
Spanning trees short or small�R. Raviy R. Sundaramz M. V. Marathex D. J. Rosenkrantz{S. S. RavikAbstractWe study the problem of �nding small trees. Classical network design problemsare considered with the additional constraint that only a speci�ed number k of nodesare required to be connected in the solution. A prototypical example is the kMSTproblem in which we require a tree of minimum weight spanning at least k nodes inan edge-weighted graph. We show that the kMST problem is NP-hard even for pointsin the Euclidean plane. We provide approximation algorithms with performance ratio2pk for the general edge-weighted case and O(k1=4) for the case of points in the plane.Polynomial-time exact solutions are also presented for the class of treewidth-boundedgraphs which includes trees, series-parallel graphs, and bounded bandwidth graphs, andfor points on the boundary of a convex region in the Euclidean plane.We also investigate the problem of �nding short trees, and more generally, that of�nding networks with minimum diameter. A simple technique is used to provide apolynomial-time solution for �nding k-trees of minimum diameter. We identify easyand hard problems arising in �nding short networks using a framework due to T. C.Hu.
�This paper appeared in a preliminary form as [31].yDIMACS, Department of Computer Science, Princeton University, Princeton, NJ 08854 Email:ravi@cs.princeton.edu. Research done while author was at Brown University with the support of an IBMGraduate Fellowship, NSF PYI award CCR-9157620 and DARPA contract N00014-91-J-4052 ARPA OrderNo. 8225.zDept. of Computer Science, MIT LCS, Cambridge MA 02139. Email: koods@theory.lcs.mit.edu. Re-search supported by DARPA contract N0014-92-J-1799 and NSF 92-12184 CCR.xLos Alamos National Laboratory, P.O. Box 1663, MS M986, Los Alamos, NM 87545.Email: madhav@c3.lanl.gov. Supported by U.S. Department of Energy Contract W-7405-ENG-36. Mostof the work was done while the author was at the Department of Computer Science, SUNY, Albany, NY12222 and was supported by NSF Grant CCR 89-03319.{Dept. of Computer Science, SUNY, Albany, NY 12222. Email: djr@cs.albany.edu. Supported by NSFGrant CCR 90-06396.kDept. of Computer Science, SUNY, Albany, NY 12222. Email: ravi@cs.albany.edu. Supported by NSFGrant CCR 89-05296. 0

1 Introduction1.1 Motivation: small treesThe oil reconnaissance boats are back from their �nal trip o� the coast of Norway, andpresent you with a detailed map of the seas surrounding the coastline. Marked in thismap are locations which are believed to have a good chance of containing oil under thesea bed. Your company has a limited number of oil rigs that it is willing to invest in thee�ort. Your problem is to position these oil rigs at marked places so that the cost of layingdown pipelines between these rigs is minimized. The problem at hand can be modeled asfollows: Given a graph with non-negative edge-weights and a speci�ed number k, �nd atree of minimum weight spanning at least k nodes. Note that a solution to the problemwill be a tree spanning exactly k nodes. We call this problem the k-Minimum SpanningTree (or the kMST) problem. Moreover, the kMST problem is at the heart of several otheroptimization problems such as the latency problem [9], and the prize-collecting travelingsalesperson problem [1] and hence is of independent interest. In this paper, we study suchclassical network-design problems as the MST problem with the additional constraint thatonly a speci�ed number of nodes need to be incorporated into the network. Unlike theMST problem which admits a polynomial-time solution [25, 28], the kMST problem isconsiderably harder to solve. In Theorem 2.1 of Section 2 we prove that the kMST problemis NP-complete. This result was independently obtained by Lozovanu and Zelikovsky [26].The kMST problem remains NP-complete even when all the edge weights are drawn fromthe set f1; 2; 3g (i.e. the graph is complete and every edge takes one of three di�erentweights). It is not hard to show a polynomial-time solution for the case of two distinctweights. The problem remains NP-hard even for the class of planar graphs as well as forpoints in the plane.1.2 Approximation algorithmsA �-approximation algorithm for a minimization problem is one that delivers a solutionof value at most � times the minimum. Consider a generalization of the kMST problem,the k-Steiner tree problem: given an edge-weighted graph, an integer k and a subset ofat least k vertices speci�ed as terminals, �nd a minimum-weight tree spanning at least kterminals. We can apply approximation results for the kMST problem to this problem byconsidering the auxiliary complete graph on the terminals with edges weighted by shortest-path distances. A �-approximation for the kMST problem on the auxiliary graph yieldsa 2�-approximation for the k-Steiner tree problem. Therefore we focus on approximationsfor the kMST problem. We provide the �rst approximation algorithm for this problem.In Theorem 3.1 of Section 3 we present a polynomial-time algorithm 2pk-approximationalgorithm for the kMST problem. The algorithm is based on a combination of a greedytechnique that constructs trees using edges of small cost and a shortest-path heuristicthat merges trees when the number of trees to be merged is small. The analysis of theperformance ratio is based on a solution-decomposition technique [14, 24, 29, 30] whichuses the structure of an optimal solution to derive a bound on the cost of the solutionconstructed by the approximation algorithm.1

The above theorem provides a 4pk-approximation algorithm for the k-Steiner tree prob-lem as well. Moreover, we construct an example that demonstrates that the performanceguarantee of the approximation algorithm is tight to within a constant factor.We derive a better approximation algorithm for the case of points in the Euclideanplane. In Theorem 4.1 of Section 4 we show that there is a polynomial-time algorithmthat, given n points in the Euclidean plane, and a positive integer k � n, constructs a treespanning at least k of these points such that the total length of the tree is at most O(k 14)times that of a minimum-length tree spanning any k of the points.As before, we construct an example showing that the performance ratio of the algorithmin Theorem 4.1 is tight. Our proof of Theorem 4.1 also yields as corollary an approximationalgorithm for the rectilinear kMST problem.1.3 Polynomially solvable special casesSince the kMST problem is NP-complete even for the class of planar graphs, we focus onspecial classes of graphs and provide exact solutions that run in polynomial time. Robertsonand Seymour in their seminal series of papers [32] introduced and developed the notion oftreewidth. Many hard problems have exact solutions when attention is restricted to theclass of treewidth-bounded graphs and much work has been done in this area especiallyby Bodlaender [11]. Independently, Bern, Lawler and Wong [8] introduced the notion ofdecomposable graphs. Later, it was shown [5] that the class of decomposable graphs andthe class of treewidth bounded graphs are one and the same. A class of decomposablegraphs is de�ned using a �nite number of primitive graphs and a �nite collection of binarycomposition rules. Examples of decomposable graphs include trees, series-parallel graphsand bounded-bandwidth graphs. We use a dynamic programming technique to show thatfor any class of decomposable graphs (or treewidth-bounded graphs), there is an O(nk2)-time algorithm for solving the kMST problem. A polynomial-time algorithm for trees wasalso independently obtained by Lozovanu and Zelikovsky [26].Though the kMST problem is hard for arbitrary con�gurations of points in the plane,we show in Subsection 5.2 that there is a polynomial-time algorithm for solving the kMSTproblem for the case of points in the Euclidean plane that lie on the boundary of a convexregion. We also provide a faster algorithm to �nd the optimal kMST when all the pointslie on a circle. The proof of the above facts uses a monotonicity property of an optimal treealong with a degree constraint on an optimal solution. This allows us to apply dynamicprogramming to �nd the exact solution. Several researchers in computational geometryhave presented exact algorithms for choosing k points that minimize other objectives suchas diameter, perimeter, area and volume [3, 16, 17, 18].1.4 Short treesKeeping the longest path in a network small is often an important consideration in networkdesign. We investigate the problem of �nding networks with small diameter. Recall thatthe diameter of a tree is the maximum distance (path length) between any pair of nodes inthe tree. The problem of �nding a minimum-diameter spanning tree of an edge-weightedgraph was shown to be polynomially solvable by Camerini, Galbiati and Ma�oli [13] when2

rij dij Communication cost Diameter costArbitrary fag Cut-tree [22] Openfag Arbitrary NP-complete [23] Poly-time [13]fa; bg f0; cg Cut-tree variant (this paper, [22]) Poly-time (this paper)fa; 4ag fc; 5cg NP-complete [23] NP-complete (this paper)Table 1: Results on minimum-communication-cost spanning trees and minimum-diameter-cost spanning trees.the edge weights are nonnegative. They also show that the problem becomes NP-hard whennegative weights are allowed. Camerini and Galbiati [12] have proposed polynomial-timealgorithms for a bounded path tree problem on graphs with nonnegative edge weights. Theirresult can be used to show that the minimum-diameter spanning tree problem as well as itsnatural generalization to Steiner trees can be solved in polynomial time. We use a similartechnique to show that the following minimum-diameter k-tree problem is polynomiallysolvable: given a graph with nonnegative edge weights, �nd a tree of minimum diameterspanning at least k nodes.We investigate easy and hard results in �nding short networks. For this, we use aframework due to T. C. Hu [22]. In this framework, we are given a graph with nonnegativedistance values dij and nonnegative requirement values rij between every pair of nodes iand j in the graph. The communication cost of a spanning tree is de�ned to be the sum overall pairs of nodes i; j of the product of the distance between i and j in the tree under d andthe requirement rij . The objective is to �nd a spanning tree with minimum-communicationcost. Hu considered the case when all the d values are one and showed that a Gomory-Hucut tree [21] using the r values as capacities is an optimal solution. Hu also considered thecase when all the r values are one and derived su�cient conditions under which the optimaltree is a star. The general version of the latter problem is NP-hard [13, 23].We de�ne the diameter cost of a spanning tree to be the maximum cost over all pairs ofnodes i; j of the distance between i and j in the tree multiplied by rij. In Table 1, we presentcurrent results in this framework. All rij and dij values are assumed to be nonnegative.The �rst two rows of the table examine the cases when either of the two parameters isuniform-valued. The last two rows illustrate that the two problems become NP-completewhen both parameters are two-valued.1.5 Short small treesWe consider the k-tree versions of the minimum-communication-cost and minimum-diameter-cost spanning tree problems and show in Theorem 6.6 that the minimum-communicationk-tree problem and the minimum-diameter k-tree problem are both hard to approximatewithin any factor even when all the dij values are one and the rij values are nonnegative.In the next section, we present the NP-completeness results. Section 3 contains the2pk approximation for the kMST problem. In Section 4, we present the stronger result for3

the case of points in the plane. In Section 5 we address polynomially solvable cases of theproblem. In Section 6, we prove our results on short trees. We close with a discussion ofdirections for future research.2 NP-completeness resultsTheorem 2.1 The (decision version of the) kMST problem is NP-complete.It is easy to see that the kMST problem is in NP. In this section we show that thekMST problem is NP-hard by reducing the Steiner tree problem to it. The Steiner treeproblem is known to be NP-hard [19]. As an instance of the Steiner tree problem we aregiven an undirected graph G, a set of terminals R (which is a subset of the vertex set of G)and a positive integer M , and the question is whether there exists a tree spanning R andcontaining at most M edges. We transform this input to an instance G0; k;M of the kMSTproblem as follows: We let X = jV (G)j � jRj and connect each terminal of G to a distinctpath of X new vertices, the path consisting of zero-weighted edges. We assign weight oneto the already existing edges of G and set the weight between all other pairs of vertices to1 (a very large number). This is the graph G0 (See Figure 1). We set k to be jRj � (X +1).And now we ask if G0 has a tree spanning k vertices of weight at most M . If there existsa Steiner tree in G spanning the set R and containing at most M edges, then it is easy toconstruct a kMST of weight at most M in G0. Conversely, by our choice of k and X, anykMST in G0 must contain at least one node from the path corresponding to each terminalin R. Hence any kMST can be used to derive a Steiner tree for R in G. This completesthe reduction. Extensions of hardness to the case of planar graphs and points in the planefollow in a similar way from the hardness of the Steiner tree problem in these restrictedcases. Given a planar embedding of G we can create an embedded version of G0 since onlypaths are added.The NP-hardness holds even when all the edge costs are from the set f1; 2; 3g. Thereduction for this case is similar to the above. Without loss of generality we assume thatin the given instance of the Steiner tree problem, G is connected and M � jV j � 1. We letX = jV (G)j � jRj as before, and connect each terminal of G to a distinct set of X verticesby edges of weight one. We set the original edges of G to have weight two and all otheredges to have weight three. We choose k = jRj � X +M + 1 and the bound on the costof the kMST to be jRj � X + 2M . If there exists a Steiner tree in G spanning the set Rand containing at most M edges, then it is easy to construct a kMST of weight at mostjRj �X + 2M in G0. This is done by connecting all the newly added vertices to the Steinertree using the weight one edges and then picking up more vertices (note that the graph isconnected and M � jV j � 1) using the weight two edges until there are jRj � X +M + 1vertices. If there exists a kMST of weight at most jRj �X +2M in G0 then observe that thekMST cannot contain an edge of weight three because it has exactly k � 1 = jRj �X +Medges and if it contained an edge of weight three then it would have to contain at leastjRj �X+1 edges of weight one but there are only jRj �X edges of weight one in G0. Further,the kMST must span R, and since it has at most M edges of weight two, hence there mustexist a Steiner tree in G spanning R and containing at most M edges.4

When there are only two distinct edge costs, i.e., the graph is complete and every edgehas one of two possible weights, the kMST problem can be solved in polynomial time. Thebasic idea is the following: Let w1 and w2 denote the two edge weights, where w1 < w2.Construct an edge subgraph G1 of G containing all the edges of weight w1. Choose aminimum number, say r, of the connected components of G1 to obtain a total of k nodes(dropping some nodes if necessary). Construct a spanning tree for each chosen componentand connect the trees together into a single tree by adding exactly r � 1 edges of weightw2. It is straightforward to verify that the resulting solution is optimal.

G

R

G

R

’

0−wt edges

X = | V | − | R |

k = | R | (X + 1).

Figure 1: The basic NP-hardness reduction from Steiner tree to kMST.3 The approximation algorithm for the general caseTheorem 3.1 There is a polynomial-time algorithm that, given an undirected graph G onn nodes with nonnegative weights on its edges, and a positive integer k � n, constructs atree spanning at least k nodes of weight at most 2pk times that of a minimum-weight treespanning any k nodes.In this section, we present the proof of the above theorem. As input, we are given anundirected graph G with nonnegative edge weights and an integer k.3.1 The algorithm and its running timeIt is useful to think of the algorithm as running in two distinct phases: a merge phase anda collect phase.During the merge phase, the algorithm maintains a set of clusters and a spanning treeon the vertex set of each cluster. Initially each vertex forms a singleton cluster. At each5

step of the merge phase, we choose an edge of minimum cost among all edges that arebetween two clusters, and merge them by using the edge to connect their spanning trees.De�ne the size of a cluster to be the number of vertices that it contains. During thecourse of the merge phase, the clusters grow in size. The collect phase is entered only when(i) there exists a set of at most pk clusters containing at least k vertices among them-selves(ii) no cluster has size k or more.In the collect phase, we consider each cluster in turn as the root and perform a shortest-path computation between clusters using the weights on inter-cluster edges. We determinefor each cluster C, the shortest distance dC such that, within distance dC from C, thereexist at most pk clusters whose sizes sum to at least k. Note that by the �rst preconditionfor starting the collect phase, the distance dC is well de�ned. We choose the cluster C withthe minimum value of dC and connect it using shortest paths of length at most dC to eachof these pk clusters. We prune edges from some of these shortest paths to output a tree ofclusters whose sizes sum to k. We may do this since any cluster has less than k nodes atthe start of this phase by the second precondition.The merge phase of the algorithm continues to run until both the preconditions of thecollect phase are satis�ed. Beginning with the step of the merge phase after which bothpreconditions of the collect phase are satis�ed, at each subsequent step, the algorithm forkso� an execution of the collect phase for the current con�guration of clusters. The mergephase continues to run until a cluster of size k or more is formed. Next, merge phase prunesthe edges of the spanning tree of the cluster whose size is between k and 2k so as to obtaina spanning tree of size exactly k. At this point, the merge phase terminates and outputsthe spanning tree of the cluster of size k. Each forked execution of the collect phase outputsa spanning tree of size between k and 2k as well. The algorithm �nally outputs the tree ofleast weight among all these trees. The algorithm is given below:Algorithm Merge-Collect1. Initialize each vertex to be in singleton connected components and the set of edgeschosen by the algorithm to be �. Initialize the iteration count i = 1.2. Repeat until there exists a cluster whose size is between k and 2k(a) Let V Si = fC1 � � �Clg denote the set of connected components at the start of thisiteration. Assume that the components are numbered in non-increasing order oftheir size.(b) Form an auxiliary graph G(V Si; E0) where the edge (Ci; Cj) between two com-ponents is the minimum cost edge in E whose endpoints belong to Ci and Cjrespectively.(c) Choose a minimum cost edge (Ci; Cj) inG(V Si; E0) and merge the correspondingclusters Ci and Cj . 6

(d) V Si+1 = V Si � fCig � fCjg [fCi [CjgRemark: This corresponds to one iteration of merge phase.(e) Let j� = minfj :Pji=1 jCij � kg.(f) If j� � pk then SOLi = Collect(G(V S;E0))(g) i = i+ 1;3. Prune the edges of the cluster whose size is between k and 2k to obtain a tree withexactly k vertices. Denote the tree obtained by MSOL.4. The output of the heuristic is the minimum valued tree among MSOL and all theSOLi's.Procedure Collect(G(V;E))1. For each cluster vertex C do(a) With the cluster C as the root, form a shortest path tree.(b) Let dC be the minimum distance such that there is a set of at most pk clusterswithin a distance of dC from C containing at least k vertices.(c) Choose these clusters and join them to the root cluster by using the edges in theshortest path tree computed in Step 1(a).(d) Prune the edges of the tree to obtain a tree having exactly k nodes.2. Output the tree corresponding to the choice of the root cluster C that minimizes dC .It is easy to see that there are at most O(n) steps in the merge phase and hence at mostthis many instances of the collect phase to be run. Using Djikstra's algorithm [15] in eachcollect phase, the whole algorithm runs in time O(n2(m+ n logn)) where m and n denotethe number of edges and nodes in the input graph respectively. The running time of thecollect phase dominates the running time of the merge phase.3.2 The performance guaranteeConsider an optimal kMST of weight OPT . During the merge phase, nodes of this treemay merge with other nodes in clusters. We focus our attention on the number of edgesof the optimal kMST that are exposed, i.e., remain as inter-cluster edges. We show thatat any step in which a large number of edges of the kMST are exposed, every edge in thespanning tree of each cluster has small weight.Lemma 3.2 If at the beginning of a step of the merge phase, an optimal kMST has at leastx exposed edges (inter-cluster edges), then each edge in the spanning tree of any cluster atthe end of the step has weight at most OPTx . 7

Proof:Since the edges are chosen in non-decreasing order of cost, it is clear that each edgein the spanning tree of any cluster at the end of the step has weight at most that of anyinter-cluster edge. Since an optimal kMST has at least x exposed edges one of these edgeshas weight at most OPTx . Hence each edge in the spanning tree of any cluster at the end ofthe step has weight at most OPTx .We now prove the performance guarantee in Theorem 3.1. The above lemma is usefulas long as the number of exposed edges is high. Applying the lemma with x = pk showsthat every edge in the spanning tree of each cluster has weight at most OPTpk . Consider thescenario when the merge phase runs to completion to produce a tree with at least k nodeseven before the number of exposed edges falls below pk. In this case, since the resultingtree has at most k nodes, the cost of the tree is at most OPTpk � k � 2pk �OPT .Otherwise, the number of exposed edges falls below pk before the merge phase runsto completion. However, in this case, note that both preconditions for the start of thecollect phase will have been satis�ed. Hence the algorithm must have forked o� a run ofthe collect phase. We show that the tree output by this run has low weight. Consider ashortest-path computation of the collect phase rooted at a cluster containing a node of theoptimal kMST. Then clearly, within a distance at most OPT , we �nd at most pk clusterswhose sizes sum to at least k. Since the number of exposed edges is less than pk, theclusters containing nodes of the optimal tree form such a collection. Since there are atmost pk clusters to connect to, the weight of these connections is at most pk � OPT . Tocomplete the analysis we need to upper-bound the weight of the spanning trees within eachof the clusters retained in the output solution. This is not hard since all edges in theseclusters have weight at most OPTpk by Lemma 3.2. Since the size of the output tree is atmost k (as a result of the pruning), the total weight of all the edges retained within theseclusters is at most pk �OPT . By summing the weight of these intra-cluster edges and theinter-cluster connections we show that the output tree has cost at most 2pk � OPT . Thisproves the performance ratio of 2pk claimed in Theorem 3.1.The example in Figure 2 shows that the performance ratio of the algorithm is
(pk).The optimal kMST is the horizontal path, each edge of which has weight zero or OPTpk . Thehorizontal path has pk edges of weight OPTpk each. All zero-weight edges will be chosen�rst in the merge phase. The merge phase running to completion will extend each of thezero-weight upward-directed paths to include
(k) edges each of weight OPT4pk resulting ina tree of weight
(OPT � pk). The collect phases may output trees consisting of all thepk + 1-sized clusters at the bottom of the �gure each of weight
(OPT � pk).4 An approximation algorithm for points on the planeTheorem 4.1 There is a polynomial-time algorithm that, given n points in the Euclideanplane, and a positive integer k � n, constructs a tree spanning at least k of these pointssuch that the total length of the tree is at most O(k 14) times that of a minimum-length treespanning any k of the points. 8

0 0 0

OPT OPT

OPT

k

OPT

k
OPT

k

OPT

k

OPT

k

OPT

k

OPT

k

OPT

k

OPT

k

OPT

k
k

k

p +1 nodes
in a zero wt.
cluster

p +1 nodes
in a zero wt.
cluster

+1 nodes
in a zero wt.
cluster

kp +1 nodes
in a zero wt.
cluster

p +1 nodes
in a zero wt.
cluster

+1 nodes
in a zero wt.
cluster

k

Figure 2: Example of a graph in which the algorithm in Theorem 3.1 outputs a tree ofweight
(OPT � pk).
9

In this section, we present a heuristic for the kMST problem for points on the plane and aproof of its performance guarantee. Let S = fs1; s2; :::; sng denote the given set of points.For any pair of points si and sj, let d(i; j) denote the Euclidean distance between si andsj.4.1 The heuristicI. For each distinct pair of points si, sj in S do(1) Construct the circle C with diameter � = p3d(i; j) centered at the midpoint ofthe line segment hsi; sji.(2) Let SC be the subset of S contained in C. If SC contains fewer than k points, skipto the next iteration of the loop (i.e., try the next pair of points). Otherwise, dothe following.(3) Let Q be the square of side � circumscribing C.(4) Divide Q into k square cells each with side = �=pk.(5) Sort the cells by the number of points from SC they contain and choose theminimum number of cells so that the chosen cells together contain at least kpoints. If necessary, arbitrarily discard points from the last chosen cell so thatthe total number of points in all the cells is equal to k.(6) Construct a minimum spanning tree for the k chosen points. (For the rectilinearcase, construct a rectilinear minimum spanning tree for the k chosen points.)(7) The solution value for the pair hsi; sji is the length of this MST.II. Output the smallest solution value found.It is easy to see that the above heuristic runs in polynomial time. In the next subsection,we show that the heuristic provides a performance guarantee of O(k1=4). We begin withsome lemmas.4.2 The performance guaranteeLemma 4.2 Let S denote a set of points on the plane, with diameter �. Let a and b betwo points in S such that d(a; b) = �. Then the circle with diameter p3� centered at themidpoint of the line segment ha; bi contains S.Proof: Suppose there exists a point p 2 S not contained within the circle of diameter p3�centered at the midpoint of the line segment ha; bi. If p lies on the perpendicular bisectorof the line segment ha; bi then it is clear that d(a; p) = d(b; p) > �, else p is closer to one ofa and b than the other. Say p is closer to a; then it is easy to see that d(b; p) > �. Thus, ifthere exists a point outside the circle then it contradicts the fact that the diameter of theset S is �. Hence S must be contained within the circle.Lower Bounds on an Optimal kMSTThe following lemma is used to establish a lower bound on OPT .10

Lemma 4.3 Consider a square grid on the plane with the side of each cell being �. Thenthe length of an MST for any set of t points, where each point is from a distinct cell is
(t�).Proof: Pick a point from the set and discard all points in the eight cells neighboring the cellcontaining the chosen point. Doing this repeatedly we choose a subcollection of t=9 =
(t)points such that the distance between any pair of points in the subcollection is at least �.The lemma then follows from the observation that the minimum length of a tree spanning
(t) points that are pairwise �-distant is
(t�).Let P � denote the set of points in an optimal solution to the problem instance. Let �denote the diameter of P � (i.e., the maximum distance between a pair of points in P �),and OPT denote the length of an MST for P �. Consider an iteration in which the circleconstructed by the heuristic is de�ned by two points a and b in P � such that d(a; b) = �.Let g be the number of square cells used by the heuristic in selecting k points in thisiteration. To establish the performance guarantee of the heuristic, we show that the lengthof the MST constructed by the heuristic during this iteration is within a factor O(k1=4) ofOPT .It is easy to see that OPT � � because � is the diameter of P �.Since the heuristic uses a minimum number (g) of square cells in selecting k points, thepoints in P � must occur in g or more square cells. Note that the side of each square cell isp3�=pk. This gives us the following corollary to Lemma 4.3.Corollary 4.4 OPT =
(g�=pk)Upper Bound on the Cost of the HeuristicWe now prove an upper bound on the cost of the spanning tree returned by the heuristic.For this, we need the following lemma.Lemma 4.5 The length of a minimum spanning tree for any set of q points in a squarewith side � is length O(�pq).Proof: Paste a square grid over the square where each sub-cell in the grid has side �=pq.Connect each point to a closest vertex in the grid. Consider the tree consisting of onevertical line, all the horizontal lines in the grid connected to the vertical line, and thevertical lines connecting each point to its nearest horizontal line (See Figure 3). It is clearthat the grid lines in the tree have total length O(�pq) and the lines connecting the pointsto the grid have total length q � O(�=pq) = O(�pq). This is a Steiner tree. But, it is asimple matter to observe that a spanning tree of at most twice the length can be obtainedby shortcutting the Steiner tree.Lemma 4.6 The length of the spanning tree constructed by the heuristic is O(pg�).11

Spanning tree

Grid

Square with points

Figure 3: A spanning tree of length O(�pq) on any q points in a square of side �.Proof: Let Qi denote the set of points in the ith cell chosen by the heuristic, 1 � i � g.ThusPgi=1 jQij = k. Consider the following two-stage procedure for constructing a spanningtree for the points in [gi=1Qi.Stage I: Construct a minimum spanning tree for the points in Qi, 1 � i � g. Note that thepoints in Qi are within a square of side p3�=pk. Using Lemma 4.5, the length of an MSTfor Qi is O(�pkpjQij). Thus, the total length of all the minimum spanning trees constructedin this stage is O(�pk Pgi=1pjQij) = O(pg �) by the Cauchy-Schwartz inequality.Stage II: Connect the g spanning trees constructed in Stage I into a single spanning treeas follows. Choose a point arbitrarily from each Qi (1 � i � g), and construct an MST forthe g chosen points. Note that these g points are within a square of side p3 �. Thus, byLemma 4.5, the length of the MST constructed in this stage is O(pg �) as well.Thus, the total length of the spanning tree constructed by the two-stage procedure isO(pg �). 2The Final AnalysisWe are now ready to complete the proof of the performance bound. As argued above,OPT =
(�), and from Corollary 4.4, OPT =
(g�=pk). ThusOPT =
(maxf�; g�=pkg).Also from Lemma 4.6, the length of the spanning tree produced by the heuristic is O(pg �).Therefore, the performance ratio is O(minfpg;pk=gg) = O(k1=4) as claimed.The example in Figure 4 shows that the performance ratio of the heuristic is
(k1=4).The big square has side �. Each cell of the square grid has side �=pk. There are pk pointsclustered closely together in each cell along the diagonal of the big square. In each of pkcells distributed uniformly throughout the big square there are pk uniformly distributedpoints. The heuristic may pick up the points in the uniformly distributed cells forming a12

tree of length
(� � k1=4) while the tree spanning the points along the diagonal has lengthO(�).Observe that both our lower bounds on an optimal solution and the upper bound on thespanning tree obtained also apply to the case of constructing a rectilinear kMST. Hence itfollows that the above approximation algorithm delivers a performance guarantee of O(k1=4)for the rectilinear kMST problem too. This proves the following:Corollary 4.7 There is a polynomial-time algorithm that, given n points in the plane, anda positive integer k � n, constructs a rectilinear tree spanning at least k of these points suchthat the total length of the tree is at most O(k 14) times that of a minimum-length rectilineartree spanning any k of the points.
Square with points

k

Diagonal cells with k points clustered together

Uniformly distributed cells with k points scattered

uniformly in eachFigure 4: Example of a con�guration of points on the plane in which the heuristic outputsa tree of length
(OPT � pk).5 Polynomially solvable special cases5.1 kMST for Treewidth-bounded (or Decomposable) GraphsIn this section, we give the details of our polynomial time algorithm for the class of treewidthbounded graphs. As mentioned earlier Arnborg et al [5] have shown that the class oftreewidth bounded graphs is the same as the class of decomposable graphs de�ned in Bern,Lawler and Wong [8]. We use the characterization of Bern, Lawler and Wong for explainingour algorithm.Theorem 5.1 For any class of decomposable graphs, there is an O(nk2)-time algorithmfor solving the kMST problem. 13

In this section, we prove the above theorem. A class of decomposable graphs � isinductively de�ned as follows [8].1. The number of primitive graphs in � is �nite.2. Each graph in � has an ordered set of special nodes called terminals. The numberof terminals in each graph is bounded by a constant.3. There is a �nite collection of binary composition rules that operate only at terminals,either by identifying two terminals or adding an edge between terminals. A composi-tion rule also determines the terminals of the resulting graph, which must be a subsetof the terminals of the two graphs being composed.Examples of decomposable graphs include trees, series-parallel graphs, bounded-bandwidthgraphs, etc. [8].Let � be any class of decomposable graphs. The kMST problem for � can be solvedoptimally in polynomial time using dynamic programming. Following [8], it is assumedthat a given graph G is accompanied by a parse tree specifying how G is constructed usingthe rules and that the size of the parse tree is linear in the number of nodes of G.Consider a �xed class of decomposable graphs �. Suppose that G is a graph in �. Let� be a partition of a nonempty subset of the terminals of G. We de�ne the following set ofcosts for G.Cost�i (G) = Minimum total cost of any forest containing a tree for each blockof �, such that the terminal nodes occurring in each tree areexactly the members of the corresponding block of �, no pairof trees is connected and the total number of edges in theforest is i (1 � i < k).Cost;k�1(G) = Minimum cost of a tree within G containing k � 1 edges, andcontaining no terminal nodes of G.For any of the above costs, if there is no forest satisfying the required conditions, the valueof Cost is de�ned to be 1.Note that because � is �xed, the number of cost values associated with any graph inthe parse tree for G is O(k). We now show how the cost values can be computed in abottom-up manner, given the parse tree for G.To begin with, since � is �xed, the number of primitive graphs is �nite. For a primitivegraph, each cost value can be computed in constant time, since the number of forests to beexamined is �xed. Now consider computing the cost values for a graph G constructed fromsubgraphs G1 and G2, where the cost values for G1 and G2 have already been computed.Let �G1 , �G2 and �G be the set of partitions of a subset of the terminals of G1, G2 andG respectively. Let A be the set of edges added to G1 and G2 by the composition rule Rused in constructing G from G1 and G2. Corresponding to rule R, there is a partial functionfR : �G1 � �G2 � 2A ! �G, such that a forest corresponding to partition �1 in �G1 , aforest corresponding to partition �2 in �G2 , and a subset B � A, combine to form a forestcorresponding to partition fR(�1; �2; B) of G. Furthermore, if the forest corresponding to14

�1 contains i edges, and the forest corresponding to �2 contains j edges, then the combinedforest in G contains i+ j + jBj edges.Similarly, there is a partial function gR : �G1 � 2A ! �G, such that a forest corre-sponding to partition �1 in �G1 and a subset B � A combine to form a forest correspond-ing to partition gR(�1; B) of G. If the forest corresponding to �1 contains i edges, thenthe combined forest in G contains i + jBj edges. There is also a similar partial functionhR : �G2 � 2A ! �G. Finally, there is a partial function jR : 2A ! �G.Using functions fR, gR, hR and jR, cost values for G can be computed from the setof cost values for G1 and G2. For instance, suppose that fR(�1; �2; B) = �. Then acontributor to computing Cost�i (G) is Cost�1t (G1) + Cost�2i�t�jBj(G2) + w(B), for each tsuch that 1 � t � i � jBj � 1. Here w(B) is the total cost of all edges in B. The value ofCost�i (G) is the minimum value among its contributors.When all the cost values for the entire graph G have been computed, the cost of anoptimal kMST is equal to min�2�GfCost�k�1(G)g, where the forest corresponding to � consistsof a single tree.We now analyze the running time of the algorithm. For each graph occurring in theparse tree, there are O(k) cost values to be computed. Each of the cost values can becomputed in O(k) time. As in [8], we assume that the size of the given parse tree for G isO(n). Then the dynamic programming algorithm takes time O(nk2). This completes theproof of Theorem 5.1.It is also easy to see that a straightforward extension of the above algorithm works forthe weighted case, when the edges of non-in�nite weight form a decomposable graph.5.2 kMST for points on the boundary of a convex regionTheorem 5.2 There is a polynomial-time algorithm for solving the kMST problem for thecase of points in the Euclidean plane that lie on the boundary of a convex region.We now restrict our attention to the case where we are given n points that lie on theboundary of a convex region, and show that the kMST on these points can be computedin polynomial time using dynamic programming. We also provide a faster algorithm if thepoints are constrained to lie on the boundary of a circle.Lemma 5.3 Any optimal kMST for a set of points in the plane is non self-intersecting.Proof: Suppose an optimal kMST were self intersecting, then let ha; bi and hc; di be theintersecting line segments. On removing the edges ha; bi and hc; di from the kMST weget three connected components, hence some two vertices, one from fa; bg and one fromfc; dg must be in the same connected component. Say, a and d are in the same connectedcomponent, then since in any convex quadrilateral the sum of two opposite sides is lessthan the sum of the two diagonals, replacing ha; bi and hc; di by ha; ci and hb; di we still geta tree spanning k nodes but with lesser weight. This contradicts the fact that the kMSTwe started out with was optimal. Hence any optimal kMST on a set of points in the planemust be non self-intersecting. 15

Lemma 5.4 Given n points on the boundary of a convex polygon no vertex in an optimalkMST of these points has degree greater than 4.Proof: Suppose there is a vertex v in an optimal kMST with degree greater than 4. Letv1; v2; : : : ; vd; d � 5 be its neighbors in the optimal kMST as shown in Fig. 5. Usingthe well known fact that any convex polygon lies entirely on one side of a supportingline, we have that 6 v1vvd � 180�. By the pigeon-hole principle, there is an i such that6 vivvi+1 � 180�=(d�1) < 60�; 1 � i � d�1 since d is at least 5. Thus in4vivvi+1; 6 vivvi+1is not the largest angle, and vivi+1 is not the largest side. Therefore replacing the largerof vvi and vvi+1 in the optimal kMST with vivi+1 we obtain a tree with lesser weight,contradicting the assumption that the kMST was optimal. This completes the proof.
v

v
v

v

1
2

k

Supporting Line

Convex Polygon

kMSTFigure 5: Points on a convex polygon.We now characterize the structure of an optimal solution in the following decomposi-tion lemma and use it to de�ne the subproblems which we need to solve recursively usingdynamic programming. The next lemma intuitively points out that an optimal solution forthe kMST problem for the whole polygon can be constructed from optimal solutions forsmaller polygons obtained by triangulating the original polygon.Lemma 5.5 (Decomposition lemma.) Let v0; v1; : : : ; vn�1 be the vertices of a convexpolygon in say, clockwise order. Let vi be a vertex of degree di in an optimal kMST. Notethat 1 � di � 4.If di � 2 let the removal of vi from the optimal kMST produce connected componentsC1; C2; : : : ; Cdi (See Fig 6.). Let jCij denote the number of vertices in component Ci. Thenthere exists a partition of vi+1; vi+2; : : : ; vi�1, (indices taken mod n), into di contiguoussubsegments S1; S2; : : : ; Sdi such that 8j; 1 � j � di, the optimal kMST induced on Sj Sfvigis an optimal (jCj j+ 1)MST on Sj Sfvig among all such trees in which the degree of vi is16

one.If di = 1, let vj be vi's neighbor in the optimal kMST. Let vj be adjacent to dj1 verticesin vi+1;vi+2 : : : ;vj�1 and dj2 vertices in vj+1; vj+2; : : : ; vi�1. Let the optimal kMST containjC1j vertices from the set vi+1;vi+2 : : : ;vj�1 and jC2j vertices from the set vj+1; vj+2; : : : ; vi�1.Then the optimal kMST induced on vi+1;vi+2 : : : ;vj is an optimal (jC1j+1)MST on vi+1; vi+2 : : : ; vjwith degree of vj = dj1 and the optimal kMST induced on vj ; vj+1 : : : ; vi�1 is an optimal(jC2j+ 1)MST on vj; vj+1 : : : ; vi�1 among all such trees with degree of vj = dj2.Proof: If di � 2 then it is easy to see that a partition of vi+1; vi+2; : : : ; vi�1 into contiguoussubsegments S1; S2; : : : ; Sdi exists such that 8j; 1 � j � di; Cj � Sj , because the optimalkMST is non self-intersecting by Lemma 5.3. Further, the optimal kMST induced onSj Sfvig must be an optimal (jCjj+1)MST on Sj Sfvig with degree of vi = 1, for otherwisewe could replace it getting a lighter kMST. The proof of the case when di = 1 is equallystraightforward and is omitted.
v

v

v

1

i

n

d = 3i

v2

C = (v , v)
1 n 2

C
C2
3

Convex Polygon

kMSTFigure 6: Decomposition.Thus the subproblems we consider are speci�ed by the following four parameters: asize s, a vertex vi, the degree di of vi, and a contiguous subsegment vk1; vk1+1; : : : ; vk2such that i 62 [k1 : : : k2]. A solution to such a subproblem denoted by SOLN(s; vi; di;vk1; vk1+1; : : : ; vk2) is the weight of an optimal sMST on fvi; vk1; vk1+1; : : : ; vk2g in whichvi has degree di. Using the decomposition lemma above, we can write a simple recurrencerelation for SOLN(s; vi; di; vk1; vk1+1; : : : ; vk2).
17

SOLN(s; vi; di; vk1; vk1+1; : : : ; vk2) =8>>>>><>>>>>: 1 : if di = 0 or s < di + 1 or ((k2 � k1 + 1) mod n) + 1 < s.mink00=k1<k01:::<k0di=k2 mins1:::+sdi=s+di�1;sj�1�1�j�diSOLN(sj; vi; 1; vk0j�1 ; : : : ; vk0j) : if di � 2minj0=k1�j1�j2=k2fw(vivj1) + min0�d1+d2�3mins1+s2=s(SOLN(s1; vj1 ; d1; vj0 ; : : : ; vj1�1) + SOLN(s2; vj1 ; d2; vj1+1; : : : ; vj2))g) : if di = 1Here w(vivj) is the cost of the edge (vi; vj). The optimal kMST =min1�i�n min1�d�4SOLN(k; vi; d; vi+1; vi+2; : : : ; vi�1)Note that we have O(kn3) subproblems and each subproblem requires looking up thesolution to at most O(k3n3) smaller subproblems. This yields a running time of O(k4n6).When k =
(pn), this running time can be further improved by organizing the computationof the recurrences for the smaller subproblems better. Each subproblem speci�ed by s, vi,di and the interval vk1; : : : ; vk2 can be solved by �rst computing a partition of the intervalinto at most four subintervals (exactly four when di = 4). For the �rst subinterval, wecompute the best tree with j � 1 nodes from this subinterval, and containing vi so that ithas degree one in this tree, for 1 � j � s. This computation takes O(nk) time since thereare at most s � k trees to be computed, and for each j, there are at most n nodes withwhich vi shares the single edge in the best tree. Next, we include the next subinterval,and compute for 1 � j0 � s, the best tree on j0 � 1 nodes containing vi and nodes fromthese two subintervals, where vi has degree two with one edge to a node in the �rst andone edge to a node in the second subinterval. This set of trees can also be computed inO(nk) time given the set of trees for the �rst subinterval as follows: First, compute thebest tree on j nodes for 1 � i � s containing vi and nodes only in the second subinterval,where vi has exactly one edge to a node in this subinterval, in O(nk) time as before. Usingthese values and the analogous set of values for the �rst subinterval, the best j0 trees forthe �rst two subintervals can be obtained in O(k2) = O(nk) time, since each of the s � ktrees requires looking up at most s di�erent pairs of trees, one from each subinterval. Thismethod can be extended to compute the solution for the whole set of four subintervals inO(nk) time. Since there are O(n3) ways to partition a given interval into four subintervals,the recurrence for this subproblem can be solved in O(kn4) time. So the total time to solveone subproblem is O(kn4) time. Since there are a total of O(kn3) subproblems, the totalrunning time of the algorithm is O(k2n7).We now provide a faster algorithm to �nd the optimal kMST in the case when all npoints lie on a circle. We assume that no two points are diametrically opposite.Lemma 5.6 Given n points v1; v2; : : : ; vn on a circle no vertex in an optimal kMST hasdegree more than 2.Proof: Suppose point vp in an optimal kMST has degree greater than 2. Then consider thediameter passing through vp. At least two neighbors of vp lie on one side of this diameter.18

Let these neighbors be vq and vr, where vq is closer to vp than vr. Then since 6 vpvqvr isobtuse we replace vpvr by vqvr to get a smaller tree.Lemma 5.6 implies that if the points lie on a circle then every optimal kMST is a path.Moreover, if the path \zig-zags", then we replace the crossing edge with a smaller edge.Thus we have the following lemma.Lemma 5.7 Given n points v1; v2; : : : ; vn on a circle, let a minimum length k-path on thesepoints be vi1 ; : : : ; vip . Then the line segment joining vi1 and vip along with the k-path formsa convex k-gon.Proof: By Lemma 5.6 the minimum-length k-path is also the minimum-length kMST.Suppose the line segment joining vi1 and vip along with the minimum k-path does not forma convex k-gon. Then there exists a zig-zag in the path as shown in Figure 7. Say thecenter of the circle lies to the right of the edge ha; bi then we replace ha; bi by the edge hb; cito get a smaller kMST which contradicts the fact that the k-path we started out with wasoptimal.

a

b

c

Figure 7: Illustration of Lemma 5.7.Lemmata 5.6 and 5.7 lead to a straightforward dynamic programming algorithm tocompute an optimal kMST for points on a circle: for each point on the circle computethe minimum-length i-path, (1 �� k), which lies completely on one side of the diameterpassing through the point, now combine these solutions to �nd the optimal kMST. It iseasy to see this algorithm takes O(k2n) time.
19

6 Short trees and short small trees6.1 Short treesIn this subsection, we prove our results on short trees. First, we address the minimum-diameter k-tree problem: Given a graph with nonnegative edge weights, �nd a tree ofminimum diameter spanning at least k nodes.Theorem 6.1 There is a polynomial-time algorithm for the minimum-diameter k-tree prob-lem on graphs with nonnegative edge weights.Recall that the diameter of a tree is the maximum distance (path length) between anypair of nodes in the tree. We introduce the notion of subdividing an edge in a weightedgraph. A subdivision of an edge e = (u; v) of weight we is the replacement of e by twoedges e1 = (u; r) and e2 = (r; v) where r is a new node. The weights of e1 and e2 sum towe. Consider a minimum-diameter k-tree. Let x and y be the endpoints of a longest pathin the tree. The weight of this path, D, is the diameter of the tree. Consider the midpointof this path between x and y. If it falls in an edge, we subdivide the edge by adding a newvertex as speci�ed above. The key observation is that there exist at least k vertices at adistance at most D=2 from this midpoint. This immediately motivates an algorithm for thecase when the weights of all edges are integral and bounded by a polynomial in the numberof nodes. In this case, all such potential midpoints lie in half-integral points along edges ofwhich there are only a polynomial number. Corresponding to each candidate point, thereis a smallest distance from this point within which there are at least k nodes. We choosethe point with the least such distance and output the breadth-�rst search (bfs) tree rootedat this point appropriately truncated to contain only k nodes.When the edge weights are arbitrary, the number of candidate midpoints are too manyto check in this fashion. However, we use a graphical representation of the distance of anynode from any point along a given edge to bound the search for candidate points. We thinkof an edge e = (u; v) of weight w as a straight line between its endpoints of length w. Forany node x in the graph, consider the shortest path from x to a point along the edge eat distance ` (� w) from u. The length of this path is the minimum of ` + d(x; u) andw � `+ d(v; x). We plot this distance of the node x as a function of `. The resulting plotis a piecewise linear bitonic curve that we call the roof curve of x in e (See Figure 8). Foreach edge e, we plot the roof curves of all the vertices of the graph in e. For any candidatepoint in e, the minimum diameter of a k-tree centered at this point can be determined byprojecting a ray upwards from this point in the plot and determining the least distance atwhich it intersects the roof curves of at least k distinct nodes. The best candidate pointfor a given edge is one with the minimum such distance. Such a point can be determinedby a simple line sweep algorithm on the plot. Determining the best midpoint over all edgesgives the midpoint of the minimum-diameter k-tree. This proves Theorem 6.1.The following lemma gives yet another way to implement the polynomial time algorithmfor �nding a tree of minimum diameter spanning k nodes.Lemma 6.2 Given two vertices in a graph, vi and vj, such that every other vertex is withindistance di of vi or dj of vj, it is possible to �nd two trees, one rooted at vi and of depth at20

most di and one rooted at vj of depth at most dj which partition the set of all vertices.Proof: Consider the shortest-path trees Ti and Tj rooted at vi and vj of depth di and dj ,respectively. Every vertex occurs in one tree or both trees. Consider a vertex vp that occursin both the trees. If it is the case that di�depthTi(vp) is greater than dj�depthTj(vp) thenthe same is true of all descendants of vp in Tj . Hence we can remove vp and all its descen-dants from Tj since we are guaranteed that all these vertices occur in Ti. Repeating thisprocedure bottom-up we get two trees satisfying the required conditions and partitioningthe vertex set.The above lemma motivates the following alternate algorithm for �nding a minimum-diameter tree spanning at least k nodes. For each vertex vi in the graph compute theshortest distance di such that there are k vertices within distance di of vi. For each edge(vi; vj) compute the least diij + djij such that there are k vertices within distance diij of vior djij of vj . Then compute the least of all the di's and diij + djij +w(vi; vj)'s and this is thediameter of the k-tree with least diameter. It can be easily seen that the running time ofthe algorithm is O(minfk2; EgE).

u v

d(u,x)

d(v,x)

l

min { d(u,x) + l, d(v,x) + w − l }

Figure 8: A roof curve of a node x in edge e = (u; v).We now address the results in the third row of Table 1.Lemma 6.3 If the rij values are drawn from the set fa; bg and the dij values from f0; cgthen the minimum-communication-cost spanning tree can be computed in polynomial time.21

Proof: When the dij values are all uniform, Hu [22] observed that the Gomory-Hu cuttree with the rij values as capacities is a minimum-communication-cost tree. We can usethis result to handle the case when zero-cost dij edges are allowed as well. We contractthe connected components of the graph using zero-cost dij edges into supernodes. Therequirement value rIJ between two supernodes vI and vJ is the sum of the requirementvalues rij such that i 2 vI and j 2 vJ . Now we �nd a Gomory-Hu cut tree between thesupernodes using the rIJ values as capacities. By choosing an arbitrary spanning tree ofzero-dij -valued edges within each supernode and connecting them to the Gomory-Hu tree,we get a spanning tree of the whole graph. It is easy to verify that this is a minimum-communication-cost spanning tree in this case.Lemma 6.4 When all the dij values are uniform and there are at most two distinct rijvalues (say a and b) then the minimum-diameter-cost spanning tree can be computed inpolynomial time.Proof: Let the higher of the two rij values be a. If the edges with requirement a form acyclic subgraph, then any spanning tree has diameter cost 2a. In this case, any spanningstar, (a star is a rooted tree of depth 1), is an optimal solution. Otherwise, consider theforest of edges with requirement a. Determine a center for each tree in this forest. Considerthe tree formed by connecting these centers in a star. The root of the star is a center of thetree of largest diameter in the forest. If the diameter cost of the resulting tree is less than2a, it is easy to see that this tree has optimum diameter cost. Otherwise any star tree onall the nodes has diameter cost 2a and is optimal. Note that we can extend this solutionto allow zero-cost dij edges by using contractions as before.Now we address the results in the fourth row of Table 1.Lemma 6.5 The minimum-diameter-cost spanning tree problem is NP-complete even whenthe rij's and dij's take on at most two distinct values.Proof: It is easy to see that the minimum-diameter-cost spanning tree problem is in NP.We now prove that it is NP-hard by using a reduction from an instance of 3SAT. Withoutloss of generality, we assume that all clauses in the given instance of 3SAT contain threedistinct literals. We form a graph that contains a special node t (the \true" node), a nodefor each literal and each clause. We use two dij values, c and 5c where we assume c 6= 0.Each literal is connected to its negation with an edge of distance c. The true node isconnected to every literal with an edge of distance c. Each clause is connected to the threeliterals that it contains with edges of distance c. All other edges in the graph have distance5c. Now we specify the requirements on the edges. We use requirement values from fa; 4ag,where a 6= 0. The requirement value of an edge between a literal and its negation is 4a.The requirement value of all other edges is a (See Figure 9). It is easy to check that thereis a spanning tree of this graph with diameter cost at most 4ac if and only if the 3SATformula is satis�able.6.2 Short small trees 22

t

X X Y Y Z Z

C = (X + Y + Z)

c
c c c c c

ccc

c c
c

4a 4a 4a

Figure 9: Reduction from an instance of 3SAT to the minimum-diameter-cost spanningtree problem.Theorem 6.6 The minimum-communication k-tree problem and the minimum-diameterk-tree problem are both NP-hard to approximate within any factor even when all the dijvalues are one and the rij values are nonnegative.Proof: We prove the above theorem for the communication tree case. The proof of theother part is similar. Suppose there is a polynomial-time M -approximation algorithm forthe minimum-communication-cost k-tree problem where all the dij values are one and all rijvalues are nonnegative. Then, we show that the k-independent set problem can be solvedin polynomial time. The latter problem is well known to be NP-complete [19]. Given graphG of the k-independent set problem, produce the following instance of the communicationk-tree problem: dij = 1 for every pair of nodes i; j; Assign rij equals one if (i; j) is notan edge in G, and Mk(k � 1) + 1 otherwise. If G has an independent set of size k, thenwe form a star on these k nodes (choosing an arbitrary node as the root). In the star, thedistance between any pair of nodes is at most 2 and the r value for each pair is 1. Thus,the communication cost of an optimum solution is at most k(k � 1). The approximationalgorithm will return a solution of cost at most Mk(k � 1). The nodes in this solution areindependent in G by the choice of rij for nonedges (i; j) 2 G. On the other hand, if thereis no independent set of size k in G, the communication cost of any k-tree is greater thanMk(k � 1).
23

7 Closing remarks7.1 Future researchA natural question is whether there are approximation algorithms for the kMST problemwhich provide better performance guarantees than those presented in this paper. In thisdirection, Garg and Hochbaum [20] have given an O(log k)-approximation algorithm for thekMST problem for points on the plane using an extension of our lower-bounding techniquein Section 4. Blum, Chalasani and Vempala [10] have very recently improved upon thisto obtain a constant-factor approximation for points on the plane. Also, Awerbuch, Azar,Blum and Vempala [1] have obtained an O(log2 k)-approximation algorithm for the kMSTproblem. An interesting observation in this regard is the following: any edge in an optimalkMST is a shortest path between its endpoints. This observation allows us to assumewithout loss of generality that the edge weights on the input graph obey the triangleinequality. Although we have been unable to exploit the triangle inequality property in ouralgorithms, it is possible that this remark holds the key to improving our results.Table 1 is incomplete. It would be interesting to know the complexity of the minimum-diameter-cost spanning tree problem when the distance values are uniform. Note that anystar tree on the nodes provides a 2-approximation to the minimum-diameter-cost spanningtree in this case. The above problem can be shown to be polynomial-time equivalent to thefollowing tree reconstruction problem: given integral nonnegative distances dij for everypair of vertices i; j, does there exist a spanning tree on these nodes such that the distancebetween i and j in the tree is at most dij?7.2 Maximum acyclic subgraphIn the course of our research we considered the k-forest problem: given an undirected graphis there a set of k nodes that induces an acyclic subgraph? The optimization version of thisproblem is the maximum acyclic subgraph problem. Since this problem is complementaryto the minimum feedback vertex set problem [19], NP-completeness follows. While thefeedback vertex set problem is 4-approximable [7], we show that the maximum acyclic sub-graph problem is hard to approximate within a reasonable factor using an approximation-preserving transformation from the maximum independent set problem [6]. This sameresult has also been derived in a more general form in [27].Theorem 7.1 There is a constant � > 0 such that the maximum acyclic subgraph problemcannot be approximated within a factor
(n�) unless P = NP .Proof: Note that any acyclic subgraph of size S contains a maximum independent set ofsize at least S=2, since acyclic subgraphs are bipartite and each partition is an independentset. Further, every independent set is also an acyclic subgraph. These two facts show thatthe existence of a �-approximation algorithm for the maximum acyclic subgraph problemimplies the existence of a 2�-approximation algorithm for the maximum independent setproblem. But by the result in [6] we know that there is a constant � > 0 such that the24

maximum independent set problem cannot be approximated within a factor
(n�) unlessP = NP . Hence, the same is true of the maximum acyclic subgraph problem.Acknowledgements: The authors thank Alex Zelikovsky and Naveen Garg for helpfulconversations during the initial stages of the paper. They are grateful to Professor JohnOomen for observing that our algorithm for points in the plane extends to the rectilinearcase and to Professor Arie Tamir for his observations on Section 6. We thank the ref-erees for detailed comments and suggestions which substantially improved the quality ofpresentation.References[1] B. Awerbuch, Y. Azar, A. Blum and S. Vempala, \Improved approximation guaran-tees for minimum-weight k-trees and prize-collecting salesmen," 27th Annual ACMSymposium on Theory of Computing (1995), to appear.[2] D. Adolphson and T. C. Hu, \Optimal linear ordering," SIAM J. Appl. Math., 25(1973), pp. 403-423.[3] A. Aggarwal, H. Imai, N. Katoh and S. Suri, \Finding k points with Minimum Diam-eter and Related Problems," J. Algorithms, Vol. 12, 1991, pp. 38-56.[4] A. Agrawal, P. Klein and R. Ravi, \When trees collide: an approximation algorithmfor the generalized Steiner tree problem on networks," Proceedings of the 23rd AnnualACM Symposium on Theory of Computing (1991), pp. 134-144.[5] S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, \An algebraic theory of graphreduction," Journal of the ACM, Vol. 40, No. 5, 1993, pp. 1134-1164.[6] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, \Proof veri�cation and hard-ness of approximation problems," Proc. of the 33rd IEEE Symposium on the Founda-tions of Computer Science (1992), pp. 14-23.[7] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth, \Approximation algorithms forthe cycle-cover problem with applications to constraint satisfaction and Bayesian infer-ence," Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms(1994), pp. 344-354.[8] M. W. Bern, E. L. Lawler and A. L. Wong, \Linear Time Computation of OptimalSubgraphs of Decomposable Graphs," J. Algorithms, Vol. 8, 1987, pp 216-235.[9] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan and M. Sudan,\The Minimum Latency Problem," Proceedings of the 26th Annual ACM Symposiumon Theory of Computing (1995), pp 163-172.[10] A. Blum, P. Chalasani and S. Vempala, \A constant-factor approximation for the k-MST problem in the plane," 27th Annual ACM Symposium on Theory of Computing(1995), to appear. 25

[11] H.L. Bodlaender, \Dynamic programming on graphs of bounded treewidth," Proceed-ings of the 15th ICALP, LNCS Vol. 317, 1988, pp. 105-118.[12] P. M. Camerini, and G. Galbiati, \The bounded path problem," SIAM J. Alg. Disc.,Meth. Vol. 3, No. 4 (1982), pp. 474-484.[13] P. M. Camerini, G. Galbiati, and F. Ma�oli, \Complexity of spanning tree problems:Part 1," Euro. J. of Operations Research, Vol. 5, (1980), pp. 346-352.[14] N. Christo�des, \Worst-case analysis of a new heuristic for the traveling salesmanproblem," Report 338, GSIA, CMU, Pittsburgh, PA (1976).[15] E. W. Djikstra, \A note on two problems in connexion with graphs," NumerischeMathemetik, 1, pp. 269-271 (1959).[16] D. P. Dobkin, R. L. Drysdale and L. J. Guibas, \Finding Smallest Polygons," inAdvances in Computing Research, Vol. 1, JAI Press, 1983, pp 181-214.[17] D. Eppstein, \New Algorithms for Minimum Area k-gons," Proceedings of the 3rdAnnual ACM-SIAM Symposium on Discrete Algorithms, (1992), pp 83-88.[18] D. Eppstein and J. Erickson, \Iterated Nearest Neighbors and Finding Minimal Poly-topes", Proceedings of the 4th Annual ACM-SIAM Syposium on Discrete Algorithms,(1993), pp. 64-73.[19] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theoryof NP-completeness, W. H. Freeman, San Francisco (1979).[20] N. Garg and D. Hochbaum, \An O(log k) approximation algorithm for the k minimumspanning tree problem in the plane," Proc. of the 26th ACM Symposium on the Theoryof Computing (1994), pp. 432-438.[21] R. E. Gomory, and T. C. Hu, \Multi-terminal network
ows," SIAM J. Appl. Math.,9 (1961), pp. 551-570.[22] T. C. Hu, \Optimum communication spanning trees," SIAM J. Comput., Vol. 3, No.3 (1974), pp. 188-195.[23] D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy Kan, \The complexity of thenetwork design problem," Networks, Vol. 8, (1978), pp. 279-285.[24] P. Klein and R. Ravi, \A nearly best-possible approximation for node-weighted Steinertrees," Proceedings of the third MPS conference on Integer Programming and Combi-natorial Optimization (1993), pp. 323-332.[25] J. B. Kruskal, \On the shortest spanning subtree of a graph and the traveling salesmanproblem," Proc. American Mathematical Society, Vol. 7, No. 1 (1956), pp. 48-50.[26] D. Lozovanu and A. Zelikovsky, \Minimal and bounded tree problems," Tezele Con-gresului XVIII al Academiei Romano-Americane, Kishniev (1993), pp. 25.26

[27] C. Lund and M. Yannakakis, \On the hardness of the maximum subgraph prob-lems," Proc. 20th International Colloquium on Automata, Languages and Program-ming, (1993), pp. 40-51.[28] R.C. Prim, \Shortest connection networks and some generalizations," Bell System TechJournal, Vol. 36, No. 6 (1957), pp. 1389-1401.[29] R. Ravi, \Steiner trees and beyond: Approximation algorithms for network design,"Ph. D. Thesis (September 1993), available as Technical Report TR-CS-93-41, BrownUniversity.[30] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H.B. Hunt III, \Manybirds with one stone: Multi-objective approximation algorithms," Proc. 25th AnnualACM Symposium on the Theory of Computing (1993), pp. 438-447.[31] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi, \Spanningtrees short or small," Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms(1994), pp. 546-555.[32] N. Robertson and P. Seymour, \Graph Minors IV, Tree-width and well-quasi-ordering," J. Combin. Theory Ser. B Vol. 48 (1990), 227-254.

27

