Parallel Processing Letters Vol. 4 No. 4 (1994) 455463
(© Waorld Scientific Publishing Company

EFFICIENT PARALLEL SHUFFLE RECOGNITION

M. NIVAT
L.I.T.P., Universite Paris VII, 2
place Jussiew, 75851 Paris Cedex 05, France

G. D. 5. RAMKUMAR®
Robotics Laboratory
Department of Computer Science
Stanford University, Stanford, CA 94305, USA
E-moil: ramkumar@cs. stanford. edu

C. PANDU RANGAN
Department of Compuler Secience end Engineering
Indian Institute of Technology, Madras-600036, India
E-mail: rangan@iitm.ernet.in

A. SAQUDI?
L.I.N.P., Universite Paris XII, Institut Galilée
83420 Villetaneuse, France

R. SUNDARAM?

Loboratory for Compuier Science, NE 45-372
Massachusetts Institule of Tecknology
Cambridge, MA 02139, USA
E-mail: koods@theory.les.mit.edu

Received 22 February 1993
Revised 14 September 1994
Accepted by P. Quinton

. ABSTRACT
This paper presents & parallel algorithun for verifying that a etring X is formed by the

shuffle of two strings ¥ and Z. The algorithm runs in O{log? n) time with ©{n?/log® n)
processors on the EREW-PRAM model.

Keywords: Strings, parallel algﬁrithms, systolic algorithms, digraph reachability.

*The research of this author was carried out while he was at the Indian Institute of Technology,
Madras, India. -

tPassed away on 11 August 1993.

$The research of this author was carried out while he was at the Indian Institute of Technology,
Madras, India.

453

456 M. Nivat et al.

1. Introduction

Let Y =9, y2,..., ¥ and Z = 21, #2,..., Zn be two strings of length n over
a finite alphabet £. The string shuffle problem is to check if a third string X =
xq1, Z2,..., Ta, of length 2n is the shuffle of ¥ and Z, i.e. whether X is formed by
arbitrarily interleaving the characters of ¥ and Z, while maintaining the original
order of the characters in the strings ¥ and Z.

This problem arises in the context of studies relating to the serialization principle
for concurrent programming, where arbitrary interleaving of independent processes
will be considered for an analysis of synchronous execution [4,8].

The string shuffle problem, also referred to as the merge recognition problem,
has a simple sequential O(n?) algorithm based on dynamic programming [11]. A
faster algorithm with O(n?®/logn) sequential complexity is presented im [10]. An
optimal systolic algorithm running in Q(n) time with O(n) processors is rather
straightforward from the dynamic programming formulation of the problem. What
remained as a challenging problem was the design of efficient parallel algorithms in
NC (i.e. the class of parallel algorithms running in poly-log time using polynomial
number of processors). ‘

Tn [7] it is shown that the computations performed in an arbitrary dynamic
programming scheme can be parallelized in poly-log time. However, the generalized
schema results in a method employing O(n%) processors and running in O(log® n)
time. Thus, applying this method, one immediately arrives at a poly-log solution
to the problem, but with an extremely large processor complexity.

This problem can also be equivalently formulated as a digraph reachability prob-
lem. Consider a directed graph G with (rn + 1)2 nodes, with a typical node denoted
as N{i,5), 0 €< 4,5 < n. Draw a directed arc from N(i — 1, 7) to N(i, j) iff
Tit; =¥ 1 €< n,0<Lj < n, and from N, j ~ 1) to N(i, j) iff =) = z;,
0< i< n,1<j<n Tiiseasy to see that the string shuffle problem is equivalent to
checking whether N{n, n) is reachable from N (0, 0) in G. The string shuffle prob-
lem is therefore reducible to the reachability problem between a pair of vertices. In
general, this problem is as complex as the transitive closure problem. For finding the
transitive closure, the best algorithm in the EREW-PRAM model takes O(log® n)
time and M (n) processors, where M(n) is the number of processors required to
multiply two boolean matrices of order @, in O(logn) time, in the CRCW-PRAM
model. At present M{r) is O(n?379) [12]. It is easy to see thai the directed graph @
is planar, and hence the results of [9] can be applied immediately. Since G has O(n?)
vertices, applying the result of [9] leads to an O(log® n) time algorithm with O(n?}
processors in the CRCW-PRAM model. In [2], Apostolico et al. design an efficient
parallel algorithm for the string editing problem. Independently, Aggarwal and Park
have, in [1], designed efficient algorithms for the same, bath in the CREW-PRAM
and CRCW-PRAM models. The string shuffle problem can be viewed as a special
case of the string editing problem or the grid graph path problem, in the terminology

Efficient Parallel Shuffle Recognition 457

of [2]. Their best known algorithms [1,2] take O(log® n) time and O(n?/log n)
processors in the CREW-PRAM model. We improve the processor complexity by
a factor of logn using the weaker EREW rather than the CREW model.

In this paper we propose a parallel algorithm using only O(n?/ log? n) processors
and running in O(log®n) time in the EREW-PRAM model. We exploit certain
structural properties of the graph to arrive at a more efficient solution, but avoid
the use of more complex subroutines such as parallel merge sort [5], cascading
divide and conquer [3], or optimal list ranking [6]. Our method can be extended to
"any problem which admits a dynamic pragramming solution whose computational
pattern resembles the pattern in the string shuffle problem.

2. Definitions and Results

The nodes of the graph defined above are imagined to be placed in the form of
a matrix (or mesh). The row indez of a node N (¢, j) refers to 1 while the column
indez refers to j. References to nodes in the column ¢ denote nodes of the form
N(4,¢), 0 € i < m, while references to nodes in the row r denote nodes of the
form N(r, j), 0 € j € n. Let S(c1, c2) denote the ordered sequence of nodes (in
ascending order of row index) in the ¢i* column from which some node in the c§*
columnn ig reachable, 0 € ¢; € e2 < n. §(e1, ¢z) may be explicitly represented by the
sequence of row indices of the corresponding nodes, stored in ascending order. Let
F(ey, i, co) denate the sequence of nodes, ardered in ascending order of row index,
in the ¢t column from which the node N(i, ¢2) is reachable, 0 < ¢1 £ ¢2 £ n,
0 <i < n. The following lemma states an important property of F{c1, %, ¢2).

Lemma 1. Let N(r1, ¢1), N{rs, 1) € F(a, 4,), 0 <y <2 0,0 < £
n, 0<t <n. Let v’ be on integer such that

o i <v' <rq and
e N(r', c1} € 8{e1, c2).

Then N(r',c) € F(er, &, c2).
Proof. Straightforward. : ' a .

Since F(c;, ¢, co) forms a contiguous subsequence of §(¢1, c2), it is sufficient to
maintain only two end values to represent it. Specifically, let h{ci, ¢, ¢z} denote
the smallest row index and l{cy, ¢, ¢z} the largest row index amongst the row in-
dices of the nodes in F{¢, ¢, cz). Then we may represent F{cy, 4, ¢z) by the pair
(hlcs, i, €2), H{er, %, c2)) with the understanding that every node in S(e1, c), with
row index in the range (h{c1, 1, e2), I(e1, 4, c2)), will be a member of F{ci, 1, ¢2).
Note that F(cy, i, ¢z) may be empty if there is no node in the ct® column from
which there is a path to N(4, cz). In this case, F(ci, 1, ¢2) may be represented as
(¢, ¢) where ¢ represents a dummy undefined value.

Lemma 2. Let F{ci, 71, cz) and F(e, 72, ¢2) be non-emply, 0 € o < 2 £ 1,
0<r <ry<n. Then

458 M. Nivat et al.

L] h(c;, 1, Cz) S h(Cl, Ta, Cz) and
e ey, 11, €2) £ ey, 73, ca).

Proof. Straightforward. [

The above lemma implies that the sequences Fici, 1, ¢3),0 < t < n, considered
as intervals of the sequence S{c1, ¢2), 0 < ¢1 < ez < n, are monotonic, in the
sense that the lower endpoints (and similarly the higher endpoints) are sequenced
in non-decreasing order with respect to 4.

The primary technique employed by the algorithm is recursive doubling, Let
Dley, ¢2], 0 € ¢ < ez € n, denote the set of data : S(c1, ¢a) and F(ey, ¢, ¢3), for
all 4, 0 <4 < n. In order to handle computations arising at various stages we show
how the following computations are done.

1. Construction of the directed grid graph G.

2. Computation of Die, ¢], for a given ¢, 0 < ¢ < n,

3. Given D¢, ¢] and Dlc + 1, ¢ + 1], the computation of D[c, ¢+ 1], 0 € ¢ < n.

4. Given D[c;, 3] and Dleg, cg], the computation of D[y, 3], 0 < 1 < ¢3 < €3 <
n.

Let V = {1, v3,..., v,} be an ordered sequence of values, some of which may be
undefined, Define a set of intervals each defining a subrange of [1..n]. That is, let
[lefti, right;] denote the contiguous set of integers in the range from le ft; to right;,
where 1 <i < g<m, and 1< left; < right; < n. A set of g intervals as described
above is said to be monotonically ordered if lé ft; < left;yy and right; < right;,
for all 1 < ¢ < g — 1. Let Min([left;, righti]) denote the least of the defined v}s
such that left; < j < right;. Note that Min([left;, right;]) may not be defined
and we set Min{[]) = ¢ in such a situation.

Lemma 3. Given an array V = [v1, va,..., v,) of volues and a set Q of ¢ mono-
tonicelly ordered intervals [left;, right;] where 1 < i < ¢ < n, Min([left;, right))
cari be computed over oll i, 1 < i < ¢ in O(logn) time using O(n/logn) processors
in the EREW-PRAM medel.

Proof. For each 4, 1 < i < 0, let nearesi_def(i) denote the least v, such that
i £ j £ n, and v; is defined. Note that nearest_def(f) may be undefined. Cor-
respondingly, let indez_nearesti_def(i) denote the least j, s < j < n, such that
v is defined. Note that index.nearest.def(i) too may be undefined. If all con-
cerned quantities are defined then obviously vingee_nearest_de f(i) = nearest.def(3).
Compute nearest.def(i) and index_nearest_def(i) for all é, 1 < ¢ < n. This
‘can be done easily in O(logn) time using O(n/logn) processors in the EREW-
PRAM model. Now, if index_nearest_de f(left;) < right; then Min([lefts, right;])
= nearest.def(left;), otherwise Min([lefi;, right;]) = ¢ (undefined). But, the
left endpoints of more than one interval could be the same. Since only exclusive
reads are permitted, it is necessary to have as many copies of nearest.def(i} and
tndex_nearest_de f(i) as there are intervals with ¢ as their left endpoints. Since the

Efficient Parallel Shuffle Recognition 459

total number of capies required is at most g < », this duplication can be easily done
in O(logn) time with O(n{ log n) processora in the EREW-PRAM model. Once suf-
ficient number of copies are available, it is a simple matter to be able to compute
Min([left;, right;]) for all §, 1 <14 < g, using only exclusive reads in O(log n) time
with Q(n/logn) processors. O

We shall now state a general form of the lemma proved above that will suit our
PUIPOSES,

Lemma 4. Let O be an ordered sequence consisting of p elements [1.p], 1< p < n.
Associated with each element i of the sequence let there be a value v;, 1 < i < p,
such that, though some of the vy’s may be undefined (represented by ¢), for some
j, k, 1.<j <k <p, if both v; and v, are defined, then v; < vy, Given a set of g,
1 < g € n, monotonically ordered closed intervals [left;, vight;] 1 < i < ¢, where
1 < left; < right; < p, Min([left;, right;]), for alli, can be computed in O(logn)
tirne using O(n/logn) processors in the EREW-PRAM model.

Lemma 5. Let V and Q be as defined in Lemma 3. The cornplement of the intervals
in Q, t.e. the set {§|1 < j < n,7isnot in [left;, right;) forany i, 1 < i & g} can
"be computed in O(logn) time using O(n/logn) processors in the EREW-PRAM
model.

Proof. Let maz.right(s) be the maximum of right; over all intervals with left; = j.
The problem of computing maz_right(j) for all j, 1 < j < n, using only exclusive
reads is easily done in O(logn) time using O(n/logn) processors in the EREW-
PRAM model, since the intervals are sorted with respect to left endpoin{;s and the
intervals with the same left endpoints are sorted with respect to right endpoints. Let
maz(j) =maximum{maz.right(s)|i < j}. This is a standard prefix sums computa-
tion. Then, the required set is nothing but {i|maz(:) < i}. Hence, the complement
of a set of monoctonically ordered intervals can be computed in O(logn) time using
O(n/ logn) processors in the EREW-PRAM model. O

As before we state a generalized form of the lemma proved above that will suit our
purpose.

Lemma 6. Let O, V, Q, q be as defined in Lemmas 8 and 4. The complement
of these intervals, i.e. the set {j|]1 < j < p, 7 is not in [left;, right;] for any i,
1 < i < ¢} can be computed in O(logn) time using O(n/logn) processors in the
EREW-PRAM model.

Clonstruction of the graph. For the construction of the graph, we have to
perform comparisons of the type ziy; = ¥; or T;4; = 2, 0 € i, j < n. To read
these entries in an exclusive way we need to have up to n copies of ¥ and Z and
2n copies of X. By repeatedly doubling the entries, i.e. making duplicate copies, it
is possible to create the required number of copies in O(log? n) time by using one
processor for every logn characters. Thus, by using O(n?/ 1og n) processors it is
possﬁﬂe to create a sufficient number of copies of X, Y and Z in O(log®n) time.

460 M. Nival ef al,

Then the comparisons can be performed simply in O(log’ n) time with O(n?/log® n)
processors. In fact, a much stronger result is possible. But the following weaker
result is sufficient for us.

Propus-ltmn 1, Given X € T2, Y, Z € &%, we can consiruct the graph G, in
O(log? n) time with O(n?/log® n) processors in the EREW-PRAM model. a

Computation of D[c, d, for a given ¢, 0 € ¢ £ n. §(¢, ¢) is trivially the sequence
{0,1,...,n} and F(c, 1, ¢),0 < ¢ < n, is the set of all nodes in the ct* column
from whlch there is a directed path (chain) to N(i, ¢). Thus I(c, i, c} = ¢ and
h(c, i, ¢) =i —t;, where t; is the length of the longest chain ending at node N (3,)
in the ¢t® column. By considering the outdegree sequences and performing standard
computations such as prefix sum and list ranking [7], one can find ¢; for all ¢,
0 < i < n, in linear sequential time and O(logn) parallel time with O(n/logn)
processors in the EREW-PRAM model. Hence we get

Proposition 2. For a given ¢, 0 < ¢ < n, Dlec, ¢] can be computed in O(logn} time
in EREW-PRAM usmg O(n/ logn processors Forallc, 0 £ ¢ <n, Dc, €] con be
computed in O(log? n) time using O(n?/ log® n) processors. O

Given D[c,] and D[c+1, c+1], the computation of Dlc, c+1},0 <1 <03 <.
To compute D[c, ¢ + 1], it is necessary to compute S(c, ¢ + 1) and h{c, 4, ¢ + 1),
e, 3, ¢+ 1), for all §, 0 < 4 < n. First, we show how to compute h{c, 1, ¢+ 1), for
all i, 0 < ¢ < n, (the computation of I(¢, i, ¢ + 1) being similar, its description is
omitted) and then once h{c, %, ¢ + 1) and /¢, , ¢ + 1) have been computed for all
i, 0 < ¢ < n, we show how to compute S{c, ¢+ 1). -

(a) Computation of h(c, i, c+1), for all i, 0 < ¢ < n. If there exists a directed edge
from N(i, ¢) to N{i, ¢+ 1) then let

B'(e, i, ¢ + 1) = Minimum{h(c, 7,)0 < S n AN(j, ¢) € Fle, i,)} (1)

else let '{c, , c+1) = ¢. Note that h'(c, i, ¢+ 1) may be undefined for certain
values. Intuitively, b’ (c, i, e+ 1)} is the lowest row index of a node in the eth col-
umn from which the node N{4,e+ 1) is reachable by a path which is internally
vertex disjoint to the ¢ + 1°¢ column. Using Eq.(1) and Lemma 4, the compu-
tation of W (e, i, ¢+ 1), for all i, 0 € i < n, can be done in O(logn) time with
O(n/ logn) processors in the EREW-PRAM model. To make this clearer we ex-
plain the correspondence between the parameters here and those in Lemma 4.
The sequence O corresponds to the set S(c, ¢), the values v; correspond to
h{c, i, ¢). And, the monctonically closed ordered intervals [left;, right;] cor-
respond to F(c, i,), for those i such that there exists a directed edge from
N(i, ¢) to N{¢, e+ 1). It is easily seen that:
h{c, 1, c+1) = Minimum{4/(e, j, c+1)[0 € j € nAN(F, e+1) € Fc+], 4, c+1)}
(2)
Notice again that #'(c, ¢, ¢+1) may be undefined. The computation of h(c, i, c+
1), for all i, 0 < i £ =, is done in two phases, first A'(c, 4, ¢ + 1), for all ¢,

Efficient Parellel Shuffie Recognition 461

0 < i < n, is computed using Eq. (1) and Lemma 4 as described above, and
then h(e, i, ¢+ 1), for all 4, 0 €1 < n, is computed using Eq. (2) and Lemma 4
in O(logn) time with O(n/logn) processors in the EREW-PRAM model. Note
that the sequence h'{c, 1, ¢ -+ 1) satisfies the property that, though some of the
W (c, i, ¢ + 1)’s may be undefined, for some j, &, 1 £ j < k < =, if both
he, 7, ¢+ 1) and h(c, &, ¢ + 1) are defined, then h(¢, 4, c+ 1) < Ale, k, c+
1). We make the application of Lemma 4 at this stage clearer, by showing
the correspondence between the parameters here and those in Lemma 4. The
sequence O corresponds to the set S(c+ 1, ¢ + 1}, the values v; correspond to
W (c, i, c+1). And, the monotonically closed ordered intervals [left;, right;]
correspond to F{e 41,14, ¢+ 1).

(b) Computation of S(c;, cz + 1). At this stage, we already have h{c, ¢, ¢ + 1),
le, i, e+1), for all 1, 0 < i < n. If we eliminate from S{c, ¢) all those elements
not contained in any of the intervals [R(c, ¢, ¢ + 1), l{(¢, i, ¢ + 1)], for all i,
0 <1i < n, then we get S(c, ¢+ 1). All that remains is the computation of the
complement of the set of intervals, since, once it is computed, it can easily be
eliminated from S(c, €) to generate S(¢, ¢+ 1). Using Lemma 6, this can be
done in O(logn) time with O(n/logn) processors in the EREW-PRAM model.
The correspondence between the parameters here and those in Lemma 6 are
as follows: the sequence O corresponds to S(e, ¢), the monotonically closed
ordered intervals [left, right;] correspond to Ffc, 1, c+ 1).

Proposition 3. For c given ¢, 0 < ¢ < n, using Dlc,] and Dlc+1,¢c+ 1]
we can compute Dle, ¢ + 1] in O(logn) time using O(n/logn) processors in the
EREW-PRAM model. O

Given D[ci, cz] and Dz, ¢5] the computation of Dfc;, ¢), 0 € a1 < €3 <
e3 < n. To compute Dley, ¢3), it is necessary to compute S{ca, ¢3) and h{cs, 4, €3),
l{c1, i, ca), for all §, 0 € i < n. First, we show how to compute k(cy, ¢, ca), for all ¢,
0 < 4 < n, (the computation of I{c;, 1, c3) being similar, its description is omitted)

“and then once h(ey, 4, ca) and I(ec1, %, ¢a) have been computed for all 4, 0 <1 < =,
we show how to compute S(cy, ¢€3).

(a) Computation of h(ey, ¢, e3), for all 4, 0 < £ < n. It is easily seen that:
h(cy, 4, c3) = Minimum{h(ey, J, €2)|0 < § < n A N(5, ¢z} € Flez, 4, ea)} (3)

Using Eq. (3) and Lemma 4, the computation of h(ci, 4, ¢3), for all 4,
0 £ i < n, can be done in O(logn) time with O(n/logn) processors in the
EREW-PRAM model. To make this clearer we explain the correspondence he-
tween the parameters here and those in Lemma 4. The sequence O corresponds
to the set S(cz, c3), the values v; correspond to A{cy, i,), for those i, for
which N(j, ez} € S(cz, c3). And, the monotonically closed ordered intervals
[left, right;] correspond to F{es,i, ¢3).

462 M. Nivat el al.

(b) Computation of §(¢;, c3). At this stage, we already bave h{cy, 4, c3), l(c1, 1, c3),
for all i, 0 € i < n. If we eliminate from S{c, ¢z) all those elements not con-
tained in any of the intervals [h{cy, %, c3), I(e1, %, c3)], for all ¢, 0 < ¢ < n, then
we get S(ey, ¢3). All that remains is the computation of the complement of
the set of intervals, since, once it is computed, it can easily be eliminated from
S(c1, ¢z) to generate S{ei1, 3).- Using Lemma 6, this can be done in O(logn)
time with O{n/logn) processors in the EREW-PRAM model. The correspon-
dence between the parameters here and those in Lemma 6 are as follows: the
sequence () corresponds to S(e1, ¢a), the monotonically closed ordered intervals
[left;, right;] correspond to F(cy, i, c3).

Proposition 4. For o given ¢y, ¢z and c3, 0 € ¢; < 2 < cg £ n, using Dicy, ca}
and D[cz, €3], we can compute Dlcy, cg] in O(logn) time using O(n/logn) proces-
sors in the EREW-PRAM model. (]

3. Parallel Algorithm

Informally, the algorithm first constructs the graph and computes D[c, ¢/ forall e
such that 0 < ¢ < n. It then computes D0, log], D[logn, 2logn],..., D[{n/logn]
logn, n] by repeated application of Propositions 3 and 4. Finally, it uses recursive
doubling in conjunction with application of Propositions 3 and 4 to compute D[0, n],
and checks whether N{0, 0} € F(0, n, n).

Input - X € £2», Y, Z € I

Steps —

1. Construct the required directed graph.

2. Compute Dc, ¢, foralle, 0 < ¢ < .

3. Compute D[c, e+ 1], forallc,0<c<n—1.

4. For i =1 to |n/logn) pardo '
For j=0tologn—2do
use Dfilogn, ilogn + j + 1] and
Dlilogn + j + 1, ilogn + j + 2] to compute
Dfiilogn, tlogn +j + 2.
end.

parend.

5. For i = 1 to [log(|n/logn|)] do
For j =0to ||(n/logn)]/2*} pardo
use D[2j2 1 1logn, (27 + 1)2 ! logn] and
D{(27 +1)2"11logn, (2] + 2)2* L log n] to compute

- Dfj2*logn, (j + 1)2%log =|.
parend,
end.
6. Output YES if h(0, n, 1) = 0, else output NO.
Qutput — YES if X is a shuffle of ¥ and Z, else NG.

Efficient Paraliel Shuffle RHecognition 463

Theorem 1. The string shuffie problem can be solved in O(log2 n) time using
O(n?/ log® n) processors in the EREW — PRAM model.

Proof. Follows from Propositions 1, 2, 3 and 4. a

4. Conclusion

‘We have been able to optimally decompose the dynamic programming based so-
lution {(which has O(n?) sequential complexity} in O(log® n) time with O(n?/ log® n)
processors in the EREW-PRAM model by avoiding the transitive closure bottle-
neck., We did this by using certain special properties of the underlying graph to
solve the corresponding path problem efficiently. However, the best known sequen-
tial algorithm has complexity O(n?/logm). It remains to be seen if we can solve
the string shuffle problem (also known as the merge recognition problem) with the
pracessor. time product matching the best sequential bound. It also remains a
tantalizing open problem to establish a non-trivial lower bound for this problem
(both sequential as well as parallel), as the gap between the algorithmic complexity
(namely O(n?/logn) and the trivial lower bound (O(n)) is pretty wide.

References

[1] A. Aggarwal and J. Park, Notes on searching in multidimensional monotone arrays,
29th Annual IEEE Foundations of Computer Science, 1988, 497-512,

2] A. Aposiolico, M. Atallah, L. L. Larmore and 5. McFaddin, Efficient parallel algo-
rithms for string editing and related problems, SIAM J. Computing 19, 5 (1990),
068088,

[3] M. Atallah, R. Cole and M. T. Goodrich, Cascading divide and conquer: a tech-
nique for designing parallel algorithms, 28th Annual IEEE Foundations of Computer
Setence, 1987, 151-160.

[4] M. Ben Ari, Principles of Concurrent Programming (Prentice Hall, 1982).

{5] R. Cole, Parallel merge sort, 27th Annual JEEE Foundations of Computer Science,
1926, 511-516.

[6] R. Cole and 1]. Vishkin, Deterministic coin tossing and accelerating cascades: Micro
and macro techniques for designing parallel algorithms, 18th Annual ACM Symposium
on Theory of Computing, 1986, 206—219.

[7] A. Gibbons and W. Rytter, Efficient parallel nigorithms (Cambridge University Press,
1988),

[8) C. A. R. Hoare, Comrmunicating Sequenticl Processes (Prentice Hall, 1985).

{9] M. ¥. Kao and P. Klein, Towards overcoming the transitive-closure bottleneck: effi-
cient parallel algorithms for planar digraphs, 28nd Symp. Theory of Computing, 1990,
181-192.

[10] J. V. Leeuwen and M. Nivat, Efficient recognition of rational relations, Jnformation
Processing Letters 14 (1982) 34-38.

[11] A. Mansfield, An algorithm for a merge recognition problem, Discrete Applied Math-
ematics 4 (1982) 193-197.

[12] V. Pan and J. H. Reif, Fast and efficient parallel solution of linear systems, SIAM J.
Computing 22, 8 (1993) 1227-1250.

