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The optical switch at a node assigns the wavelengths from an incoming port to an outgoing port.This assignment is changeable and can be controlled electronically.Conict-free wavelength routing in wide-area optical networks is achieved by utilizing latinrouters [2]. These are routing devices that employ the concept of a latin square (LS). A latinrouter with n input ports, n output ports, and n wavelengths is associated with a partial latinsquare (PLS), an n� n matrix that speci�es the wavelength connections from the n input ports tothe n output ports. The matrix contains elements from the set f0gSf1; 2; : : : ; ng (0 is used as aplaceholder to denote emptiness) such that each row and each column never contains an elementfrom the set f1; 2; : : : ; ng more than once. (see Figure 1 for an example). A non-zero entry Lijof L implies that the wavelength Lij is routed from input port i to output port j. A zero entrydenotes an unassigned entry. An LS is a PLS that has no zero entries.0 0 4 32 4 0 13 1 0 44 3 1 2Figure 1: A 4� 4 PLSReducing the number of unassigned or zero entries in the PLS associated with a router is of theutmost practical importance in optical networks as this ensures reduced wastage of the valuableresources of ports and wavelengths. This motivates the following de�nitions:De�nition 1 A PLS S1 is said to extend or be an extension of a PLS S2 if S1 can be obtained byaltering only zero entries of S2.De�nition 2 A PLS is said to be completable if it can be extended to an LS.See Figure 2 for an LS obtained by extending the PLS of Figure 1. Not all PLSs can be completed(see Figure 3). 1 2 4 32 4 3 13 1 2 44 3 1 2Figure 2: A 4� 4 LSDe�nition 3 Partial Latin Square Extension Problem (PLSE): Given a PLS S1 �nd the largestnumber of zero entries that can be changed to obtain a PLS S2 that is an extension of S1.The PLSE problem as stated above is an optimization problem. The natural decision version ofthe problem { namely, given a PLS establish whether it is completable { has been shown to beNP-complete [6]. We present the �rst known polynomial-time approximation algorithms for thePLSE problem with nontrivial worst-case performance guarantees.2



1.2 Other ApplicationsThis study also has applications to the more classical areas of statistical designs and error-correctingcodes (which were in fact the original drivers of the research into LSs). We refer the interestedreader to the (extensive) literature that exists on the subject [7, 8].2 Previous WorkThe subject of LSs has been extensively developed by many eminent combinatorialists. Some ofthe most famous conjectures concerning LSs were in fact proposed by no less than Euler himself.Denes and Keedwell, [7, 8], provide comprehensive and encyclopedic collections of results on thecombinatorial aspects of LSs. Of special interest to us are results concerning the completion ofPLSs. The most famous conjecture in this area was the Evans conjecture [9] which was provedafter a period of over 20 years by Smetaniuk [19]. An excellent survey of the ongoing attempt tocharacterize completable PLSs appears in [16].The computational aspect of completing PLSs was initiated by Rosa [18] and Giles, Oyamaand Trotter [10]. The issue was �nally resolved by Colbourn [6] who proved that the problem ofdeciding whether a PLS is completable is NP-complete.Barry and Humblet [2] were the �rst to recognize the applicability of LSs to the problem ofwavelength assignment in optical networks. The question of approximating the PLSE problemwas considered at great length by Chen and Banerjee in [3]. They provide an algorithm and aheuristic for approximating the PLSE problem. The algorithm, however, takes exponential time inthe worst case. And the heuristic in certain cases could modify the pre-existing entries in the PLSthus rendering it un�t for use in many situations of practical interest.The rest of the paper is organized as follows: Section 3 contains notation and some basiclemmas; Section 4 contains the factor 1=3 approximation algorithms; Section 5 contains the factor1=2 approximation algorithms; Section 6 answers some natural questions regarding extensions ofcertain PLSs; and Section 7 closes with a conjecture that we would be interested in seeing settled.3 Preliminaries3.1 De�nitions and NotationsLet L be a PLS. If Li;j = 0, we say the cell (i; j) is empty. Conversely, if Li;j 6= 0, we say the cell(i; j) is �lled. Two PLSs L and M are said to be compatible if� 8i; j; Lij = 0 or Mij = 0, and� L+M is a PLS.When L and M are compatible LSs we shall denote L+M by L�M . For a PLS L, let jLj denotethe number of non-empty cells of L. We write L �M (L �M) for two PLSs when M = L�A forsome (non-trivial) PLS A. This is equivalent to saying that L may be extended to M . We call Lblocked if 6 9L0 � L. For PLS L, de�ne L? to be a compatible LS such that jL?j is the largest overall compatible LSs.The problem of extending a PLS can also be viewed graph-theoretically as a coloring problem.Associate with an n � n PLS L the colored graph with n2 vertices hi; ji; 1 � i; j � n and edgesf(hi; ji; hi0; j 0i)ji = i0 or j = j 0g such that vertex hi; ji is assigned color Lij 6= 0; vertices corre-sponding to zero entries of L are considered to be uncolored. The problem of PLS extension can3



now be viewed equivalently as the problem of coloring additional vertices given the correspondingpartially colored graph. This motivates our use of the terminology color for the entries of a PLS.3.2 Extending and Completing PLSs - some Combinatorial LemmasColbourn's result, [6], showing that PLS-completability is NP-complete has e�ectively put paidto our hopes of discovering a polynomial time algorithm for recognizing completable PLSs. But itremains an intriguing problem to understand what can be salvaged. We take a combinatorial stepin this direction by providing a quantitative characterization of minimally non-completable PLSsand minimally non-extendable or blocked PLSs.De�nition 4 Let f(n) be the largest number such that every n � n PLS L with jLj � f(n) iscompletable.Lemma 1 f(n) = n� 1:Proof: The Evans conjecture, ([9]) made in 1960, states that any n� n PLS L with jLj � n� 1 iscompletable. It was �nally settled in the a�rmative by Smetaniuk ([19]) in 1981. This gives us thatf(n) � n � 1. That f(n) < n is easily seen by the PLSs of Figure 3 which cannot be completed.Hence f(n) = n � 1. �De�nition 5 Let g(n) be the largest number such that every n � n PLS L with jLj � g(n) isextendable.Lemma 2 g(n) = dn22 e � 1:Proof: We �rst show that g(n) � n22 � dn22 e � 1. Consider any n � n PLS L such that jLj < n22 .Let ri (cj)be the set of non-zero entries in row i (column j) of L. If we show that there exists ani; j such that Lij = 0 and jrij+ jcj j < n, then we are done because it implies that L can extendedby setting Lij to a value in f1; 2; : : : ; ng� ri� cj . It remains to show that there exists an i; j suchthat Lij = 0 and jrij + jcj j < n. We do this by invoking the Cauchy-Schwartz inequality to showthat the expectationE[n� jrij+ n� jcjj : Lij = 0] = ( 1n2�jLj)(Pi(n� jrij)2 +Pj(n� jcj j)2)� ( 1n2�jLj)( (n2�jLj)2n + (n2�jLj)2n )= 2(n� jLjn )> nIt is easy to see that g(n) < dn22 e by considering the general versions of the examples in Figure4. � 4



1 2 : : : n-1 1n 1 .. . 2Figure 3: Blocked n� n LS with n entries1 22 1 3 44 3 1 22 1 3 4 55 3 44 5 3Figure 4: Blocked LS with dn22 e entries4 Greedy Algorithms4.1 A Greedy Algorithm Based on Linear ProgrammingThe problem of maximally extending a PLS L may be expressed as an integer program:maxXijk xijk subject to8j; kXi xijk � 18i; kXj xijk � 18i; jXk xijk � 18i; j; k such that Lij = k 6= 0; xijk = 1 (1)8i; j; k; xijk 2 f0; 1g:The association of a feasible point m with the PLS Mij = k () mijk = 1 is a natural correspon-dence between those LSs which extend L and the feasible points of the integer program. A variablewhich shares no constraint with any variable of (1) shall be called free.Relaxing this integer program to a linear program yields a natural greedy algorithm:
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Greedy (LP):1. Set t := 0. Set A0ij = 0.2. If L�At is blocked, return At. Otherwise let x� be an optimal solution to the linearprogram for L� At and (̂i; ĵ; k̂) be so that x�̂iĵk̂ is a maximum free variable. SetAt+1ij = (k̂ if (i; j) = (̂i; ĵ)Atij otherwise.Increment t and begin step 2 again.If L is not blocked there exists a free variable so that step 2 may proceed. Furthermore, if x�ijkis free, k is a consistent assignment to cell Lij so that each augmentation made by step 2 results ina (larger) PLS L� At+1.Lemma 3 Let L be a PLS and t the number of iterations performed by Greedy (LP) on L. Thent � ( 13� 2n )jL?j.Proof: For a PLS L, let �L be the optimal value of the associated linear program. Notice thatduring each iteration of the algorithm, at least one constraint containing a free variable is tight,so that the xîĵk̂ selected has value at least 1=n. Examine iteration s of the algorithm. Let x� bean optimal solution to the linear program for L � As having value �L�As and (̂i; ĵ; k̂) the tripleselected in this iteration. De�neaijk = 8>>>>>>><>>>>>>>:1 if (i; j; k) = (̂i; ĵ; k̂)0 if i 6= î and (j; k) = (ĵ; k̂)0 if j 6= ĵ and (i; k) = (̂i; k̂)0 if k 6= k̂ and (i; j) = (̂i; ĵ)x�ijk otherwise.Notice that a is a feasible solution to the linear program for L�As+1 with value at least �L�As �(2� 2n). Each iteration, then, depresses the objective function of the associated linear program byat most (2� 2n) whence t � �L � jLj3 + 2n � jL?j3 + 2n :� Recall that jAtj = t so that Greedy (LP) achieves a 13� 2n approximation factor. This provesthe following theorem.Theorem 4 Greedy (LP) is a 13 +
( 1n) approximation algorithm.4.2 The Naive Greedy AlgorithmLemma 5 Let L be a PLS and A;B two PLSs, each compatible with L, so that L� B is blocked.Then jBj � 13 jAj. 6



Proof: For each pair (i; j) with Bij 6= 0, letSij = f(i; j)g[ f(i; j 0) j Bij = Aij0g [ f(i0; j) j Bij = Ai0jg:Then jSij j � 3. If jAj > Pij jSijj then there is a pair (u; v), appearing in no Sij , so that Auv isnon-empty. In this case, (L � B)uv may be consistently set to Auv , contradicting that L � B isblocked. Hence jAj �Pij jSijj � 3jBj. �Consider the greedy algorithm de�ned as follows:Greedy:1. Set t := 0. Set A0ij = 0.2. If L � At is blocked, return At. Otherwise, select a pair (̂i; ĵ) with (L � At)̂iĵ = 0and a color k̂ so that At+1ij = (k̂ if (i; j) = (̂i; ĵ)Atij otherwise.is compatible with L. Increment t and begin step 2 again.Since Greedy computes an extension Ak so that L�Ak is blocked, jAkj � 13 jL?j. This provesthe following theorem.Theorem 6 Greedy is a 13 -approximation algorithm.The following example (Figure 5) demonstrates that our analysis of the performance of thegreedy algorithm is tight. This PLS can be �lled to completion. However, an incorrect choice byGreedy to �ll 2 in (1; 1) blocks the LS. 3 43 4 14 1 2 33 4 1 1Figure 5: Worst-case Scenario for the Naive Greedy AlgorithmThe greedy algorithm can be implemented very e�ciently in practice. For each row i (columnj), maintain an n-length bit vector Ri (Cj) marking the empty cells in that row (column). Thegreedy algorithm goes through each empty square (i; j), picks a number to be �lled (if possible)using Ri; Cj, and updates Ri; Cj to reect the change. This single operation takes O(n) time,yielding an overall running time of O(n3).5 Approximation Algorithms Based on Matching5.1 A Linear Programming Based Algorithm Using MatchingWe again consider the linear program associated with a PLS L.7



Matching (LP):1. Set A0ij = 0. Carry out the following for k 2 f1; : : : ; ng. Let x� be a solution to thelinear program associated with L�Ak�1. If 8i; jx�ijk = 0, de�ne Ak = Ak�1 and moveon to the next k. Construct the weighted bipartite graph G = (U; V; E;w : E ! Q+)with U = V = f1; : : : ; ng,E = f(u; v) j x�uvk 6= 0g, w(u; v) = x�uvk . Select a matchingM which maximizes jM jjM j+kGk�kMk where jM j is the cardinality of the matching, kMkis the weight of the matching, and kGk = Pe2E w(e) = Pij x�ijk is the total weightof G. Since M is a matching, the variables associated with the edges of M areindependent (that is, none of these variables occur together in a constraint) and wemay de�ne Akij = (k if (i; j) 2MAk�1ij otherwise.Furthermore, each edge of M corresponds to a non-zero variable so that L and Akare compatible.2. Return Ak.Notice that a matching optimizing the quantity jM jjM j+kGk�kMk may be computed in polynomialtime by computing a maximum weight matching of each cardinality c 2 f1; : : : ; ng for which amatching exists and selecting the optimum (see [20], for example). Hence the algorithm runs inpolynomial time.We use the following lemma to analyze the algorithm:Lemma 7 Let G = (U; V; E; w : E ! Q+) be a weighted bipartite graph with 8u;Pv w(u; v) � 1.Then for any maximum cardinality matching M , jM j � kGk. Hence maxM jM jjM j+kGk�kMk � 12 .Proof: To begin with, we show that for any maximum matching M in G, there is a subset ofvertices W such that:(i) W covers each edge in E, and(ii) each edge in M is covered by exactly one vertex in W .It is easy to see that picking either of the vertices of every edge in M always satis�es the secondrequirement trivially. Suppose the �rst requirement is not met. In other words, an edge (u0; v1) =2Mis not covered by any vertex in the current W . By maximality of M , there is some (u1; v1) 2 Msuch that u1 2 W , by condition (ii). Now, let W = Wnfu1g [ fv1g. If the �rst condition is met,we are done. Otherwise, it implies there is an edge (u1; v2) =2 M such that it is not covered bythe current W . We repeat the same process now. It is clear that we cannot go inde�nitely. Whenwe terminate, we see that (u0; v1); (v1; u1); : : : ; (uk�1; vk) is an augmenting path, contradicting themaximality of M .Since for any vertex u, Pv w(u; v) � 1, the above shows that jM j � kGk. �We now consider the e�ect that stage t of the above algorithm has had on the optimal solutionto the linear program. Let �L�At�1 be the optimal value of the linear program associated with8



L�At�1 and x� a vector achieving this optimal value. Consider the vectoraijk = 8>>>>><>>>>>:1 if k = t and (i; j) 2M0 if k = t and (i; j) 62M0 if k 6= t and (i; j) 2Mx�ijk otherwise.a is a feasible solution to the linear program associated with L�At andXijk aijk � �L�At�1 � kGk+ kMk:Hence �L�At � �L�At�1 � kGk + kMk. In this case we have set jM j variables and depressed theoptimum value of the linear program by at most kGk�kMk. From the above lemma jM jjM j+kGk�kMk >12 , so that the above algorithm is a 12-approximation algorithm.5.2 A Combinatorial Algorithm Using MatchingConsider a PLS L and de�ne Lt = f(i; j) j 8sLis 6= k; 8sLsj 6= kg to be the collection of cells whichwill admit a t. Consider the following algorithm:Matching:1. Set A0ij = 0.2. For each k 2 f1; : : : ; ng, consider the bipartite graph G = (U; V; E) with U = V =f1; : : : ; ng and E = Lk. Let M be maximum matching in G. SetAkij = (k if (i; j) 2MAk�1ij otherwise.3. Return An.Consider stage k of the above algorithm. De�neP kij = 8>><>>:0 if (L� Ak�1)?ij = k0 if (i; j) 2M(L�Ak�1)?ij otherwise.Notice that P k is always compatible with L�Ak so that j(L�Ak)?j � jP k j � j(L�Ak�1)?j�2jM j.(Since M is a maximum matching, (L � Ak�1)? can have no more than jM j cells assigned to k.)This proves the following lemma.Lemma 8 Matching is a 12 -approximation algorithm.The following example (Figure 6) demonstrates that our analysis of the performance of theMatching algorithm is in fact tight. The PLS (left) can in fact be �lled to completion (right),but a bad choice of matching can block it (middle).We repeat the matching step for each of the n colors. Each matching step can be performed inO(n2:5) by the Hopcroft-Karp algorithm ([13]). Therefore, this algorithm runs in O(n3:5) time.9



2 3 4 2 3 1 2 3 42 1 2 4 1 2 3 4 13 2 3 4 2 3 4 1 21 2 1 2 4 4 1 2 3Figure 6: Worst-case Scenario for the Matching Algorithm6 Extending Blocked PLSsIn many applications, the problem of completing a blocked PLS with new available colors is signi�-cant. A natural question is this: given a blocked n�n PLS L, how many extra colors are necessaryto complete it. This can be answered exactly (in polynomial time) by constructing the bipartitegraph GL on the 2n vertices, Ri; Cj; 1 � i; j � n, such that there is an edge between Ri and Cji� Lij = 0; and observing by Hall's theorem ([12]) that the edge set of this bipartite graph can bepartitioned into k� disjoint matchings where k� is the maximum degree of a vertex in the bipartitegraph de�ned above. By coloring each such matching with a new color, we ensure that there areno conicts generated. Thus, k� new colors su�ce. Notice that k� colors are indeed necessary sincesome node of GL has degree k�.In fact, one can see that k� � n=2 by a proof similar to that of Lemma 2. And, in fact k� canbe equal to n=2, as can be seen from the example in Figure 4.A related question is this: given a blocked L, and k new colors, what is the maximum number ofentries that can be �lled using these new colors. For k = 1, it is equivalent to �nding the maximummatching in GL (de�ned above) and hence can be exactly computed. For k > 1, this problemis equivalent to �nding disjoint matchings M1; : : : ;Mk in GL such that Pki=1 jMij is maximized.This number can be exactly computed by computing a maximum ow on the following graph G0L.V (GL0) = V (GL) [ fs; tg, E(GL0) = E(GL)S[ni=1(s; Ri)S[nj=1(Cj ; t), and c(e) = 1 if e 2 E(GL)and c(e) = k otherwise. It is easy to extract the actual color assignment to edges from the maximumow graph.7 Further WorkDe�ne the latin square polytope to beLn = fx 2 (Rn)3 j 8i; j; k xijk � 0; 8j; kXi xijk � 1; 8i; kXj xijk � 1; 8i; jXk xijk � 1g:We conjecture the following:Conjecture 1 For every vertex v 2 Ln, 8i; j; k; vijk = 0 or vijk � 1n .This would show that the approximation algorithm of Section 5.1 achieves a factor of 12 + 
( 1n).AcknowledgementsWe thank Michel Goemans (M.I.T.), Monika Rauch Henzinger (Cornell), Eric Jordan (M.I.T.), RamRamanathan (BBN Systems), and Mike Sipser (M.I.T.) for their technical help and suggestions.10
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