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Abstract—Most of the networks observed in real life obey
power-law degree distribution. It is hypothesized that the
emergence of such a degree distribution is due to preferential
attachment of the nodes. Barabasi-Albert model is a generative
procedure that uses preferential attachment based on degree
and one can use this model to generate networks with power-
law degree distribution. In this model, the network is assumed
to grow one node every time step. After the evolution of such
a network, it is impossible for one to predict the exact order
of node arrivals. We present in this article, a novel strategy to
partially predict the order of node arrivals in such an evolved
network. We show that our proposed method outperforms
other centrality measure based approaches. We bin the nodes
and predict the order of node arrivals between the bins with
an accuracy of above 80%.
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I. INTRODUCTION

Real world networks such as biological, social and tech-
nological networks are the products of an evolutionary
process. These networks are generally classified as Scale
Free Networks (SFN) by nature. SFNs are a class of
networks in which degree distribution follows Power Law.
Generative models such as Duplicate-Mutation [8], Forest
Fire [2] and Preferential Attachment [1] have been proposed
to synthesize SFNs. The synthesis of dynamic SFNs involves
a continuous addition of new nodes to the existing network.
The behavior of each new node depends on the generative
model being used. It is intersting to study how nodes get
assembled in complex network. Given the snapshot of a
dynamic network, is it possible to probabilistically predict
the evolutionary sequence of the nodes in the network?

II. PRELIMINARIES AND NOTATIONS

A. Scale Free Networks

A Scale-Free Network (SFN) is a network whose degree
distribution follows a power law. Many real world networks
are known to exhibit a decaying degree distribution. This
kind of distribution is called a power law.

B. Centrality Measures

A centrality measure [5] is a function that associates a real
value with each vertex in a network. The value indicates
how central or important the vertex is, in the network.
Here, “important” is a subjective term. This gives rise to
many centrality measures, each of which rates the nodes
according to some property. Some of the prominent ones
include Degree Centrality [10], Eigenvector Centrality [4],
[7], Betweenness Centrality [9], [6] etc.

C. Reference Network

In our experiments, we study the SFNs generated using
the Barabasi-Albert Model [3]. Let Gm(Vm, Cm) represent
a Barabasi-Albert Network whose vertex arrival order is
to be deduced. Here, Vm is the Vertex set and Cm is the
number of nodes that each new node gets attached to. For
evaluative purposes, we record the order of arrival of vertices
in Gm during its inception. Let listtrue be a sequence of
vertices that represent the actual order of arrival of vertices in
Gm. We will be referring to Gm(Vm, Cm) in all the further
sections as the input network to the proposed algorithm that
predicts order of arrival of nodes.

III. CENTRALITY MEASURE BASED METHODS

A naive approach towards the solution to the vertex arrival
order prediction problem is to explore the contribution of
centrality indices of the nodes. Does centrality index of the
nodes help in predicting their order? If so, which type of cen-
trality gives the most accurate result? To answer this, we start
with the most intuitive of centrality measures, the Degree
Centrality. From the preferential model of SFN construction,
it is evident that the last few nodes that get connected to the
network will have a relatively low degree, as compared to
the nodes that had arrived in the initial stages. Consider the
network Gm from section II-C. Intuitively, we hypothesize
that higher the degree of a node earlier it might have arrived
during the network evolution. Hence, we rank the nodes in
the decreasing order of their degree centrality. There exists



many nodes with the same degree centrality. To predict the
order amongst these nodes, we place the nodes with the
same ranking into a hypothetical container, referred to as
a bin. The main drawback of binning based on degree is
that the degree centrality indices associated with the nodes
are not distinct in Gm. Hence, binning based on degree
centrality results in a small number of bins, with a large
number of nodes per bin. For other centrality measures, we
follow a slightly different approach that doesn’t give up-to-
mark results.

A. Binning Quality Measure (BQM)

Binning Quality Measure (BQM) is used to compute
the accuracy of the prediction of order of arrival of nodes
across the bins. BQM quantifies the prediction accuracy
on a scale of 0 to 1. Let δ be the number of bins. Let
B = [B0, B1, B2, ..., Bδ] be the predicted chronological
bin ordering. We associate a score β between every pair
of bins. The final prediction measure η is computed as a
ratio of sum of β for all bin-pairs and the total number of
bin-pairs.

To calculate β for a pair of bins Bi and Bj , with i < j:
Here, we claim that the nodes in Bi has arrived before the
nodes in Bj Hence, we impose the condition i < j, with
reference to the predicted chronological bin ordering B.
For a pair of vertices u ∈ Bi and v ∈ Bj , we define

if indexlisttrue(u) < indexlisttrue(v) then
vertexOrder(u, v) = 1

else
vertexOrder(u, v) = 0

end if
β(i, j) =

∑
u∈Bi,v∈Bj

vertexOrder(u,v)

|Bi||Bj |

The final prediction measure η is given by

η =
∑

0<i<j≤δ β(i,j)
δC2

IV. A NEW VERTEX RANKING: DIFFERENTIAL CORE
RANKING

In this section, we formulate a new method of ranking
nodes. Let G(V,E) be any graph. Let DCRG represent
the Differential Core Ranking of vertices in G. This list
contains the nodes along with their Differential Core
Measures in the decreasing order.

Let χ be any centrality measure. Let G0 be the initial
graph. Let G1 be the graph obtained from G0 after removal
of nodes with the minimum degree. The change in χ
centrality value of the nodes in G0 is set as the attribute of
the corresponding node. We then apply the above procedure
starting with G1. Let G2 be the graph obtained from G1

after the removal of nodes with the minimum degree. The
change in the χ centrality value of the nodes in G1 is added
to the attribute of the corresponding node.

In general, let Gi+1 be the graph obtained from Gi after
the removal of nodes with the minimum degree. The change
in the χ centrality value of the nodes in Gi is added to
the attribute of the corresponding node. This procedure is
repeated until there are no nodes left in Gi. DCMu denotes
the centrality score of the node u. Higher the sum of changes
in the χ centrality values of a node, higher is its importance
in the network.

V. NETWORK RECONSTRUCTION ALGORITHM

In this section, we describe our algorithm to predict the
order of arrival of nodes in Gm.

A. Generation of Synthetic Networks

The main focus of this section of the algorithm is to
recreate the growth environment of the reference network
Gm. Since the exact replication of Gm is not possible,
we generate networks that are similar to Gm in certain
characteristics. We refer to these set of networks as
Synthetic Networks.

Let α be the number of Synthetic Networks generated.
Let Si and chronologySi denote the Synthetic Network and
the order of arrival of nodes in the corresponding Si. In our
experiments, we use BA model to generate Si, with |Vm|
number of nodes and Cm connections. It is worth noting that
every time we generate a Synthetic Network Si, we keep
track of the network growth by recording chronologySi .
Since the Synthetic Networks are built on the same model
as that of Gm, we hypothesize that the chronology of Si is
similar to the actual order of arrival of nodes in Gm. Hence,
it is righteous to make use of chronologySi in predicting
the probable order of arrival of nodes in Gm.

B. Mapping and Derivation of Prediction Lists

The chronology of the Synthetic Networks Si, where
1 ≤ i ≤ α, is known. In this section, we intend to derive
an ordering of nodes in Vm, corresponding to each Si. This
ordering of nodes is the predicted order of arrival of nodes
in Gm (during its inception), derived in accordance with
chronologySi . We refer the node ordering corresponding
to Si as PredListi.

We apply DCR, with χ as the base centrality measure,
to Gm in order to obtain DCRGm . [refer to section IV]
DCRGm is a list of vertex rankings sorted according to
their DCM values. We apply DCR, with χ Centrality as the
base centrality measure, to each Si in order to obtain the
corresponding DCRSi .



Both DCRGm and DCRSi lists the vertices of Gm
and Si respectively in the decreasing of their importance.
Earlier the position of a vertex in these lists, higher its
importance in the corresponding network. A direct bijection
mapping is carried out between DCRGm and DCRSi .
This mapping maps the equi-important vertices in both the
networks.

Mathematically, we define a mapping function as:
Let fmap : VSi → VGm be a direct bijection between VSi
and VGm .
i.e, fmap(u) = v where u ∈ VSi , v ∈ VGm and
indexM (u) = indexN (v)

We propose that the nodes of equal importance in Gm
and Si have the same chronological ranking. Since we
know chronologySi , we deduce PredListSi by replacing
each vertex u in chronologySi with fmap(u). We repeat
the above procedure for each Si. At this stage, we have α
prediction lists, denoted by PredListi, each corresponding
to a particular Si.

Figures [ 1 to 4] illustrate an instance of Mapping of nodes
between Gm and any Si : 1 ≤ i ≤ α.

Figure 1. Applying Differential Core Ranking, with Betweenness Cen-
trality as the base centrality, to Gm.

Figure 2. Applying Differential Core Ranking, with Betweenness Cen-
trality as the base centrality, to one of the Si : 1 ≤ i ≤ α.

C. Analysis of Prediction Lists and Construction of Directed
Graph

In the previous section, we have deduced α number of
Prediction Lists, PredListi : 1 ≤ i ≤ α. For every pair

Figure 3. The diagram to the left indicates the vertex ordering based on
decreasing Differential Core Ranking for VGm and VSi . The one on the
right shows a direct bijection mapping of vertices between Lists.

Figure 4. Deduction of PredListi by reordering the nodes of Vm
according to chronologySi .

of vertices (u, v) , we find the order of occurrence of u
and v in each PredListi. Let P(u,v) denote the probability
of u arriving before v during the inception of Gm. We
compute P(u,v) as the fraction of the number of times u
has occurred before v in the α Prediction Lists. We then
construct a Directed Graph DG with vertex set VDG = Vm,
and an initial edge set EDG = φ. A directed edge from u
to v in DG indicates that u has arrived before v during the
construction of Gm.

For a pair of vertices (u, v):
if P(u,v) > 0.5, then we say that u has arrived before v with
a probability P(u,v). We put a directed edge from u to v
with a weight P(u,v).
if P(u,v) < 0.5, then we say that v has arrived before u with
a probability 1 − P(u,v). We put a directed edge from v to
u with a weight 1− P(u,v).

D. Transformation of Directed Graph and Node Binning

In this section, we process DG obtained from the previous
section to deduce the final prediction of order of arrival
of nodes in Gm. But there is a fair possibility that DG
can be a cyclic graph, which can make the prediction order
ambiguous. Hence we intend to transform it into a Directed
Acyclic Graph (DAG).

Input: Directed Graph DG.
Output: Directed Acyclic Graph DAG.
while DG contains cycles do

Remove the edge (u, v) with the least P(u,v) : (u, v) ∈
EDG.



end while
Ideally, the node that had arrived earliest should have

zero in-degree. The next earliest node should have an in-
degree equal to 1 and so on. Since we are probabilistically
simulating the growth environment of Gm, this is not the
case.

In the final step binning, we will find all the vertices v in
DAG having the least in-degree and bunch them into a bin.
The binned vertices are hypothesized to have arrived first
and are removed from DAG. Later we iterate this process
over till there are no nodes left in DAG. We obtain Final
predicted bin ordering.

Algorithm to bin the nodes from DAG is presented below:
Input: Directed Acyclic Graph DAG
Output: Bin Ordering
count← 1
while |VDAG| 6= 0 do
minInDeg ← arg min(InDegree(u)) where u ∈
VDAG
Let Bcount ← {u : ∀u ∈ VDAG

and InDegree(u) =
minInDeg}
Remove all the nodes in Bcount from VDAG

i.e, VDAG ← VDAG −Bcount
Count← Count+ 1

end while
Let binOrdering ← [B1, B2, B3, ...BCount]

binOrdering gives the predicted chronological sequence
of bins. The accuracy of this prediction, in contrast with ac-
curacy of prediction using centrality measures, is discussed
in the next section.

VI. RESULTS AND DISCUSSIONS

A. Comparison between the predictions from Differential
Core Ranking and Plain Centrality

Let χ be a base centrality measure. Let PlainχGm
denote the vertex ordering in the descending order of
their χ centrality values. We apply DCR, with the same
centrality χ as the base centrality, to the network Gm.
Let DifferentialχGm denote the vertex ordering in the
descending order of their DCM values.

listtrue denotes the actual order of arrival of nodes in Gm
(section II-C). Let the predicted order be denoted by listpred.
To compute the accuracy of our prediction, we define a new
quality measure called η(listtrue, listpred).

η(listtrue, listpred) =
nc

|VGm |C2

where nc is the number of pairs in listpred that are
in correct relative order with respect to listtrue. To
compare the prediction accuracy for the lists PlainχGm
and DifferentialχGm , we just compare the values of

η(listtrue, P lainχGm) and η(listtrue, DifferentialχGm).
In our experiments we consider the cases where χ represents
Degree Centrality and Betweenness Centrality.

Figure 5. Plot representing the comparision of values of
η(listtrue, P lainχGm ) (blue plot) and η(listtrue, DifferentialχGm )
(red plot) for varying number of nodes with χ : Degree Centrality

Figure 6. Plot representing the comparision of values of
η(listtrue, P lainχGm ) (blue plot) and η(listtrue, DifferentialχGm )
(red plot) for varying number of nodes with χ : Betweenness Centrality

B. Prediction of arrival order in every node pair with an
attached probability

We now present the analytical results that we have
obtained, considering Gm as reference network. We have
generated Gm using a BA model with 1000 nodes and 3
connections. We generate 50 synthetic networks. So, we set
α = 50. The analytical results thus obtained is given below:

Statistically, from the above table, we observe that the
edges (u, v) having P(u,v) in (0.5, 0.6] constitute around
20% of the edges. We also note that only around 50% of
these edges are in the correct relative order with listtrue.
Since a large fraction of edges belonging to this range
are in incorrect relative ordering, they contribute to the
cycle formation. Cycles introduce inconsistencies in node
arrival order, hence they have to be removed. From our
experiments, we have found out that DG will become
acyclic when we remove the edges (u, v) continually in



the increasing order until P(u,v) ≈ 0.6. We implement the
same technique in section V-D to transform DG to DAG.

Based on the facts and figures from the table, we observe
that the fraction of pairs that are in correct relative order with
listtrue increases as the sampled range increases. Hence we
conclude that, higher P(u,v) implies a stronger notion of
relative ordering of (u, v).

C. Comparison between the predictions from DCR binning
and Plain Centrality binning

The end result of our method (section V-D) is the
ordering of the bins, referred to as binOrderingDCRχ.
Let ηDCRχ denote the BQM score of binOrderingDCRχ,
where χ refers to the base centrality measure for DCR.

Let binOrderingχ denote the chronology of bins
with χ as the base centrality. binOrderingbetweenness,
binOrderingeigen and binOrderingdegree denote the
chronology of bins with χ set as Betweenness, Eigenvector
and Degree Centralities respectively.

Let ηbetweenness, ηeigen and ηdegree denote the BQM
scores of binOrderingbetweenness, binOrderingeigen
and binOrderingdegree respectively. Finally, we compare
ηbetweenness, ηeigen, ηdegree and ηDCRχ where χ is the
base centrality (refer section 4).

We perform the above said experiment multiple times for
the reference graphs Gm of 1000 nodes and 3 connections.
In our experiment, we have set α = 50. For each experiment,
we choose different base centralities and different Gm. We
observe that the DCR method yields more accurate results
compared to any other plain centrality based approaches.
Figures 7 and 8 represents two of those instances and
denotes the BQM scores for various binning methodologies.

Figure 7. ηDCRdegree = 0.804513946531, ηdegree =
0.767615011251, ηbetweenness = 0.759827243464, ηeigen =
0.695466553648, number of bins=91

VII. CONCLUSION

We presented a novel framework for uncovering the
precursor of a SFN evolved by BA model. Our approach
involves the synthesis of many such SFNs, mapping these
SFNs with the reference network based on DCR score

Figure 8. ηDCReigen = 0.84654821986, ηdegree =
0.7697124538121, ηbetweenness = 0.753169421166,
ηeigen = 6899122714632, number of bins=77

associated with the nodes and arriving at the final prediction
order. We presented 3 results. 1. DCR based prediction,
which proved to provide better predicted node arrival re-
sults than any other centrality based approaches. 2. Arrival
order of every pair of nodes in a SFN, with an associated
probability. We empirically proved that most of the node
pairs with high probability indeed arrived in the order
that we predicted. 3. We also proved that DCR based
prediction, when applied in conjunction with the binning
methodologies, offered a better accuracy compared to any
other plain centrality based approaches.
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