 and∑k

i=1 xi = 1. The difference between two distributions
X = [x1, x2, . . . , xk] and Y = [y1, y2, . . . , yk] (each with
k divisions) is

k∑
i=1

|xi − yi|.

We show in the results section that the optimal solution to
this problem increases linearly with the difference between T|2
and H|2. Intuitively, it is safest for the attacker not to attack, if
his goal is not to get detected. As the amount of attack traffic
increases (as shown for the special case above), the higher the
chance of the attacker being detected by the defender.

IV. TIGGER: SOFTWARE

Traffic Injection Game Graphical Engine for Results (TIG-
GER) is a software tool developed for performing reproducible

simulation and analysis required by this research. The pa-
rameters that are recognized by the program consist of the
following:

• Dimensions: set of comma-delimited numbers indicating
how many divisions make up each dimension. Example:
“2,2”, “10,10,10”, “5,2,8∗”. Suffixing a number with
an asterisk directs the values in that dimension to be
generated using a power law distribution. Otherwise, the
values are a randomly chosen, normalized distribution.

• Attacker type: Base, Random, Uniform, or Loaded.
• Noise Level: decimal number specifying the noise ratio

relative to the base traffic. The base traffic level is always
considered to be 1.0.

• Attack Traffic: decimal number specifying the ratio of
attack traffic volume relative to the amount of base traffic.

• Random Seed: integer seed value (for reproducibility).
The program also supports iteration by repeating experi-

ments for various values for noise level and attack traffic
volume.

V. RESULTS

Based on the results of the two previous examples, we can
design a statistical filter that analyzes traffic patterns, identifies
the division within the observed dimension that represents the
most suspicious group of traffic, and recommend that group of
traffic for more rigorous, albeit time-consuming, verification
techniques. It is not necessary to limit the functioning of such
a filter to just the most suspicious group of traffic. The filter
could also be designed to send any group of traffic whose
traffic increases above a certain threshold to be scrutinized
more carefully.

The base traffic pattern in a real-life scenario would need
to account for per hour patterns, since the dynamics of many
dimensions from which a defender could observe will change
based on the time of day as found in our research.

If the statistical filter were combined with a feedback loop
that processes emerging traffic patterns back into the expected
base traffic values, the benefit of the filter might even be able
to be improved.

The rest of this section describe the results that our imple-
mentation of the traffic injection game produced, using various
attacker types, noise levels and attack traffic volumes. This
allows us to analyze the effect of such parameters on the 6
metrics of which we have been discussing.

A. Variation with Attack Traffic and Noise

The best independent move for the attacker (BIMA) is a
maximin value that identifies the best that the attacker could
do if the defender chose the worst dimension to watch based
on the attacker’s move. If the attacker knows the dimension
that the defender will observe, then the attacker is always
going to choose the dimension that generates the minimum
sensitivity value for the defense dimension. This means that
the defender’s suspicion was minimally heightened.

Figure 1 shows the effect of varying the attack traffic ratio
given a fixed level of noise (0.3), while Figure 2 shows how the



Fig. 1. Plot of best independent move for the attacker versus attack volume
on a 10x10x10 matrix with 0.3 noise level.

Fig. 2. Plot of best independent move for the attacker versus noise level on
a 10x10x10 matrix with 0.3 attack volume.

BIMA is affected by fixing the attack traffic at 0.3 and varying
the noise level. As we see, the best strategy for the attacker
is observed when the attack traffic is distributed randomly or
when the attacker is aware of and employs a distribution that
matches the base distribution for the attack dimension. The
random strategy does as well because of the stochastic nature
of the generated distributions. The worst performance comes
when the attacker blindly, evenly distributes traffic or blindly
applies all its resources at a single distribution, illustrating that
a powerful, wise attacker performs better.

Figure 1 also illustrates the fact that as the attack traffic
increases, the uniform and loaded strategies fare worse as the
attack traffic becomes more and more exposed relative to the
base traffic and noise, while the attacker’s best move gets no
worse by increasing his attack volume. Figure 2 shows that
as the noise level increases relative to the base and attack
traffic, the poorer strategies are hidden a little better. This
would support the idea that as observed traffic deviates more

Fig. 3. Plot of best independent move for the attacker versus attack volume
on a 10x10x10 matrix with 0.3 noise level.

Fig. 4. Plot of best independent move for the attacker versus noise level on
a 10x10x10 matrix with 0.3 attack volume.

and more from established patterns, even bad attack strategies
become harder to detect.

The best independent move for the defender is analyzed
similarly, however in this case the values are calculated based
on the best that the defender can do given that the attacker
can choose the dimension that presents the worst max value
for the defender, or a minimax value. As can be seen in
Figure 3 and Figure 4, the strategies that worked well from
the attacker’s point of view also present the biggest problems
for the defender, and vice-versa.

The average overall sensitivity (AOS) values, as seen in Fig-
ure 5 and Figure 6, is a metric of the best potential payoff that
the defender could achieve in any dimension for a particular
experiment. The base and uniform attacker types perform with
this metric almost identically, with the figures isolating only
these two. As the noise level and the attack volume increase,
so does the average overall sensitivity measurement. This also
shows that as an attacker, using knowledge about the expected



Fig. 5. Plot of average overall sensitivity versus attack volume on a 10x10x10
matrix with 0.3 noise level.

Fig. 6. Plot of average overall sensitivity versus noise level on a 10x10x10
matrix with 0.3 attack volume.

distribution of traffic in the dimension being attacked is a
powerful tool for hiding attack traffic.

The average overall payoff (AOP) value, as seen in Figure 7
and Figure 8 shows what the average of the expected payoff
would be, given that the attacker chooses the best independent
move for the attacker, and the defender chooses the best
independent move for the defender. The value in the sensitivity
matrix at this junction is the overall payoff, and the AOP is the
average value as measured in each experiment. As can be seen
in the figures, the pattern followed is similar to the sensitivity
for this game. As the noise level and the attack volume
increase, so does the average overall payoff measurement.
An attacker wishing to optimize this metric would be best
served by a strategy taking advantage of knowledge about the
expected distribution of traffic in the dimension being attacked.

Another conclusion illustrated by these results is that a
defender that has knowledge of certain dimensions within the
system that the attacker does not is able to better expose that an

Fig. 7. Plot of average overall payoff versus attack volume on a 10x10x10
matrix with 0.3 noise level.

Fig. 8. Plot of average overall payoff versus noise level on a 10x10x10
matrix with 0.3 attack volume.

attack is occurring and from where that attack is coming. This
fact is shown by examining the loaded attacker type. In this
type of attack, the attacker is applying attack traffic to a single
division within its attack dimension, and regardless which
dimension the defender is watching, the attacker exposes its
traffic the most of any of the attack strategies we examined.

B. Distribution Difference Analysis-Interdimensional

As discussed above in Section III-I, interesting things hap-
pen when we vary the distance between distributions. There
are several components we may consider when analyzing the
data in this way. First, we can vary the distance between the
aggregate distributions for the divisions of two dimensions
of the base distribution, fixing the attack distribution. We can
also fix the base and attack distributions, and vary the distance
between the base and hidden distributions.

First, we consider a game consisting of symmetric randomly
chosen distributions, fix the attacker type as a Base attacker,



and then analyze the sensitivity matrices that result. As shown
in Figure 9, the sensitivity grows as the distributions used by
the attacker and defender approach zero. This means that the
defender has chosen a dimension whose distribution perfectly
isolates the attack traffic. As the two distributions diverge, the
attack traffic becomes more hidden from the defender.

Fig. 9. Plot of sensitivity values as the distance between the attacker and
defender dimensions vary.

C. Distribution Difference Analysis-Base to Hidden

When the base and hidden distributions coincide, we say
the distance between the two distributions is zero. In this
case, and when the attacker is allowed awareness of and he
emulates the base distribution for the attack dimension, then
the sensitivity matrix contains all zeroes. In other words, the
attack is perfectly hidden from the defender. On the other hand,
when the distance between the base and hidden distributions
is the greatest, the sensitivity is maximal. These observations
are illustrated in Figure 10 at the bottom left and top right
edges of the shaded areas.

Fig. 10. Plot of max sensitivity values varying the distance between the
attacker and defender dimension aggregate values.

One interesting aspect of our research is the fact that even
when the attacker mimics the base distribution in the attack
dimension, there are still many hidden distributions that result
in an aggregate distribution in the defender’s chosen dimension
that match the base distribution in that dimension.

We next further examine what happens when we fix the
base distribution and show the effect of changing the hidden

distribution. As shown in Figure 11, varying the hidden
distribution so that the distance between it and the fixed base
distribution grows causes the sensitivity to increase.

Fig. 11. Plot of sensitivity values for a fixed base distribution varying the
hidden distribution.

VI. CONCLUSION

As we have shown, our research indicates that there is
potential for using statistical methods such as ours for creating
defense mechanisms that can detect a DDoS attack, given that
favorable signal-to-noise ratio exists. Our work also shows that
an attacker is more exposed as the frequency of attack traffic
increases, but that an attacker that has a priori knowledge of
the expected traffic volume for the dimension and divisions
employed in the attack has the best ability to hide attack
traffic when such statistical methods are used by the defender.
Future work seeks to show similar results when real world
distributions such as those modeled in a power law are
integrated into the sensitivity matrix and employed by the
attacker and defender.
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