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Abstract

Bandwidth is a very valuable resource in wavelength division multiplexed optical
networks. The problem of finding an optimal assignment of wavelengths to requests
is of fundamental importance in bandwidth utilization. We present a polynomial-
time algorithm for this problem on fixed constant-size topologies. We combine this
algorithm with ideas from Raghavan and Upfal [15] to obtain an optimal assignment
of wavelengths on constant degree undirected trees. Mihail, Kaklamanis, and Rao
[14] posed the following open question: what is the complexity of this problem on
directed trees? We show that it is NP-complete both on binary and constant depth
directed trees.

Keywords: Algorithms, Combinatorial Problems, Computational Complexity,
Interconnection Networks.

1 Introduction

Motivation. Developments in fiber-optic networking technology using Wave-
length Division Multiplexing (WDM) have finally reached the point where it
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is being considered as the most promising candidate for the next generation
of wide-area backbone networks. These are highly flexible networks capable of
supporting tens of thousands of users and providing capacities on the order of
gigabits-per-second per user [4,7,16]. WDM optical networks utilize the large
bandwidth available in optical fibers by partitioning it into several channels
each at a different optical wavelength [2,4,10,11].

The typical optical network consists of routing nodes interconnected by point-
to-point fiber-optic links. Each link supports a certain number of wavelengths.
A lightpath is an optical path between two nodes on a specific wavelength. Pho-
tonic switching, also known as dynamic wavelength routing, is the setting up
of lightpaths. The routing nodes are capable of photonic switching [3,5,17].
Though the total number of wavelengths is limited, nevertheless, it is possible
to build a transparent wide-area optical network by spatial reuse of wave-
lengths (see Figure 1).

Lightpaths

Fig. 1. Example of an All-Optical Wavelength Routing Network

The Problem. The fundamental problem in bandwidth utilization in optical
networks can be modeled as follows:

OPTICAL ROUTING: Given a (directed/undirected) graph G and a set P
of n requests (each of which is a pair of nodes to be connected by a di-
rected /undirected path) find a set of paths corresponding to these requests
and an assignment of wavelengths to the requests so as to minimize the to-
tal number of wavelengths used. The assignment must ensure that different
paths allotted the same wavelength must be edge-disjoint.

In practice, the topology of the optical network stays fixed over time and the
size of the set of requests to be routed is a varying parameter. Hence, it is
interesting to study OPTICAL ROUTING on fixed-size arbitrary topologies.

Previous Work. OPTICAL ROUTING has been studied in great detail on a
number of different and fundamental topologies by Raghavan and Upfal [15].



This problem is NP-complete for undirected trees by reduction from edge col-
oring. They gave a 9/8-approximation algorithms for undirected trees and a
2-approximation algorithm for rings. They also present approximation algo-
rithms for expanders, meshes, and bounded-degree graphs. Subsequently, Mi-
hail, Kaklamanis, and Rao [14] consider the problem on directed trees (these
are trees obtained by replacing each edge of an undirected tree by two directed
edges in opposite directions). They obtain a 15/8-approximation algorithm
using potential function arguments. Aumann and Rabani [1] consider routing
permutations on arrays, hypercubes, and arbitrary bounded degree networks,
while Bermond et. al. [12] study the problems of broadcasting and gossiping
in optical networks. Goldberg, Jerrum, and Mackenzie prove a lowerbound for
routing h-relations in complete optical networks [8].

Our Results. We present an algorithm for OPTICAL ROUTING on fixed
constant-size topologies which has running time polynomial in the number
of requests (Section 2). We combine this algorithm with ideas from Raghavan
and Upfal [15] to obtain an optimal assignment of wavelengths on constant
degree undirected trees (Section 4). Mihail, Kaklamanis, and Rao [14] posed
the following open question: what is the complexity of this problem on di-
rected trees? We show that it is NP-complete both on constant depth (Section
3) and binary directed trees (Section 4).

Notation. For a graph (directed/undirected) G = (V; E) on k vertices, let
Y'(G) denote the chromatic index (i.e., the edge color number). In any edge
coloring Y/, let \/(e) denote the color of any e € E. For u,v € V, denote an
undirected path between u and v by u ~ v and denote a directed path from
u to v by u ~ v. When G is a tree, for any given u,v € V, the path u ~ v is
unique and hence OPTICAL ROUTING is equivalent to path coloring on trees.
A directed is thought to have edge pairs of the form v ~ v and v ~ w.
Given an instance of OPTICAL ROUTING with a graph G and a (multi)set
P(|P| = n) of paths, let A(G, P) denote the number of wavelengths used. In
such a wavelength assignment, let A(p) denote the wavelength of a path p. Let
A*(G, P) denote the optimal number of wavelengths for the set of requests P.
Note that wavelengths can also be interpreted as colors.

2 Constant Size Graphs

We now present an exact polynomial-time algorithm for the problem of Op-
TICAL ROUTING on a fixed constant-size topology, G (i.e., k is constant).
This problem is non-trivial and a combinatorial algorithmic approach seems
difficult. ¢ may be directed or undirected. We present the algorithm only
for undirected graphs. The algorithm for directed graphs is a straightforward



modification.

Theorem 1 OPTICAL ROUTING on constant-size topologies is in P.

Proof. Let r;; denote the number of paths from node ¢ to j. Note that r;
could potentially be as large as n. Let a path-matching be a collection of edge-
disjoint simple paths. Let Mg = {M | M is a path-matching in G} be the set
of path-matchings in . Note that since (& is constant-size, so is Mg .

Consider the following integer program (IP):

min Z T subject to v, 7, Z T 2> T
MeMg i~jEM

It is easy to see that the above IP models the problem of OPTICAL ROUTING
exactly. A solution to the IP yields A*(G, P), the optimum number of wave-
lengths needed. Though the IP has terms in the constraints which are linear
in n, the optimizing function has only a constant number of variables. This
means we can solve the IP exactly using Lenstra’s polynomial-time algorithm
for integer programs in fixed dimension [13]. O

3 Constant Depth Trees

For undirected trees of constant depth, the problem of coloring paths is known
to be NP-complete. For directed trees, however, no hardness result was known
before. We now give a reduction that shows that coloring paths on directed
trees of depth 3 is NP-complete. To make it easy, first, we give the reduction
for undirected trees and then we show how to modify the construction for
directed trees.

Theorem 2 Coloring paths on undirected trees of depth 2 is NP-complete.

Proof. We reduce edge coloring to this problem: given an undirected graph
G = (V; FE) and an integer k, is \'(G) = k7 We build an undirected tree T' as
follows: T'= (V U {r};{(r,v) | v € V}). Note that the degree of r in T is |V|
and depth of T'is 2. The set of paths is P = {v; ~ v;) | (v;,v;) € EAt < j}. In
other words, the set of paths in the tree is just the edges in the graph. Clearly,
all the paths have to go via r in T

If \'(G) = k, then using such a coloring, paths in P on T' can be colored using
k colors: simply color the path p = v; ~ v; as A(p) = \'(vs,v;). The fact that



A is a valid path coloring follows from the fact that \’ is a valid edge coloring
and clearly A(T, P) = k. Conversely, if paths in P on T are colored using k
colors, then, for ¢ < j, set x'(v;,v;) = AM(v; ~ v;). Thus, all edges leaving any
vertex in (G are colored differently. O

To extend the above result to directed trees, we need the following gadget
T,y a depth 2 directed tree with a root r and children z,y and with edge
set {r~ a,x~r;r~y,y~r} Let P, denote the multiset {x ~ y} of
multiplicity £. All paths in P, ., have to be colored with £ different colors,
Le, ATy pys Proyr) = k.

Theorem 3 Coloring paths on directed trees of depth 3 is NP-complete.

Proof. We reduce edge coloring to this problem. We use a stronger version of
edge coloring where we assume the graph is k-regular (in fact, even for k = 3,
i.e., cubic graphs, the problem is NP-complete [9]). Given a k-regular graph
G, is X'(G) = k7 First, we construct the tree T essentially as in Theorem 2,
but with undirected edges replaced by directed edges in both directions. Now,
set P = {v; ~ vj,v;~ v | (v;,v;) € E}.

T and P are almost good for us. It is easily seen that if \'(G) = k, then the
paths in P can be colored with k colors by assigning A(v; ~ v;) = AN(vj ~ v;) =
X'(vi,vj) (since these directed paths don’t interfere with each other, this is
valid). The converse would be easy if for all path pairs A(v; ~ v;) = A(v; ~ v;)
in which case setting \'(v;,v;) = A(v; ~ v;) would suffice. Unfortunately, this
is not true and it could happen that A(v; ~ v;) # A(v; ~ v;). To circumvent
this problem, we use the gadget described above to construct a new tree 7"
and new set of paths P’.

For path pair v; ~ v;,v; ~ v; in P, tack the gadgets Ty, v1 v and Ty o100,
to obtain 7T”. Note that the depth of T” is 3. Now, construct the multiset P’
from P by replacing v; ~ v; and v; ~ v; by vj1 ~ vji2 and Vi~ V2
and adding Py, v,y w0 k-1 and Py o v, k—1. This modified T’ ensures that in
a k-coloring of P', M(vij1 ~ vji2) = Mujin ~ vij2) since A (P, vy 0i0,k-1) =
E—1. O

Figure 2 illustrates the reduction for a 3-node graph. It is interesting to note
that coloring paths on directed trees of depth 2 is in P (in contrast to undi-
rected trees). This follows from an obvious reduction to edge coloring bipartite
graphs [14].
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Fig. 2. Reduction to a Constant Depth Directed Tree

4 Constant Degree Trees

First, we show that for undirected trees of constant degree, the problem of
coloring paths is in P. Then, we show that for directed trees, this problem is
NP-complete even for binary trees.

Theorem 4 Coloring paths on undirected bounded-degree trees is in P.

Proof. Let T = (V; E). The problem now is to assign colors in an optimal
fashion to paths in P. Now observe that the following nice decomposition
result holds: let the removal of edge e € F result in two trees Ty = (V4; Ey)
and Ty = (Va; Ey). P is partitioned into P (the paths entirely in Ty), P, (the
paths entirely in T3), and P2 (the paths that go through e). Consider the
trees (Vi; By U{e}) with paths P U Py and (Va5 Ey U{e}) with paths P, U Pps.
If we can color both the above instances optimally then we can combine the
colors of the two to get an optimal coloring of P on T'. Thus we need only
to solve the problem on stars (trees with one central vertex and many leaves)
and then we can put the solutions together to get a solution for the whole.
But since T is constant degree, the stars we get from breaking up the tree are
constant-sized and so we can use the results from Theorem 1 to get optimal
solutions for these stars.

Thus we have an exact polynomial-time algorithm for the problem of OPTICAL
ROUTING on a constant-degree undirected trees. 0O

To prove the next theorem, we need some basic results from vertex coloring
interval and circular-arc graphs. Recall that an interval (resp. a circular-arc)
graph is one whose vertices can be represented as arcs on a line (resp. circle)
such that two arcs intersect if and only if those vertices have an edge. Vertex



coloring intervals graphs can be done in linear time. Vertex coloring circular-

arc graphs is NP-hard [6].

To obtain the result on directed binary trees, we note the following simple
transformation 3, on an instance 7" and P: Let v be a leaf node in a directed
tree T. Let v; ~ v,v ~ v; € P for ¢ = 1,...,p. Then, B,(T) is T with
a complete binary tree of lgp levels fixed to the node v. Let the leaves of
this complete binary tree be labeled wuyq,...,u,. Then, 3,(P) is P with each
v; ~ v, 0~ v; pair replaced by v; ~ u;, u; ~ v; for ¢ = 1,...,p. It can be

seen that A*(T, P) = A*(T", P").

Theorem 5 Coloring paths on directed binary trees is NP-complete.

Proof. We reduce vertex coloring of circular-arc graphs to this problem.
Given a circular-arc graph G and an integer k, is x(G) = k7 Our idea will be
to embed a circle on the tree. In the circular-arc representation of G, first we
“cut” (¢ at any two points py, po on the circle to partition ¢ into two “pieces”
G, Go. Let Gy (resp. Giaq) be set of arcs that were “cut” at p; (resp. ps)
and hence occur in both Gy and Gy. Let |G| = ky,|G12| = k2. Note that Gy
and (5, are interval graphs. It is easy to embed an interval graph as paths on
a binary tree — the arcs simply correspond to paths on a degenerate tree. A
coloring of paths directly corresponds to coloring of an interval graph. So, it is
easy to consider a long enough (degenerate) directed tree T" and construct P
in the following manner. P consists of arcs in Gy interpreted in the “upward”
direction and of arcs in (5 interpreted in the “downward” direction on T.
Since T' is degenerate, let it be rooted and let the leaves be, say a and b. If
x ~» p; ~ y was an arc in (¢ that was cut, we have x ~ a,a ~ y € P, and we
have to ensure that A(z ~ a) = A(a ~ y). To do this, we first applying the
transformation discussed above to obtain T" = 3,(5,(T)) and P’ = By(S.(P)).
Note that this transformation preserves the coloring but makes the tree bi-
nary. Let the leaves of this binary tree T” be ay,...,ax, and by,...,by,. As in
the proof of Theorem 3, we tack the gadget 1., 4;; 4, and Ty, 3., 5., to 1" for
eacht=1,...,k,7 =1,...,k to obtain T”. P" is obtained from P’ by re-
placing every z ~» a;, z ~ b; by by z ~ a;2, 2 ~ bj and adding Py, 4,1 ai.6—1,
Pb],bjl,bﬂ,k—l for 1 = 1, ceey kl — 1,] = 1, ceey kz — 1.

Now, if x(G) = k, it is easy to see A(T”, P") = k. Conversely, if A(T", P") = k,
then, the tacked gadgets ensure that the arcs that were cut are colored with
same color. O

Figure 3 illustrates the reduction for a 3-node circular-arc graph.



Fig. 3. Reduction to a Binary Directed Tree

5 Some Remarks

(i) An interesting parameter is the thickness denoted Lyax. Given a tree T
and set of paths P, L.y is defined to be the maximum thickness of the
paths at any point in T'. When L.« = 1, one color suffices since there is
no overlap of paths. When L.,,x = 2, we can show that the set of paths can
be decomposed into a tree of cycles. Hence, either 2 or 3 colors suffice and
the problem is in P. Theorem 3 which uses reduction from edge-coloring
of cubic graphs shows that the problem is NP-complete when L.« = 3.

(ii) Suppose the tree is oriented, i.e., embedded rigidly on the plane. We can
show that even if at all internal nodes, all the paths are from the left
child to right child, the problem of OPTICAL ROUTING on directed trees
is still NP-complete.

(iii) The problem of obtaining a better than 7Ln.x/4 algorithm for binary
trees or better than 15L,,,,/8 for general trees [14] is still tantalizingly
open.
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