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: : : random oracles, by their very structurelessness, appear more benign and less likelyto distort the relations among complexity classes than the other oracles used in com-plexity theory and recursive function theory, which are usually designed expressly tohelp or frustrate some class of computations.This led them to formulate the random oracle hypothesis [5]: the relationship between twonatural complexity classes is preserved with probability 1 under relativization by a random oracle.In this new framework, a conjectured relationship may be supported by showing that it holdswith probability 1 relative to a random oracle. Clearly, this framework precludes the existence ofcontradictory (probability 1) relativizations.Counter-examples to the random oracle hypothesis have been demonstrated and discussed in[12, 13, 14, 17, 19]. Recently, the random oracle hypothesis su�ered a particularly crippling blow:the classes IP and PSPACE were shown to be equal [18, 20] despite separation with probability1 [10, 6]. This proof that IP = PSPACE relies heavily on algebraic techniques, the cause of thisnonrelativizing behavior. The class PSPACE has recently been given a new characterization interms of Probabilistically Checkable Debate Systems [7, 8] also using such algebraic techniques. Weexamine the relativized behaviour of IP and PSPACE in comparison with the classes de�ned bythese debate systems. We determine a natural boundary (in terms of certain parameters of thedebate systems) separating direct-simulability and inequality (with probability 1). In addition too�ering more evidence that these algebraic techniques do not relativize, these boundaries indicatethat this new characterization of PSPACE is essentially stronger than the characterization ofPSPACE by interactive proof systems{i.e., under relativization by a random oracle, the class oflanguages recognized by these debate systems is strictly smaller than that recognized by interactiveproof systems. Finally, in the same vein as [9], we show that if 9O;EXPO = PCDSO[logn; logn]then P 6= PSPACE.Oracles are attached to given enumerations of machines. When we speak of CO where C is acomplexity (language) class and O an oracle, we will mean nL j L = L(MOi )o where fMig is anenumeration of machines such that fL(Mi)g = C.Fix an alphabet �. Let � denote the empty word of ��. 1k denotes the concatenation of k1's. The result of running a probabilistic Turing machine M on input x with random string R isdenoted by M [x;R]. We reserve the variable n for jxj, the length of the input in question.De�nition 1.1 (IP) Let P be the class of interactive Turing machines ([11]). De�ne IP to bethe class of languages L for which there exists a polynomial-time probabilistic interactive Turingmachine V so that� x 2 L ) 9P 2 P, PrR2coins [(V $ P )[x;R] accepts] = 1� x 62 L ) 8P 2 P, PrR2coins [(V $ P )[x;R] accepts] < 13where (V $ P )[x;R] denotes the interaction of veri�er V with prover P on input x and randomcoins R.After the de�nition of this class, it was shown thatTheorem 1.2 ([10]) 9O; coNPO 6� IPO (which implies that PSPACEO 6= IPO).and that, in fact, the above is a probability 1 result ([6]). Then, in a remarkable breakthrough, itwas actually shown that 2



Theorem 1.3 ([18, 20]) IP = PSPACE.Recently, using the machinery of [1], Condon et. al. gave a new characterization of PSPACEin terms of Probabilistically Checkable Debate Systems, de�ned below.De�nition 1.4 For a function f : �� ! ��, let fhxi def= f(x) � x. A k-player is a functionP : �� ! �k. Two k-players, P1 and P2, de�ne an l-debate Dl(P1; P2) def= lz }| {P1hP2hP1 : : : h�i : : :ii.De�nition 1.5 ([7, 8]) De�ne PCDS[r(n); a(n)] to be the class of languages L for which thereexists a probabilistic polynomial time Turing machine V and polynomials q and l so that� x 2 L ) 9P1; 8P2, PrR2coins hV D(P1;P2)[x;R] acceptsi = 1� x 62 L ) 8P1; 9P2, PrR2coins hV D(P1;P2)[x;R] acceptsi < 13where P1 and P2 are q(n)-players, D(P1; P2) = Dl(n)(P1; P2) and, in either case, the veri�er Vuses at most O(r(n)) random bits and examines at most O(a(n)) bits of D(P1; P2), the debategenerated by the two players P1 and P2. If we change the reject criteria so that the second playeracts randomly, that is� x 62 L ) 8P1, PrR2coins;P2 hV D(P1;P2)[x;R] acceptsi < 13then we obtain the class of languages with Random Probabilistically Checkable Debate Systems [8]which we denote RPCDS[r(n); a(n)].As mentioned above, we have the following two theorems relating these debate systems andPSPACE.Theorem 1.6 ([7]) PSPACE = PCDS[poly n; poly n] = PCDS[logn; 1].Theorem 1.7 ([8]) PSPACE = RPCDS[poly n; poly n] = RPCDS[logn; 1].2 Relativization ResultsWe concentrate on the behaviour of these classes with respect to a random oracle O 2 
 = 2�� .The probability measure � on 
 is de�ned by independently placing each string in the oracle withprobability 12 . We begin by considering the relationship between PCDS[r(n); a(n)] and PSPACE.2.1 The Relationship between PCDS[r(n); a(n)] and PSPACESince we are comparing PSPACE with smaller classes we consider PSPACE to be provided withthe weak oracle-access mechanism, that is the oracle tape is a work tape.Theorem 2.1 8O � ��;PCDSO[0; polyn] = PSPACEO.Proof: By simulation. 2Theorem 2.2 8k;PrO2
 hPSPACEO = PCDSO[poly n; nk]i = 0.3



Proof: We prove in the lemma below that with probability 1, NPO is not even contained inPCDSO[poly n; nk]. Since 8O;NPO � PSPACEO, this shows that, with probability 1,PCDSO[poly n; nk] and PSPACEO are di�erent.Lemma 2.3 8k; PrO2
 hNPO � PCDSO[poly n; nk]i = 0.Proof: For an oracle O, de�neÔ = nx j 8t 2 f0; : : : ; jxj � 1g ; x10t 2 Oo :A polynomial-time machine with access to O can e�ciently sample from Ô. If O is a random oracle,then 8x, PrO2
 hx 2 Ôi = 12jxj so that 8n, ExpO2
 h���Ô \ �n���i = 1. For an oracle A, de�neL9(A) = n1n j 9y 2 �n2k \Ao :Clearly, 8O;L9(Ô) 2 NPO. We show that PrO2
 hL9(Ô) 2 PCDSO[poly n; nk]i = 0. Fix anenumeration of PCDSO[poly n; nk] veri�ers fVi j i 2 Ng. Let Vi be a veri�er of this collectionwhich, for n � n0, takes at most ni time, queries at most cnk debate bits and uses some �xedpolynomial, r(n), amount of randomness. For m; i 2 N, de�ne
(s)m = nO 2 
 j ���Ô \ �m��� = so :Then �(
(0)m ) = (1 � 12m )2m � 1e . Let n1 be large enough so that 2�ni1�2cnk12n2k1 < 23 . Let n > ~n def=max(n0; n1) and consider the behaviour of V Oi on 1n with an oracle O selected from 
(0)n2k . One ofthe following three cases applies:1. If PrO2
(0)n2k h9P1; 8P2;PrR2coins hV O;D(P1;P2)i [1n;R] acceptsi = 1i � 14 , thenPrO2
 �9P1; 8P2; PrR2coinshV O;D(P1;P2)i [1n;R] acceptsi = 1 ^ 1n 62 L9(Ô)� �14 PrO2
 hO 2 
(0)n2k i � 14e: (1)(Recall that �(
(0)n2k) � 1e .)2. If PrO2
(0)n2k �9P1; 8P2; PrR2coinshV O;D(P1;P2)i [1n;R] acceptsi 2 [13 ; 1)� � 14e (2)then Vi is behaving improperly, and evidently does not accept L9(Ô) for this 14e fraction oforacles.3. If PrO2
(0)n2k h8P1; 9P2;PrR2coins hV O;D(P1;P2)i [1n;R] acceptsi < 13i � 1� 12e , then we show thatthis set of oracles on which Vi is successful induces a set of oracles on which Vi errs. To beginwith, we show that for any oracle O, most questions that Vi asks of O are asked on very fewrandom strings. Fix an oracle O. Let us consider the behaviour of Vi on a particular random4



string R. Considering all of the possible 2cnk responses to Vi's cnk queries1 to D(P1; P2) andnoting that on any one path Vi may only query ni strings of O, we have that on R there area total of at most ni � 2cnk strings of O that Vi might query. We then have thatPrq2�n2k hV Oi [1n;R] queries qi � ni � 2cnk2n2k :De�ne R(Q;O) def= nR 2 f0; 1gr(n) j 9q 2 Q; 9D � ��; VO;Di [1n;R]) queries qo :Then Expq2�n2k [jR(fqg ; O)j] � ni � 2r(n) � 2cnk2n2k :Invoking Markov's inequality yields8O; Prq2�n2k "jR(fqg ; O)j � 2 � ni � 2r(n) � 2cnk2n2k # � 12 :De�ne Sq def= nq1; q10; : : : ; q10jqjo. Then, because 8q1 6= q2 2 �2cnk ; Sq1 \ Sq2 = ; we havethat 8O; Prq2�n2k "jR(Sq; O)j > 2 � ni � 2r(n)2cnk2n2k # � 12 :Now, de�ne 
(1)m def= nO 2 
 j ���Ô \ �m��� = 1o. Then �(
(1)m ) � 1e . Let E(O) be the event that8P1; 9P2;PrR2coins hV O;D(P1;P2)i [1n;R] acceptsi < 13 . Then we may computePrO2
(0)n2k ;q2�n2k "E(O) ^ jR(Sq; O)j < 2 � ni � 2r(n) � 2cnk2n2k # �PrO2
(0)n2k [E(O)] + PrO2
(0)n2k ;q2�n2k "jR(Sq; O)j < 2 � ni � 2r(n) � 2cnk2n2k # � 1 �(1� 12e) + (1� 12)� 1 �14 :When the two above events occur we can conclude that8P1; 9P2; PrR2coinshV O[Sq ;D(P1;P2)i [1n;R] acceptsi < 13 + 2 � ni � 2cnk2n2k :Notice that if O and q are chosen uniformly from 
(0)m and �m, respectively, then O [ Sq isuniform on 
(1)m . Therefore, for n > ~n,PrO2
(1)n2k �8P1; 9P2; PrR2coinshV O[Sq ;D(P1;P2)i [1n;R] acceptsi < 1� � 14 :1There are at most 2cnk responses to Vi's queries even if Vi is adaptive (so that the i + 1st query may depend onthe answer to the ith query). 5



Since O 2 
(1)m implies 1n 2 L9(Ô),PrO2
 �8P1; 9P2 PrR2coinshV O;D(P1;P2)i [1n;R] acceptsi 6= 1 ^ 1n 2 L9(Ô)� � 14 � 1e : (3)Let �n be the event that 9P1; 8P2; VO;D(P1;P2)i [1n] accepts () 1n 2 L9(Ô). From (1), (2) and(3) it follows that for n > ~n, PrO2
 [�n] < 1� 14e:Furthermore, for m > ni, �n and �m are independent (or use Lemma 1 of [5]). Hence, for any Vi,PrO2
 hL(V Oi ) = L9(Ô)i �1Yj=~n PrO2
 h�2lj i = 0:Finally, PrO2
 h9V Oi ; L(VOi ) = L9(Ô)i �Xi PrO2
 hL(V Oi ) = L9(Ô)i = 0so that PrO2
 hNPO � PCDSO[poly n; nk]i = 0:2 Reiterating, from the fact that 8O;NPO � PSPACEO and the above lemma we have thedesired theorem. 22.2 The Relationship between PCDS[r(n); a(n)] and IPTheorem 2.4 Consider the two classes IP and PCDS[polyn; nk]. We have1. PrO2
 hIPO � PCDSO[poly n; nk]i = 0,2. PrO2
 hPCDSO[poly n; nk] � IPOi = 0.Proof:1. Using Lemma 2.3 and the fact that 8O 2 
;NPO � IPO we have the desired statement.2. This follows from [6] and the fact that 8O; coNTIMEO[n] � IPO ) coNPO � IPO.22.3 The RelativizedRelationship between RPCDS[r(n); a(n)] and IP, PCDS[r(n); a(n)]Theorem 2.5 8O; IPO = RPCDSO[polyn; poly n] = RPCDSO[0; polyn].Proof: By simulation. 2Consider the classes RPCDS[poly n; nk] and IP.6
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≠Figure 1: The Relativized World.Theorem 2.6 8k;PrO2
 hRPCDSO[poly n; nk] = IPOi = 0.Proof: We have that 8O;RPCDSO[poly n; nk] � PCDSO[poly; nk] so that Lemma 2.3 yieldsthe desired result. 2Theorem 2.7 For a(n) = !(logn),PrO2
 hPCDSO[r(n); a(n)]� RPCDSO[polyn; poly n]i = 0:Proof: 8O; coNTIMEO[a(n)] � PCDSO[r(n); a(n)] but, by argument similar to that ofLemma 2.3, one may show thatPrO2
 h9L 2 coNTIMEO[a(n)]�RPCDSO[poly n; polyn]i = 1:2 Figure 1 shows the probability 1 relationships between these classes.2.4 The Relationship between PCDS[r(n); a(n)] and EXPTIMEAn oracle equating NP and EXP has been discovered by Heller [16].Theorem 2.8 ([16]) 9O � �� so that EXPO = NPO.Fortnow [9] has shown the following theorem relating the existence of an oracle equatingPCP[logn; 1] (see [1]) and EXP to the P ?= NP question.Theorem 2.9 ([9]) If 9O � �� so that PCPO[logn; 1] = EXPO then P 6= NP.We prove a similar result for the class PCDS[logn; logn].Theorem 2.10 If 9O � �� so that PCDSO[logn; logn] = EXPO then P 6= PSPACE.7



Proof: Let O be an oracle so that PCDSO[logn; logn] = EXPO. Assume, for contradictionthat P = PSPACE. Let L be a �p-complete language for EXPO. We show that L 2 POand conclude that PO = EXPO, which contradicts the time hierarchy theorem [15]. Let V be aPCDSO[logn; logn] veri�er for L. We construct DO, a deterministic polynomial time machine sothat L(DO) = L. DO, given input w, writes down the entire computation tree T of V [w], answeringV [w]'s questions to O by actual questions to O and branching at those nodes where V [w] receivesdebate tape answers. Notice that choice of a pair (P1; P2) determines a path in T. This pathis satisi�ed if V [w] accepts with these responses. Because V [w] uses O(logn) random bits andreceives O(logn) bits back from the debate tape, the total size of T is polynomial in jwj. T containsno queries to O. DO would now like to determine if 9P1; 8P2, the induced path in T is satis�ed.Fortunately, this is a PSPACE decision problem, which can be solved in polynomial time becauseP = PSPACE. Hence, L 2 PO and EXPO = PO, contradicting the time hierarchy theorem. 23 Direction for Future ResearchThe discovery of simulation techniques which do not relativize (with probability 1) is astonishing.This leads us to question the meaning of relativization in general. One would like to distill theessential non-relativizing ingredient of these algebraic techniques. This may be done by presentationof (perhaps contrived) complexity classes with a somehow simpler (algebraic) proof of equality whichexhibit this behaviour. Alternatively, this may be done by presentation of a new framework (perhapsjust a new oracle-access mechanism [9]), analogous to relativization, in which these techniquesbehave well.4 AcknowledgementsWe would like to thank Joan Feigenbaum and Lance Fortnow for helpful discussions. We wouldalso like to thank the anonymous referees, who gave an improved proof of Theorem 2.4(2) andimproved the general presentation.References[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and the hardnessof approximation problems. In Proceedings of the Thirty Third Symposium on Foundations ofComputer Science, pages 14{23. IEEE, 1992.[2] L. Babai. Trading group theory for randomness. In Proceedings of the Seventeenth ACMSymposium on the Theory of Computing, pages 421{429. ACM, 1985.[3] L. Babai and S. Moran. Arthur-merlin games: a randomized proof system, and a hierarchy ofcomplexity classes. Journal of Computer and System Sciences, 36(2):254{276, 1988.[4] T. Baker, J. Gill, and R. Solovay. Relativizations of the P = NP question. SIAM Journal onComputing, 4(4):431{442, 1975.[5] C. Bennett and J. Gill. Relative to a random oracle A, PA 6= NPA 6= co-NPA with probability1. SIAM Journal on Computing, 10(1):96{113, 1981.[6] B. Chor, O. Goldreich, and J. H�astad. The random oracle hypothesis is false. Manuscript.8
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