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Improved Results on Service-Constrained Network
Design Problems

Madhav V. Marathe, R. Ravi, and R. Sundaram

ARSTRACT. We focus on a class of problems that combine two classi-
cal objectives in network design: establishing connectivity at low cost
and satisfying location theoretic constraints. Several practical instances
of network design problems often require the network to satisfy such
pairs of constraints. We build on our previous work in [3] and present
an improved performance guarantee and an improved inapproximability
result for a general service-constrained network design problem.

1. Introduction

In this paper, we continue [3] our study of “service-constrained network
design problems.” Informally, service-constrained network design problems
involve both a location-theoretic objective and a cost-minimization ohjec-
tive subject to connectivity constraints. The location-theoretic objective
requires that we choose a subset of nodes at which to “locate” services such
that each node is within a bounded distance from at least one chosen lo-
cation. The cost-minimization objective requires that the chosen locations
be connected by a network minimizing parameters such as total cost, diam-
eter or maximum edge cost. The two objectives are measured under two
(possibly) different cost functions. As mentioned in [3], these problems find
applications in modeling a variety of problems in managing replicated copies
of data in distributed databases, optical network design and automatic in-

spection of PCBs.
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2. Problem Statement

The prototypical problem we consider in this paper is the following: We
are given an undirected graph G = (V| E) with two different cost functions
c {modeling the service cost) and d (modeling the construction or communi-
cation cost) for each edge e € £, and a bound &; (on the service distance for
each vertex v). The goal is to find a minimum d-cost tree such that every
node v in the graph is serviced by some node in the tree, i.e. every node v
is within distance &, (under the ¢-costs) of some node in the tree.

We use the bicriteria framework developed in [4]. A generic bicriteria
network design problem, {A, B, S), is defined by identifying two minimiza-
tion objectives, - A and B, — from a set of possible objectives, and specifying
a membership requirement in a class of subgraphs, — 8. The problem spec-
ifies a budget value on the first objective, A, under one cost function, and
seeks to find a network having minimum possible value for the second ob-
jective, B, under another cost function, such that this network is within the
budget on the first objective A. The solution network must belong to the
subgraph-class 8.

There are two versions of the location-theoretic or service cost objectives:
(i) Non-uniform maximum service cost (denoted by Non-uniform service
cost) and (ii) Uniform service cost (denoted by Uniform service cost).
In the Non-uniform service cost version a service constraint S,, is specified
for each vertex. The Uniform service cost version is a special case where
Vog, Sy, = &, ie., all vertices have the same service constraint. Thus for the
problems considered in this paper A € { Non-uniform service cost, Uniform
service cost }. For the cost-minimization objective we focus our attention
on the total cost of the network. The Toial cost objective is the sum of the
costs of all the edges in the network.

In this paper, we continue [3] our study of service-constrained network
design problems. Many such problems are NP-hard. Given the hardness
of finding optimal solutions, we concentrate on devising approximation al-
gorithms with worst case performance gnarantees. Recall that an approx-
imation algorithm for an optimization problem II provides a performance
guarantee of p if for every instance I of 1I, the solution value returned by
the approximation algorithm is within a factor p of the optimal value for
I. Define an («,3)-approximation algorithm for an (A, B, S)-bicriteria
problem as a polynomial-time algorithm that produces a solution in which
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the first objective (A) value, is at most & times the budget, and the sec-
ond objective {B) value, is at most 8 times the minimuam for any sclution
that is within the budget on A. The solution produced must belong to the
subgraph-class S.

Asg mentioned before, the two objectives are measured with respect to
different edge-cost functions. The (budgeted) service cost objective is mea-
sured using the c-cost function while the cost-minimization objective is mea-
sured using the d-cost function. As stated before, a node w is said to service
node v if % i8 within distance &, of v, under the c-cost. The service-degree
of a node is defined to be the number of nodes that can service it. All our
results come in two flavors: (i) Different cost functions and (ii) Identical
cost functions. The Identical cost functions version is a special case of the
Different cost functions case where the two cost functions are the same, i.e.
Ce = de, Ve. We do not address the identical cost functions case in this paper,

In the next section, we summarize our previous work in [3] on this prob-
lem. For a list of related resulis on these problems, we refer the reader to
[3]. We then present our improvements on our previous results in the next
section and close with some open questions. As described in the next sec-
tion, our improved results apply to the case of the (Non-uniform service
cost, Total edge cost, Spanning Tree) problem.

3. Previous Work

In [3], we presented a (1, O(Alnn))-approximation algorithm for the
(Non-uniform service cost, Total cost, Spanning Tree) problem (where
A is the maximum service-degree of any node in the graph). We counter-
balanced this by showing that even the uniform service cost version of the
problem does not have an (o, f)-approximation algorithm for any o < 3 and
A < Ilnn unless NP C DTIME(nlogloen),

In this paper, we improve these results as follows: we improve the perfor-
mance guarantee for the (Non-uniform service cost, Total edge cost,
Spanning Tree) problem to (1,2A). We improve the non-approximability
bound for the uniform service cost version of the problem to show NP-
hardness of («, B)-approximations for any & > 1 and 4 = ao(lnn).
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4. Hardness results

First we show the improved hardness result for spanning trees under dif-
ferent cost functions. We use the recent results on the non-approximability
of MIN SET COVER problem.

As an instance of the MIN SET COVER problem we are given a
universe = {g1,¢2, ... , ¢} and a collection (Q1,Q3,... ,@ny of subsets of
2. The problem is to find a minimum size collection of the subsets whose
union is . Recently [1, 5] have independently shown the following non-
approximability result.

THEOREM 4.1. It is NP-hard to find an approzimate solution to the
MIN SET COVER. problemn, with a vniverse of size k, with performance
guarantee better than Q(Ink).

THEOREM 4.2. Unless NP C P, the (Uniform service cost, Total
cost, Spanning Tree) problem, with different cost functions, cannot be
approzimated to within (o, 8), for any o > 1 and any 3 = o{lnn).

Proof: We show that for any o > 1, if there is a polynomial-time (c, 58)-
approximation algorithm for the (Uniform service cost, Total cost,
Spanning Tree) problem, then there is a polynomial-time #-approximation
algorithm for the MIN SET COVER preblem.

We construct a slightly expanded version of the natural bipartite graph
for set cover: we include one node for each set, and one node for every
(element,set) pair where the element occurs in the set. Note that we have
as many copies of an element node as the number of sets it is contained in.
We include edges from a set node for s to all the element nodes represented
by {element,s). Moreover, we add a clique of edges between all the nodes
representing the same element in the set cover problem. In addition, we add
an enforcer node with edges to all the set nodes, and a new mate node with
a single edge to the enforcer node.

Recall that the d-costs are the construction costs and the c-costs are
the service distances on the edges. We set the d-cost of an edge from the
enforcer to a set node to be 1. The edges from a set node to the element
nodes it contains have zero d~cost. The edge from the enforcer to the mate
node is also given very high d-cost, say Sm+ 1, where m is the total number
of sets. Finally all the edges between the different node copies of an element
are also assigned very high d-costs.
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We now specify the c-costs (service distances) for the edges. We set the
c-cost for the edge between a set node and the element nodes contained in
this set to be some fixed positive value, say §. We set the c-cost of all the
edges from the enforcer to the set nodes to be zero. The edge between the
enforcer and the mate is also assigned zero c-cost. Finally, we set of the ¢
costs of the edges between the different nodes representing the same element
to be zero. Let G denote the resulting instance of the (Uniform service
cost, Total cost, Spanning Tree) problem with the c and d cost functions
as specified above and a uniform service budget of zero for all nodes.

It is easy to see that any collection of k subsets which form a set cover
correspond to a tree in & that strictly services all the nodes and has a d-cost
of k. This is because the tree consisting of the enforcer, the nodes corre-
sponding to the sets in the collection, and the elements in these sets strictly
services all the nodes — nodes corresponding to sets not in the cover are at
zero service distance from the enforcer, and the covered copy of each ele-
ment is at zero distance from all the uncovered copies of nodes representing
elements — this tree has a d-cost of k.

Let OPT denote the size of 2 minimum set cover to the original instance.
Now we show that if there exists a tree 7" which is an (o, 8)-approximation
to the resulting instance G of the (Uniform service cost, Total cost,
Spanning Tree) problem, then from it we can derive a fF-approximation
to the original set cover instance. Such a tree T must satisfy the following
properties:

1. The d-cost of 7" is at most @ - OPT. This follows from the defini-
tion of S-approximation and the fact that there exists a tree in G
corresponding to OPT with d-cost at most OPT.

2. The nodes of G must be serviced by T' within budget zero. This is
because the c-cost of any edge is either 0 or S, but T violates the
budget constraint by at most a factor o.

3. The mate node cannot be in T. This is because the d-cost of the edge
from the enforcer to the mate node is G- m + 1 which is greater than
the d-cost of T". Since only the enforcer node can service the mate
node with a service cost of zero, the enforcer must be in 7T'.

4. Using the same reasoning as that for the mate node, none of the
edges between nodes representing the same ground element can be in
T. To service all such nodes, at least one node corresponding to every
ground element must be in 7.
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We thus conclude that 7" consists of the enforcer node, some of the set
nodes, and the element nodes corresponding to elements in these sets. Since
the d-cost of 1" is at most - OPT, it follows that the number of set nodes in
T is at most #- OPT. Since all the element nodes are serviced by the chosen
set nodes with a service distance of at most -0 = 0, the corresponding sets
must form a set cover. We thus have a S-approximation algorithm for set
cover and this completes the proof.

[

5. Different Cost Functions

In this section, we present an (1, 2A}-approximation algorithm for the
(Non-uniform service cost, Total edge cost, Tree) problem with differ-
ent cost functions. We first recall a foew basic definitions and preliminaries.

DEFINITION 5.1. A node u is said to service a node v if u is within
distance Sy of v. Call the set of nodes that cen service o node u the service
neighborhood of u and denote it by N{u). The service-degree of a node is the
number of nodes that can service it, i.e., the size of its service neighborhood.
The service-degree of the groph is the mazimum over all nodes of the service-
degree of the node and is denoted by A.

Our approximation is a simple consequence of rounding a linear pro-
gramming relaxation for the problem. Before we present the LP relaxation,
we recall a rounding result 2] for the Steiner tree problem. Given an undi-
rected graph with nonnegative weights d on the edges, and a subset of nodes
{t1,t2,... , &} called the terminals, the Steiner tree problem is to find a min-
imum weight tree spanning all the terminals. Consider the following integer
program for the Steiner tree problem. For any node subset X, let §{X)
denote the set of edges with exactly one endpoint in X. Let us consider the
problem rooted at r = #; and formulate the problem as that of finding a set
of edges {(choice variable z.} that can support a flow of one unit from every
other terminal #; to the root. By the max-flow min-cut theorem, we may
write this as a set of cut conditions as follows.

(ST — IP) minimize Z deTe
eeF
subject to Y ocsxyze > 1 (whenever r € X, | X NT| = 1)

g € {0, l} (e E)
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The LP relaxation of the above IP is obtained by replacing the last set of
constraints with 0 < z, <1 (e € E). Let its optimum solution have value
Z(8T-LP)-

Given a weighted graph G and a subset of its nodes U, define the metric
completion of U as a complete graph on the node set 7 with edge weights
equal to the shortest distance of a path between the endpoints in G.

THEOREM 5.2 ([2]). The weight of @ minimum spanning tree on the
metric completion of the terminal nodes is ot most twice the optimum value
of the LP relexation of (ST-IP).

We now formulate an integer program for the (Non-uniform service
cost, Total edge cost, Tree) problem. We use a rooted formulation where
a predetermined node r is always required to be in the tree solution. Note
that this is without loss of generality since we may try every node in the
graph as the root and use the best solution obtained aver all such trials.
We introduce 2 integer binary variable y, for every node v in the graph
that represents whether the node is in the tree or not. As before we have
edge-choice variables z. for the edges of the graph. As in the Steiner tree
formumation, we continue to require that for any cut in the graph, we must
choose at least one edge in a cut if it separates a node chosen to be in the
tree (via y, variables) and the root r. To model the service constraints we
introduce new assignment variables z,,. This is set to one whenever v is
assighed to be serviced by the node v in the tree. Note that in such a case,
the node v must be in the service neighborhood of v, i.e., within c-distance
of &, of u, and also v must be chosen to be in the tree, ie., 4y, = 1. Thus
we have the following IP formulation.

(CT — IP) minimize Z dee
eEH

subject to  YecpxyTe 2 Y (forall X : r & X,u € X)
Byy K Yy (Vu,v € V)
EuEN(u] Ty = 1, (Vu € V)
e € {0, 1} (B € E)
w € {01} (veV)
zy € {0,1} (u,v € V).

The LP relaxation is obtained by relaxing the last three sets of integrality
constraints to linear inequalities specitying lower and upper bounds on these
varibles. Let its value be denoted #OT-L.P)-

Notice that by the assignment constraints, for any node w, we have
2oveNw) Yu 2 Dyen(u) Puv = L. Since the service-degree of any node is at
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most A, for any node u, we get |N(u)| €< A, Thus, for every node u, we
must have that max, ey ¥s = %. By reinterpreting the fractional values
Yy on the nodes as “flow” values from v to the root r, we can perform
the following rounding. Define U = {r} U {v/y, > £}. By the previous
observation, if we build a Steiner tree on these nodes, then this tree will
cover every node within its service distance, since at least one node in every
node’s neighborhood has fractional flow at least é— and this node is in I7, We
simply use a minimum spanning tree on the metric completion of {7 using the
d-costs as the tree connecting them up, which is the final heuristic solution.
'To summarize, we selve the above LP, and use the solution to define I, and
output the minimum d-cost spanning tree on the metric completion of U as
the approximate solution.

We have already seen that the tree output is feasible for all the service
constraints. To show that it has near-optimal d-cost, we make the following
simple observation. Let Zor_zp) denote the optimum value of the LP re-
laxation of (CT-IP). Let £ denote the induced solution on the edge variables.
Notice that by the cut constraints, for any node v € U, the edge values %
support a flow of at least % from v to the root r. Note that the value of
this solution is Zor_rp) = 2 .cp defe. Thus, if we scale up the solution Z
by a factor of A to get £, = A - I, for every e € F, the scaled solution will
support a fow of value at least one from every node v ¢ U to the root r.
By the max-flow min-cut theorem and the earlier formulation of the Steiner
tree problem, we see that Z is a feasible solution to the Steiner tree problem
with the set of nodes in U/ as terminals. Let the value of this scaled solution
be Zsr_rp) = Yeep defe = AZcp_p). By Theorem 5.2, the value of the
MST on the metric completion of U is at most twice that of the optimum
value of the LP formulation of this Steiner tree problem, and hence at most
twice the value of any feasible solution, in particular Zcp_ rr). Thus the
d-cost of the heuristic solution is at most 2Z(gr_rpy = 2AZop Lpy, which
is at most 2A times the optimal, since the LP relaxation is a lower bound
on the optimal value for the given minimization problem. Thus we have the
following theorem.

THEOREM §5.3. There is a (1, 2A)-approzimation algorithm for the (Non-
uniform service cost, Total edge cost. Tree)-bicriteria problem with
different cost functions, where A is the mazimum service-degree af any node
in the graph.
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Remark. Note that the bounds of Theorem 5.3 also extend to the Steiner
version where only a set of terminal sites need to be serviced. The Steiner
version reduces to the regular version by setting the service budgets of the
nonterminal nodes {o some large value, such as the diameter of the graph.
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