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SERVICE-CONSTRAINED NETWORK DESIGNPROBLEMSMADHAV V. MARATHELos Alamos National Laboratory P.O. Box 1663MS K990, Los Alamos NM 87545, USAmadhav@c3.lanl.govR. RAVIGraduate School of Industrial AdministrationCarnegie Mellon University, 5000 Forbes AvenuePittsburgh, PA 15213, USAravi+@andrew.cmu.eduRAVI SUNDARAMDelta Global Trading L. P.Four Cambridge Center, Cambridge MA 02142, USAkoods@delta-global.comAbstract.Several practical instances of network design problems often require the networkto satisfy multiple constraints. In this paper, we focus on the following problem(and its variants): �nd a low-cost network, under one cost function, that servicesevery node in the graph, under another cost function, (i.e., every node of the graphis within a prespeci�ed distance from the network). This study has importantapplications to the problems of optical network design and the e�cient maintenanceof distributed databases.We utilize the framework developed in Marathe et al. [1995] to formulate theseproblems as bicriteria network design problems, and present approximation algo-rithms for a class of service-constrained network design problems.Key words: Approximation algorithms, Bicriteria problems, Spanning trees, Net-work design, Combinatorial algorithms.CR Classi�cation: G.2.2.1. Introduction and MotivationThe problem of managing replicated copies of a data in a distributeddatabase is an important and extensively studied problem in computer sci-ence. (See Awerbach et al. [1992], Awerbach et al. [1993], Lund et al. [1994],Dowdy and Foster [1982], Milo and Wolfson [1988], Kumar and Segev [1993]and the references therein.) As an example, consider the problem posed inWolfson and Milo [1991] on the design of distributed databases: given a setof sites in a network we wish to select a subset of the sites at which to placecopies of the database. The major requirement is that each site should beReceived August 1996.



2 MARATHE, RAVI AND SUNDARAMable to access a copy of the database within a prespeci�ed service time, andthe chosen sites should be connected together as a minimum cost tree sothat updates to one of the copies can be propagated to the other copies ina cost e�ective manner (See Fig. 1.1).A problem of a similar nature comes up in the area of optical network de-sign. Developments in �ber-optic networking technology have �nally reachedthe point where it is being considered as the most promising candidate forthe next generation of wide-area backbone networks (Green [1992]). Theoptical network is a pure data transmission medium. All the computing andprocessing continues to be done in the electronic world. An important issuein interfacing these two worlds { the electronic and the optic { is that of de-signing the optical network subject to location-theoretic constraints imposedby the electronic world. Given a set of sites in a network we wish to select asubset of the sites at which to place optoelectronic switches and routers. Asbefore, the major requirement is that every site should be within a prespec-i�ed distance or delay from an optoelectronic access node and the chosensites should be connected together using �ber-optic links in a minimum costtree (See Fig. 1.2).As a �nal application consider the Traveling Cameraman Problem thatarises in automatic optical inspection of printed circuit boards (see Iwanoet al. [1994], Hernandes et al. [1993] and the references therein) . In thisproblem, a camera is positioned over the board and can be freely moved ina plane parallel to the board. The camera is moved over the board so asto photograph parts of the board at various positions. These photographsare compared to the \master photograph" for detecting possible defectssuch as violation of design rules, mounting and soldering condition of thecomponents on the board, etc. An important consideration is the timetaken to perform the entire inspection sequence; which is proportional tothe distance traversed by the camera as well as the number of photographstaken. Thus the goal of the problem is to design a strategy for moving thecamera to cover a minimum distance with the constraint that the entireboard is photographed.All of the above stated problems can be thought of as instances of \service-constrained network design problems." Informally, service-constrained net-work design problems involve both a location-theoretic objective and a cost-minimization objective subject to connectivity constraints. The location-theoretic objective requires that we choose a subset of nodes at which to\locate" services such that each node is within a bounded distance from atleast one chosen location. The cost-minimization objective requires that thechosen locations be connected by a network minimizing parameters such astotal cost, diameter or maximum edge cost. The two objectives are measuredunder two (possibly) di�erent cost functions.
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Fig. 1.1: The database copies are shown linked by a network. The circles represent theprespeci�ed service times. 2. Problem StatementThe prototypical problem we consider in this paper is the following: We aregiven an undirected graph G = (V;E) with two di�erent cost functions c(modeling the service cost) and d (modeling the construction or communi-cation cost) for each edge e 2 E, and a bound Sv (on the service distance foreach vertex v). The goal is to �nd a minimum d-cost tree such that everynode v in the graph is serviced by some node in the tree, i.e. every node v
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Fig. 1.2: The optoelectronic switches are shown linked by a network. The circles representthe prespeci�ed distances.



4 MARATHE, RAVI AND SUNDARAMis within distance Sv (under the c-costs) of some node in the tree.We use the bicriteria framework developed in Marathe et al. [1995]. Ageneric bicriteria network design problem, (A, B, S), is de�ned by identify-ing two minimization objectives, { A and B, { from a set of possible objec-tives, and specifying a membership requirement in a class of subgraphs, {S. The problem speci�es a budget value on the �rst objective, A, under onecost function, and seeks to �nd a network having minimum possible valuefor the second objective, B, under another cost function, such that this net-work is within the budget on the �rst objective A. The solution networkmust belong to the subgraph-class S.The two versions of the location-theoretic or service cost objective thatwe consider are: (i) Non-uniform maximum service cost (denoted by NU-M-service cost) and (ii) Uniform service cost (denoted by U-M-servicecost). In the Non-uniform maximum service cost version a service constraintSvk is speci�ed for each vertex. The Uniform service cost version is a specialcase where 8vk; Svk = S, i.e., all vertices have the same service constraint.Thus for the problems considered in this paper A 2 f NU-M-service cost, U-M-service cost g. For the cost-minimization objective we focus our attentionon the total cost of the network. The Total cost objective is the sum ofthe costs of all the edges in the network. We also consider the Diameterobjective { the maximum distance between any pair of nodes in the network{ and the Bottleneck objective { the maximum value of any edge in thenetwork. Thus B 2 f total cost, diameter, bottleneck cost g Finally,for the problems considered here S 2 f (Spanning) tree, Steiner tree,generalized Steiner tree g. For example, the problem of �nding low-costservice constrained network introduced in Figure 1.1 is the (NU-M-servicecost, Total cost, Tree) problem.The organization of the rest of the paper is as follows: In Section 3, we sur-vey related results. Section 4 provides an overview of the results in this pa-per. Section 5 discusses the robustness and the generality of our formulationsand results. Section 6 contains the results on hardness of approximations forboth the di�erent and identical cost cases. Section 7 contains the approxima-tion algorithms for spanning trees under di�erent cost functions. Section 8contains the algorithms for spanning trees generalized Steiner forests, whenthe cost functions are identical; Section 9 investigates the diameter and bot-tleneck cost objectives; Section 10 contains some concluding remarks andopen problems. 3. Previous WorkVariants of the service-constrained tour problem have been considered byArkin et al. [1994], Arkin and Hassin [1994], Current and Schilling [1989].Current and Schilling [1989] consider the covering salesperson problem andpresent a heuristic for it without providing any performance guarantees. Inthis problem, nodes represent customers and the service radius represents



SERVICE-CONSTRAINED NETWORK DESIGN PROBLEMS 5the distance a customer is willing to travel to meet the salesperson. The goalis to �nd a minimum length salesperson tour so that all the (customer) nodesare strictly serviced. Arkin and Hassin [1994] considered geometric versionsof the problem, where the service neighborhood (i.e., the neighborhood thecustomer is willing to travel) is modeled as a region in the plane. For convexneighborhoods, they present heuristics that provide constant performanceguarantees. They also show how their heuristics can be extended to noncon-vex regions. Arkin et al. [1994] considered additional geometric variationsof the covering tour problem including the lawn mower problem, where thegoal is to �nd a tour such that each given point within some boundary (thelawn) is within a circle of unit radius from at least one point on the tour.They provide an approximation algorithm for this problem with a constantperformance guarantee. Recently Mata and Mitchell [1995] generalized andimproved the results of Arkin et al. [1994] on geometric covering problems.Iwano et al. [1994] considered a geometric version of the problem motivatedby applications in automatic optical inspection of printed circuit boards.Awerbach et al. [1992], Awerbach et al. [1993] and Lund et al. [1994]consider an on-line variant of the distributed data management problem.In their model, read or write requests from various processing units arrivein an on-line fashion and an on-line algorithm needs to decide whether toreplicate, move or discard copies of the database after serving each request.The goal of the on-line algorithm is to minimize the total cost of processingthese requests. Due to the di�erences in the model considered, their resultsdo not apply to the problems considered here.We refer the reader to the our work (Marathe et al. [1995]) for otherreferences on approximation algorithms for multicriteria network design.4. Overview of ResultsIn this paper, we study the complexity and approximability of a number ofservice-constrained network design problems discussed in Section 2. Manyof the problems considered in this paper, are NP-hard (Garey and Johnson[1979]). Given the hardness of �nding optimal solutions, we concentrate ondevising approximation algorithms with worst case performance guarantees.Recall that an approximation algorithm for an optimization problem � pro-vides a performance guarantee of � if for every instance I of �, the solutionvalue returned by the approximation algorithm is within a factor � of theoptimal value for I. De�ne an (�; �)-approximation algorithm for an (A, B,S)-bicriteria problem as a polynomial-time algorithm that produces a solu-tion in which the �rst objective (A) value, is at most � times the budget,and the second objective (B) value, is at most � times the minimum for anysolution that is within the budget on A. The solution produced must belongto the subgraph-class S.As mentioned before, the two objectives are measured with respect to dif-ferent edge-cost functions. The (budgeted) service cost objective is measured



6 MARATHE, RAVI AND SUNDARAMusing the c-cost function while the cost-minimization objective is measuredusing the d-cost function. As stated before, a node u is said to service nodev if u is within distance Sv of v, under the c-cost. The service-degree of anode is de�ned to be the number of nodes it services. All our results comein two 
avors: (i) Di�erent cost functions and (ii) Identical cost functions.The Identical cost functions version is a special case of the Di�erent costfunctions case where the two cost functions are the same, i.e. ce = de;8e.We provide a (1; O( ~� lnn))-approximation algorithm for the (NU-M-service cost, Total edge cost, Spanning Tree) problem (where ~� isthe maximum service-degree of any node in the graph). We counterbalancethis by showing that the problem does not have an (�; �)-approximationalgorithm for any � � 1 and � < lnn unless NP � DTIME(nlog log n).When both the objectives are evaluated under the same cost function weprovide a (2(1+�); 2(1+ 1� ))-approximation algorithm, for any � > 0. 201zInthe opposite direction we provide a hardness result showing that even in therestricted case where the two cost functions are the same the problem doesnot have an (�; �)-approximation algorithm for � < 2 and � < lnn un-less NP � DTIME(nlog log n). For the identical cost functions case, ourmethod extends to generalized Steiner forest version of the problem withweaker guarantees. Finally, we show that the problems (NU-M-servicecost, Diameter, Spanning Tree) and (NU-M-service cost, Bottle-neck, Spanning Tree) are solvable in polynomial time. Again, our resultsextend to the Steiner tree variants of the problems.5. Bicriteria Formulations: PropertiesWe brie
y discuss the generality and the robustness of our bicriteria formu-lations. The discussion is based on the results in Marathe et al. [1995] andhence we keep the discussion brief.We say that our formulation is robust since the quality of approximationis independent of which of the two criteria we impose the budget on. Specif-ically, the problem of �nding spanning tree that service all the nodes in agraph can be formulated in two natural ways : (i)(U-M-service cost, To-tal cost, Spanning Tree)-problem, and (ii)(Total cost, U-M-servicecost, Tree)-problem. Problem (i) has already been discussed. In problem(ii), given a bound B on the cost of a spanning tree, we wish to �nd a span-ning tree of cost no more than B such that the maximum service distancefor any node not in the tree is minimized.Note that these problems are meaningful only when the two criteria arehostile with respect to each other - the minimization of one criterion con
ictswith the minimization of the other. A good example of hostile objectivesare the degree and the total edge cost of a spanning tree in an unweightedgraph. An example of a pair of objectives that are not hostile are the bottle-neck cost (maximum cost of any edge) and the total ege cost of a spanningtree, since minimizing the latter automatically minimizes the former. Two



SERVICE-CONSTRAINED NETWORK DESIGN PROBLEMS 7minimization criteria are formally de�ned to be hostile whenever the mini-mum value of one objective is monotonically non-decreasing as the budget(bound) on the value of the other objective is decreased. It is easy to seethat service cost and the total cost of the tree are hostile functions. Thususing the ideas in Marathe et al. [1995] we have the following result.Theorem 1. Any (�; �)-approximation algorithm for (U-M-service cost,Total cost,Spanning Tree) can be transformed in polynomial time into a (�; �)-approximation algorithm for (Total cost, U-M-service cost, SpanningTree).Theorem 1 directly extends to other variants of the problem such asthe problems (U-M-service cost, Diameter, Spanning Tree), (U-M-service cost, Total Cost, Steiner Tree), etc. The extensions are imme-diate and thus we omit their proofs.Next, we discuss the generality of our results. We claim that our resultsare more general because they subsume the case where one wishes to min-imize some functional combination of the two criteria. For the purposes ofillustration let A and B be two objective functions and let us say that wewish to minimize the sum of the two objectives A and B. Call this an (A+ B, S) problem. The following theorem follows by arguments similar tothose given in Marathe et al. [1995].Theorem 2. Let XYZ be any (�; �)-approximation algorithm for (A, B,S) on graph G. Then there is a polynomial time approximation algorithmONE-XYZ for the (A + B, S) problem with performance guarantee (1 +�) maxf�; �g.Similar results hold for the (AB, S) problem. In contrast, it is not clearhow to extend an algorithm for the (AB, S) or the (A +B, S) problem to an(approximation) algorithm for the (A, B, S) problem. It is in this sense thatwe claim the generality of our results. Note that in some cases algorithmswith better performance than ONE-XYZ can be obtained directly for theunicriteria version of the problems (see Marathe et al. [1995]).6. Hardness results6.1 Di�erent CostsFirst we show the following hardness result for spanning trees under di�erentcost functions, in the uniform service distance case, when all the servicedistances are the same. We use the recent results on the non-approximabilityof MIN SET COVER problem.As an instance of the MIN SET COVER problem we are given a uni-verse Q = fq1; q2; : : : ; qng and a collection Q1; Q2; : : : ; Qm of subsets of Q.The problem is to �nd a minimum size collection of the subsets whose union



8 MARATHE, RAVI AND SUNDARAMis Q. Recently Feige [1996] has shown the following non-approximabilityresult:Theorem 3. Unless NP � DTIME(nlog log n), the MIN SET COVERproblem, with a universe of size k, cannot be approximated to better than alnk factor.Theorem 4. Unless NP �DTIME(nlog log n), the (NU-M-service cost,Total cost, Spanning Tree) problem, with di�erent cost functions, cannotbe approximated to within (�; �), for any � � 1 and any � < lnn.Proof. We show that for any � � 1, if there is a polynomial-time(�; �)-approximation algorithm for the (NU-M-service cost, Total cost,Spanning Tree) problem, then there is a polynomial-time �-approximationalgorithm for the MIN SET COVER problem.Construct the natural bipartite graph, one partition for set nodes and theother for element nodes, with edges representing element inclusion in thesets. To this bipartite graph, we add an enforcer node with edges to all theset nodes and also a mate node attached to the enforcer. Now we completethis skeleton-graph by throwing in all the edges. We set the d-cost of an edgefrom the enforcer to a set node to be 1. We set the d-cost of all other edgesto be � �m+1. We now specify the c-costs (service costs) for the edges. Weset the c-cost for the edge between the enforcer and the mate and for eachedge between the enforcer and a set node to be S. We set the c-cost of anedge between a set node and the element nodes contained in this set to alsobe S. The d-cost of all other edges is set to � � S + 1. Let G denote theresulting instance (See Fig. 6.1) of the (U-M-service cost, Total cost,Spanning Tree) problem with the c and d cost functions as speci�ed aboveand a uniform service budget of S.It is easy to see that any collection of k subsets which form a set covercorrespond to a tree in G that strictly services all the nodes and which has ad-cost of k. This is because the tree consisting of the enforcer and the nodescorresponding to the sets in the collection, strictly services all the nodes andhas a d-cost of k.Let Opt denote the size of a minimum set cover to the original instance.Now we show that if there exists a tree T which is an (�; �)-approximation tothe resulting instance G of the (NU-M-service cost, Total cost, Span-ning Tree) problem, then from it we can derive a �-approximation to theoriginal set cover instance. Such a tree T must satisfy the following proper-ties:(1) The c-cost of T is at most � �Opt. This follows from the de�nition of �-approximation and the fact that there exists a tree in G correspondingto Opt with d-cost at most Opt.(2) The nodes of Gmust be serviced by T within budget S. This is becausethe c-cost of any edge is either S or �S+1, but T violates the budgetconstraint by at most a factor �.
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Fig. 6.1: The skeleton-graph depicting the reduction from MIN SET COVER to the(NU-M-service cost, Total cost, Spanning Tree) problem. The c-costs indicatedabove the edges and the d-costs indicated below.(3) The mate node cannot be in T . This is because the d-cost of any edgefrom the mate node is � �m+1 which is greater than the d-cost of T .Since only the enforcer node can service the mate node with a servicecost of at most �S, the enforcer must be in T .(4) Using the same reasoning as that for the mate node, none of the nodesrepresenting the ground elements can be in T . To service these nodes,some of the set nodes must be in T .We thus conclude that T consists only of the enforcer node and some ofthe set nodes. Since the d-cost of T is at most � �Opt, it follows that thenumber of set nodes in T is at most � �Opt. Since the element nodes areserviced by the chosen set nodes with a service distance of at most �S, thecorresponding sets must form a set cover. We thus have a �-approximationalgorithm for set cover and this completes the proof.6.2 Identical costsWe �rst recall additional de�nitions and results.Given an undirected graph G(V;E), the CONNECTED DOMINA-TION problem (the optimization version), is to �nd a a dominating set Dof vertices of minimum size such that the subgraph induced on D is con-nected. The result in Feige [1996] combined in straightforward fashion withthe reduction in Garey and Johnson [1979] yields the following inapprox-imability result:Theorem 5. Unless NP � DTIME(nlog log n), the CONNECTEDDOMINATION problem, on a graph with n vertices cannot be approxi-mated to better than a lnn factor.



10 MARATHE, RAVI AND SUNDARAMTheorem 6. Unless NP � DTIME(nlog logn), the (U-M-service cost,Total cost, Spanning Tree) problem, with identical cost functions, cannotbe approximated to within (�; �), for � < 2 and any � < lnn.Proof. We present an approximation preserving reduction from CON-NECTED DOMINATION to the (U-M-service cost, Total cost,Spanning Tree) problem. Speci�cally, we show that if there is a (< 2; �)-approximation algorithm for the (U-M-service cost, Total cost, Span-ning Tree) problem then there is a polynomial-time �-approximation algo-rithm for the CONNECTED DOMINATION problem.Corresponding to an instance G = (V;E) of CONNECTED DOMI-NATION, we create a complete edge weighted graph G0(V 0; E0) as follows:we set V 0 = V . We set the c-cost of each edge in E0 to be the length of theshortest path in G, and the uniform service budget S to be 1.We claim that there exists a connected dominating set of size at most kin G if and only if there exists a solution to the (Uniform service cost, Totalcost, Tree)-bicriteria problem with cost at most (k�1). For the only if part,note that any spanning tree for connected dominating set of size k is a treeof cost (k � 1) that services all the nodes. Conversely, suppose we have atree of cost (k� 1) servicing all the nodes in G0. Then, the tree has no morethan k nodes, and all other nodes are at a distance of less than two (andhence at most one) from some node in the tree. So, the vertices in the treeform a connected dominating set for G. This completes the proof. 27. Di�erent Cost FunctionsIn this section, we present an (1; O( ~��lnn))-approximation algorithm for the(Non-uniform service cost, Total cost, Tree) problem with di�erentcost functions. We �rst recall a few basic de�nitions and preliminaries.Definition 1. A node u is said to service a node v if u is within distanceSv of v. The service-degree of a node is the number of nodes it services. Theservice-degree of the graph is the maximum over all nodes of the service-degree of the node and is denoted by ~�.Given a graph G with edge weights and node weights, we de�ne the ratioweight of a simple cycle C in G to bePe2C wtePv2C wtv :Here wte denotes the weight of an edge and wtv denotes the weight of avertex. In other words, the ratio weight of a cycle is the ratio of the edgeweight of the cycle to the node weight of the cycle. As mentioned in Blumet al. [1996] the following problem is NP-hard:



SERVICE-CONSTRAINED NETWORK DESIGN PROBLEMS 11Definition 2. MIN-RATIO-ROOTED-CYCLE (MRRC) Problem: Given a graph G = (V;E) with edge and node weights, and a distinguishedvertex r 2 V called the root, �nd a simple cycle in G that contains r andhas minimum ratio weight.By a slight modi�cation of the ideas in Blum et al. [1996], we get thefollowing theorem.Theorem 7. There is a polynomial-time approximation algorithm with per-formance guarantee � = O(1) for the MRRC problem.Finally, we assume that the graph is complete and that the edge costfunctions { c and d { obey triangle inequality. The reason for this is asfollows: consider the (complete) graph obtained on the same set of verticesby adding edges between every pair of vertices of c and d-costs equal to thatof the shortest c and d-cost paths between the corresponding vertices in theoriginal graph; then any solution on this new graph transforms to a solutionof identical value in the original graph.7.1 Basic TechniqueBefore presenting the details, we give the main idea behind our algorithm.To begin with, we may assume that a speci�c node r belongs to the optimaltree. By running over all possible r's and picking the best we �nd therequired (approximate) tree. The algorithm runs in phases. Initially, thesolution contains only the node r. At any stage only a subset of the nodes areserviced by the set of solution nodes. Each phase the algorithm �nds a nearlyoptimal minimum ratio weight cycle that services some of the remainingunserviced nodes in the graph. The cycle is contracted to a single nodeand the algorithm moves to the next phase. Termination occurs when allthe nodes in the graph are serviced. A logarithmic performance guaranteeis obtained by assuring that the cycle added in each phase has low costcompared to the optimal solution.7.2 The AlgorithmWe �rst de�ne a few additional terms used in describing our algorithm. Atany point in the algorithm, for each vertex vk 2 V , let Bvk denote the setof vertices that are within c-distance of at most Svk from vk. It is easy tosee that Bvk can be computed in polynomial time.We also need the concept of contraction of a set of nodes in the graph.This is the natural operation of replacing this set of nodes with a single newnode, deleting edges with both ends in the set, and making the new node theendpoint of those edges with exactly one endpoint in the set. AlgorithmDifferent describes the method in detail.



12 MARATHE, RAVI AND SUNDARAMAlgorithm Different:� Input: A graph G = (V;E), edge cost functions c and d, servicebudget Svk for vertex vk under the c-cost function.� (1) For i = 1 to n do(a) Set r = vi. Set j = 0. Set G0 = G�Br [ frg.(b) While Gj 6= r.(c) Set j = j + 1.(d) For all v 2 Gj compute Bv.(e) Compute Cj, a �-approximate solution to theMRRC problem on Gj where the edge weights arethe d-edge-costs and the node weights are jBvk j fork 6= i and 0 for r.(f) Modify Gj by contracting Cj into a supernode. Set rto be the new supernode.(g) Set Gj = Gj �Br [ frg.(h) Let Ti be a minimum spanning tree on Sj Cj underthe d-cost.(2) Let Heu = mini Ti. Output Heu.� Output: A tree Heu such that every vertex vi 2 V is within adistance Svi from some node in Heu, under the c-cost, and thed-cost of Heu is at most O( ~� � lnn) times that of an optimalservice-constrained tree.7.3 Performance GuaranteeIt is easy to see that Algorithm Different outputs a tree that servicesall the nodes. It remains to show that the d-cost of Heu is within a factorof O( ~� � lnn) of the optimal. We prove this in the following two lemmas.For the rest of the paper, we will use the same symbol to denote a set andits cardinality and the intent will be clear from the context.LetOpt denote an optimal tree. In what follows, let i denote that iterationof Step 1 in which r = vi 2 Opt. Let f denote the number of iterations ofStep 1b for this particular value of i. Let the set of cycles chosen in Step1e of the algorithm be C1; : : : ; Cf , in order. We use Cj to denote both thecycle as well as the d-cost of the cycle. We also use Opt and Heu to denotethe d-costs of the corresponding tree. Let �j denote the number of nodes inG that are not serviced by the supernode r after choosing the cycle Cj inthe jth iteration of Step 1b. Alternatively, �j is the number of vertices inG� r after Step 1g in the j'th iteration.. Thus, �0 � n while �f = 0. Letcycle Cj service tj new nodes.Lemma 1. Cjtj � 2� ~�Opt�j�1 :



SERVICE-CONSTRAINED NETWORK DESIGN PROBLEMS 13Proof. Focus on the graph Gj at the end of iteration j � 1. Since Optservices all the vertices we have that Pvk2Opt jBvk j = jV (Gj)j = �j�1.We �rst observe that Opt induces a cycle (by doing an Euler walk alongthe outside of the Opt tree, see Cormen et al. [1990], pp 697{700) with aratio weight of 2Opt�j�1 . Hence, since in Step 1e we choose a �-approximateminimum ratio cycle Cj it follows thatCjPvk2Cj jBvk j � 2�Opt�j�1 :Since the service-degree of each vertex in G is at most ~�, it follows thatno vertex contributes more than ~� to the denominator of the left hand sidein the above equation. Thus ~� � tj �Pvk2Cj jBvk j: HenceCj~� � tj � 2�Opt�j�1 :The lemma follows. 2Lemma 2. Heu � 2� ~� HnOptwhere Hn = 1 + 12 + : : :+ 1n is the harmonic function.Proof. By de�nition of �j and tj , we have that�j = �j�1 � tj (7.1)and from Lemma 1, we have tj � Cj�j�12� ~�Opt (7.2)Substituting Equation (7.2) into (7.1) we getCj � (2� ~�Opt) tj�j�1 � (2� ~�Opt)(H�j�1 �H�j ):Hence, since �0 � n and �f = 0, we getfXj=1Cj � (2� ~�Opt)(H�0 �H�f ) � (2� ~�Opt)Hn:The proof of the lemma now follows by observing that Heu�Pfj=1Cj . 2Since Hn � lnn we obtain the following result.



14 MARATHE, RAVI AND SUNDARAMTheorem 8. There is a (1; O( ~� � lnn))-approximation algorithm for the(Non-uniform service cost, Total cost, Tree)-bicriteria problem withdi�erent cost functions, where ~� is the maximum service-degree of any nodein the graph.Remark. Note that the bounds of Theorem 8 also extend to the Steinerversion where only a set of terminal sites need to be serviced. The Steinerversion reduces to the regular version by setting the service budgets of thenonterminal nodes to some large value, such as the diameter of the graph.8. Identical Cost Functions8.1 Spanning treesWe �rst consider the (Non-uniform service cost, Total cost, Treeproblem for identical cost functions case and provide a (2(1 + �); 2(1 + 1� ))-approximation algorithm. Algorithm Identical details this algorithm.Algorithm Identical:� Input: An undirected graph G = (V;E), edge cost function c,service radius Svk for vertex vk, an accuracy parameter � > 0.� (1) For each node vk 2 V , let Bvk denote the set of verticesthat are within distance of at most (1 + �)Svk from vk.(2) Set X 0 = fv1; v2; : : : ; vng. Set X = ;.(3) Repeat until X 0 = ;.(a) Let i be such that Svi is the least among all vi 2 X 0.(b) Set X = X [ fvig.(c) Set X 0 = X 0nfvkjBvk \Bvi 6= ;g.(4) Construct a graph G0 on the set of vertices in X . Letthe cost of an edge in this graph be the distance of theshortest path between the two vertices in G.(5) Construct a minimum spanning tree T of G0.(6) Construct the subgraph H corresponding to T formed byreplacing each edge in T by a shortest path of G.(7) Let Heu be a minimum spanning tree of H. OutputHeu.� Output: A treeHeu such that any vertex vk is within a distanceof 2(1 + �)Svk from some node in Heu and the cost of Heu isat most 2(1 + 1� ) times that of any tree that contains a nodewithin distance Svk of any vertex vk.Let Opt be an optimal solution. As mentioned we also use Opt and Heuto denote the cost of the corresponding trees. We prove the performanceguarantee of Algorithm Identical in the following lemmas. Let the ver-tices in X at the termination of Algorithm Identical be v1; v2; : : : ; vf ,i.e., jX j = f .



SERVICE-CONSTRAINED NETWORK DESIGN PROBLEMS 15Lemma 3. Every vertex vk is within a distance 2(1 + �)Svk of some vertexin X .Proof. If vk 2 X then the lemma follows sinceHeu contains vk. If vk 62 Xthen 9vi 2 X such that Bvi \Bvk 6= ; and Svi � Svk . In this situation, it iseasy to see that vk is within a distance (1+ �)Svi +(1+ �)Svk � 2(1+ �)Svk .This completes the proof. 2Lemma 4. Opt � fXi=1 �Svi .Proof. By de�nition, Opt contains at least one node from each Bvi forall vi 2 X that is within distance Svi from vi. Since the Bvi for all vi 2 Xare disjoint, any tree connecting these nodes must cross the peripheral �Sviwidth and the lemma follows. 2Lemma 5. Heu � 2(Opt+Pfi=1 Svi).Proof. We can construct a tree � spanning all the vi 2 X as follows:for each vi 2 X , join vi to a vertex in Opt that is within distance Svi by ashortest path. The length of this path is no more than Svi . Thus, the cost of� is at most Opt+Pfi=1 Svi . Note that � is a Steiner tree that spans all thevertices in X . SinceHeu is a minimum spanning tree on these same vertices,computed using shortest path distances between them, standard analysis ofthe minimum spanning tree heuristic for Steiner trees, yields that the costof Heu is at most twice the cost of �. The lemma follows. 2Lemma 6. Heu � 2(1 + 1� )Opt.Proof. Follows from Lemmas 4 and 5. 2Lemmas 3 and 6 yield the following theorem.Theorem 9. For any � > 0 there is a (2(1+ �); 2(1+ 1� ))-approximation al-gorithm for the (Non-uniform service cost, Total cost, Tree)-bicriteriaproblem with identical cost functions.8.2 Generalized Steiner TreesWe consider the (U-M-service cost, Total cost, Generalized Steinerforest) problem { a generalization the (U-M-service cost, Total cost,Spanning tree) problem. The reason for studying this problem stemsonce again from practical applications related to optical communication anddistributed data management. Speci�cally, if we had a number of siteswith connectivity requirements only among some subsets of the sites, ratherthan all the sites, then we need the solution subgraph to be a forest and



16 MARATHE, RAVI AND SUNDARAMnot necessarily a tree. This motivates the service-constrained generalizedSteiner forest problem. The formal statement of the (U-M-service cost,Total cost, Generalized Steiner forest) problem is as follows: given anundirected graph G = (V;E) with two di�erent cost functions c (modelingthe service cost) and d (modeling the construction cost) for each edge e 2E, a set of k site pairs (si; ti), and a bound S (on the maximum serviceconstraint), �nd a minimum d-cost forest F such that for each site pair(si; ti) there exists a tree T 2 F with the property that both si and ti arewithin distance S of the tree. The above problem is a generalization of the(U-M-service cost, Total cost, Spanning tree) problem. To see this,note that given an instance of (U-M-service cost, Total cost, Spanningtree), we can construct an instance of the (U-M-service cost, Total cost,Generalized Steiner forest) problem by specifying a set of n�1 site pairs{ one for each pair of vertices of the form (r; v) for some �xed node r in V .Clearly this implies that F consists of a single tree and the vertices not inthe tree are appropriately covered.
8.3 Description of the AlgorithmWe �rst de�ne a few additional concepts that will be used to describe thealgorithm.For each site vi 2 G, let Bi (referred to as the ball around vi), be theset of vertices that are within distance of at most (1 + �)S from vi. Werefer to vi as the center of Bi. It is easy to construct the set Bi in polyno-mial time. Let B = fB1; : : : ; Bng Given a set B of balls, we can naturallyde�ne an associated intersection graph I(V1; E1). The vertices in I are inone-to-one correspondence with the balls in B. There is an edge betweentwo vertices in V1 if and only if the corresponding balls have a non-emptyintersection. (equivalently, if their centers are within a distance of 2(1+ �)Sfrom each other). As a part of our algorithm, we need to �nd minimumcost generalized Steiner forests. This problem is NP-hard, and we thususe the 2-approximation algorithm of Agrawal et al. [1995]. We denote thisalgorithm by AKR-GEN-STEINER for the rest of the section.Algorithm Generalized Steiner gives details of our heuristic for forapproximately solving the (U-M-service cost, Total cost, GeneralizedSteiner forest) problem.



SERVICE-CONSTRAINED NETWORK DESIGN PROBLEMS 17Algorithm Generalized-Steiner:� Input: An undirected graph G = (V;E), edge cost functionc, service budget S, a set of site pairs (si; ti) 1 � i � p, anaccuracy parameter � > 0.� (1) If the distance between a site pair is at most 4(1 + �)S,check if there is a node that is within a distance of atmost 2(1 + �)S from both of them. If so discard this sitepair from further consideration.(2) For each site vi 2 G, compute Bi .(3) Construct the intersection graph I(V1; E1) correspondingto the balls fB1; : : : ; Bng.(4) Find a maximal independent set D in I(V;E). Let jDj =k.(5) For each site si such that si 62 [Bi2DBi assign it to somesite sj such that Bi intersects with Bj and Bj is in D.(6) Mark all the balls in D as active. For each ball Bi 2 D,update its set of sites as those that are assigned to thisball or contained within it.(7) Construct an auxilliary graph G2(V2; E2) as follows: Thevertices V2 are in one-to-one correspondence with the cen-ters of the balls in D. The cost of an edge between twovertices equals the shortest path distance between thecenters of the corresponding balls. The set of site pairs(p1; q1); : : : (pm; qm) are given as follows. If ball Bt is as-sociated with site si and ball Bw is associated with siteti, then the vertices corresponding to the balls Bt and Bware considered site-pairs.(8) Construct a minimum cost generalized steiner tree T inG2(V2; E2) using Algorithm AKR-GEN-STEINER.(9) Output the tree T as the solution of the algorithm.� Output: A forest Heu such that for all i, si and ti are withina distance of 2(1 + �)S from some tree T 2 Heu and thecost of Heu is at most 8 + 6� times that of any optimal serviceconstrained generalized Steiner forest.Remarks:(1) In Step 1, if a pair is discarded, it implies that the service constraintis violated by a factor of at most 2(1 + �). This is because there is atrivial tree made of a single node at distance at most 2(1 + �)S fromboth the sites.(2) In Step 5 no pair of site-mates are assigned to the same ball due tothe pruning in Step 1.



18 MARATHE, RAVI AND SUNDARAM8.4 Performance GuaranteeBy the de�nition of active balls, each ball in D separates at least one site.Since the balls are mutually disjoint it follows that any optimal forest has tovisit each ball to ensure that the individual sites have at least one neighborwithin a distance S from it. Thus any optimal service constrained forestmust contain at least one node from each Bi in D.Next, observe that Opt � k�S. To see this, observe that the above dis-cussion implies that the optimal tree strictly visits each of the balls in D.Any forest connecting these nodes must cross the annular width of �S foreach ball in D (since these balls are non-intersecting). Moreover, since thereare k balls in D it follows that the total peripheral distance covered is atleast k�S.Lemma 7. There exists a generalized Steiner forest of the sites chosen in Dof cost no more than 3k(1 + �)S +Opt.Proof. The idea is to use the optimal generalized Steiner forest for theoriginal problem of cost Opt. However since the speci�cation of site pairsin D is di�erent from those in the original graph, we must add more linksto this solution to make it feasible for the new site pairs.In particular, we �rst consider the connected components of site pairsunder the new speci�cation leading to subsets of nodes inD that are servicedby the same tree in the solution. We then identify a spanning tree of site-pairdemands between these nodes - for example, two nodes x and y may be a sitepair since their balls respectively intersect the balls of sites si and ti in theoriginal problem, so the edge (x; y) is a new site-pair demand. To satisfy thisdemand using the original optimal solution, we add the connections from xto si to the tree servicing si, and similarly from y to ti to the tree servicingti (the same as before) thus connecting x and y via the tree. We do this forevery site-pair demand in a spanning tree of demands for every such subsetin D.The cost of the extra connections added is the sum of the degrees of allthe nodes in D in these spanning trees times 3(1 + �)S for each connection.Since jDj = k and the sum of degrees in a forest is at most twice the numberof nodes, the cost of the connections is at most 6(1 + �)S. By the aboveargument, adding these connections to the original optimal forest gives afeasible solution for this problem with the stated cost. 2Lemma 8. Heu � 6(1 + �)kS + 2Opt.Proof. By Lemma 7, there is a generalized Steiner forest of cost at mostOpt + 3k(1 + �)S connecting all the sites in D appropriately. Since weuse a 2-approximation algorithm (Agrawal et al. [1995]), we get the boundclaimed in the lemma. 2Thus we have the following theorem.



SERVICE-CONSTRAINED NETWORK DESIGN PROBLEMS 19Theorem 10. There is a (2(1 + �); 8 + 6� )-approximation algorithm for the(U-M-service cost, Total cost, Generalized Steiner forest) problemwith identical cost functions.9. Diameter and BottleneckIn this section we sketch our polynomial time results on two other variantsof the objective function.Theorem 11. The problems (NU-M-service cost, Bottleneck, Span-ning Tree) and (NU-M-service cost, Diameter, Spanning Tree) withdi�erent cost functions, are solvable exactly in polynomial-time.Proof. We �rst consider the (NU-M-service cost, Bottleneck, SpanningTree) problem { given a graph with two cost functions on the edges, anda service budget for each node, �nd a tree such that the service budget(under one cost function) for each node is satis�ed and the tree has minimumbottleneck cost under the other cost function (i.e., the cost of the maximumedge in the tree is minimum). This problem can be solved by �rst sorting theedges in increasing order of the d-costs and adding the edges in that orderuntil one of the connected components in the resulting subgraph satis�es theservice constraints for all the nodes. The details are straightforward and soare omitted.Next consider the (NU-M-service cost, Diameter, Spanning Tree)problem. Using the ideas in Camerini and Galbiati [1982] and Ravi et al.[1996], one can show that the the service-constrained minimum diametertree problem can be solved in polynomial time. In this problem, we aregiven a graph G(V;E) and a service radius Svi for each vertex vi. We wishto �nd a tree with minimum diameter (under the d-costs) such that everyvertex vi is within distance Svi (under the c-cost) from some node in thetree.We only sketch the main idea of the algorithm below. The algorithmuses the roof graph construction in Ravi et al. [1996]. Consider the casewhen the d-costs are integral and polynomially bounded in the size of thegraph. Consider Opt { a minimum-diameter service-constrained tree. LetOpt have diameter D. Let x and y be the endpoints of a longest path(under d-cost) in the tree. The weight of this path, D, is the diameter of thetree. Consider the midpoint of this path between x and y. It either falls at avertex or in an edge in which case we can subdivide the edge by adding a newvertex. First we guess the value of D (there are only a polynomial number ofguesses). All the potential midpoints lie in half-integral points along edgesof which there are only a polynomial number. From each candidate pointwe consider the set of nodes within distance D=2 and check whether theyservice all the vertices in the graph. We choose the least such distance andthe correspondingly suitable point and output the breadth-�rst tree rootedat this point appropriately truncated.



20 MARATHE, RAVI AND SUNDARAMWhen the edge weights are arbitrary, the number of candidate midpointsare too many to check in this fashion. However, we can use a graphicalrepresentation (called the roof curve in Ravi et al. [1996]) of the distanceof any node from any point along a given edge to bound the search forcandidate points. This gives us the required result in the diameter case. 2Theorem 11 can be extended easily to the Steiner tree variant. We thushave the following theorem.Theorem 12. The problems (NU-M-service cost, Bottleneck, SteinerTree) and (NU-M-service cost, Diameter, Steiner Tree) with di�erentcost functions, are exactly solvable in polynomial-time.10. Concluding RemarksIn this paper we focused on the problem of service-constrained networkdesign problems. We formulated a number of these problems and presentedgeneral approximation techniques along with nearly-tight hardness results.In the bicriteria framework, we investigated problems (A, B, S), where A= Maximum service cost, B 2 f Total cost, Diameter, Bottleneckcost g and S 2 f Spanning tree, Steiner tree, Generalized Steinertree g.The class of problems in which A = Total service cost is also a naturalproblem to study. Variants of this problem have been studied by Milo andWolfson [1988]. Note that if both the objectives A and B are measuredusing identical costs then the problem (Total service cost + Total Cost,Tree) is the ubiquitious minimum spanning tree problem | and thus ise�ciently solvable. AcknowledgementsResearch of the �rst author was supported by the Department of Energyunder Contract W-7405-ENG-36. The second author acknowledges supportfrom a DIMACS postdoctoral fellowship awarded at Princeton Universityin the early stages of this work. The research of the third author was sup-ported by DARPA contract N0014-92-J-1799 and NSF 92-12184 CCR. Wethank Professor S.S. Ravi (SUNY-Albany) for his collaboration in the earlystages of the paper and discussion on related problems. We also thank SvenKrumke for his constructive comments.ReferencesAgrawal, A., Klein, P., and Ravi, R. 1995. When trees collide: An approximationalgorithm for the generalized Steiner problem on networks. SIAM Journal on Com-puting 24, 440{456.Arkin, E. M., Fekete, S. P., Mitchell, J. S. B., and Piatko, C. D. 1994. OptimalCovering Tour Problems. In Proceedings of the 5th International Symposium onAlgorithms and Computation.
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