
Faster Algorithms for Optical Switch Configuration

S Ravi Kumar�
Dept. of Computer Science

Cornell University
Ithaca, NY 14853.

Alexander Russelly
Dept. of Mathematics

M.I.T.
Cambridge, MA 02139.

Ravi Sundaramz
Lab. for Computer Science

M.I.T.
Cambridge, MA 02139.

Abstract
All-optical networks using wavelength division multiplexing are

increasingly coming to be regarded as the technology of choice
for the next generation of wide-area backbone networks. These
networks incorporate optical switches that employ the concept of
Latin Routers [BH93] for assigning wavelengths to routes. The
issue of maximizing wavelength utilization at these switching de-
vices is of great importance since it leads to significant improve-
ments in overall network performance [CB95]. In this paper, we
present two fast approximation algorithms – GREEDY and MATCH
– for the problem of maximizing wavelength utilization at Latin
Routers. These are the first known polynomial-time approximation
algorithms for the problem of maximizing the number of entries
that can be added to a partially filled Latin Square that achieve
non-trivial worst-case performance guarantees. These algorithms
are easily implementable and have very small constants in their
running times making them eminently suitable for actual use in
real-world optical switches. We also provide strong experimental
evidence to show that, in practice, these algorithms are near-
optimal.

1 Introduction
1.1 Motivation

Developments in fiber-optic networking technology using
wavelength division multiplexing (WDM) have finally reached the
point where it is being considered as the most promising candidate
for the next generation of wide-area backbone networks. These
are highly flexible networks capable of supporting tens of thou-
sands of users and capable of providing capacities on the order
of gigabits-per-second per user [CNW90, Gre92, Ram93]. WDM
optical networks utilize the large bandwidth available in optical
fibers by partitioning it into several channels each at a different
optical wavelength [BH92, CNW90, IEE93, IK92].

The typical optical network consists of routing nodes intercon-
nected by point-to-point fiber-optic links. Each link supports a
certain number of wavelengths. The routing nodes are capable of
photonic switching, also known as dynamic wavelength routing,
which involves the setting up of lightpaths [CB95, CGK92, ZA94].
A lightpath is an optical path between two nodes on a specific
wavelength. The optical switch at a node assigns the wavelengths
from an incoming port to an outgoing port. Figure 1 shows an
optical switch S. The routing pattern of the optical switch leads
itself naturally to a modeling in terms of a matrix. The matrix in
Figure 1 shows the corresponding routing pattern in the switch S.
A value of k in entry (i; j) of the matrix denotes that wavelengthk is routed from input port i to output port j. This assignment is�Supported by ONR Young Investigator Award N00014-93-1-0590, NSF grant
DMI-91157199, and career grant CCR-9624552. This work was done while the
author was visiting M.I.T. E-mail: ravi@cs.cornell.edu.ySupported by an NSF Graduate Fellowship and grants NSF 92-
12184, AFOSR F49620-92-J-0125, and DARPA N00014-92-1799. E-mail:
acr@math.mit.edu.zSupported by grants NSF 92-12184, AFOSR F49620-92-J-0125, and DARPA
N00014-92-1799. E-mail: koods@theory.lcs.mit.edu.

changeable and can be controlled electronically. When there is no
wavelength routed from i to j, the corresponding matrix entry is
left blank.

There are some constraints on the construction and the behavior
of the switches. The first is that the switches have an equal number
of input and output ports. Secondly, each entry of the matrix must
have at most one non-zero value. This is a compromise between
hardware complexity and performance because switches that per-
mit routing of multiple wavelengths between the same input and
output ports require additional hardware that is both complex and
costly [CB95]. The third constraint is that of achieving conflict-
free wavelength routing – the wavelengths assigned to messages
at an input port are all distinct and there must be no wavelength
conflict at any of the output ports.

These restrictions constrain the simple matrix model of the
switch. What we get is in fact a Latin Square (LS). Latin
Squares were first used to model optical switches in [BH93] (Latin
Routers). More formal details are given in Section 2. Though the

1

2

1 2

4

41

21 3 4

1

2

3

4

Output Ports

In
pu

t P
or

ts 3

4

Switch S
1

2

3

4

1

2

3

4

1
4

3
1

2
2
4

1
4

In
pu

t P
or

ts

O
ut

pu
t P

or
ts

Figure 1: Example of Optical Switch and Port Assignment

number of wavelengths at a given node is limited by the technol-
ogy (tunability of lasers, amplifier bandwidth, etc.), nevertheless,
it is possible to build a transparent wide-area optical network by
spatial reuse of wavelengths. Figure 2 shows an all-optical wave-
length routing network with two 3 � 3 switches. Though each
switch has only 3 input and output ports, it is still possible to set
up all the shown interconnections by (re)using wavelength 1 both
for the A�B and C �D routes.

Optical Network

Optical Switch

Lightpaths

A

B
E

D

C

S 2S 1

1
2

1
3 3

1
1

2

Figure 2: Example of an All-Optical Wavelength Routing Network

1.2 Previous Work
The problem of wavelength routing and switch assignments

are areas of active research in optical networks. Various poli-
cies for wavelength routing, and the corresponding assignments of
wavelengths along the routes, have been reported in the literature
[CGK92, LL93, RS94, ZA94]. These policies aim at minimiz-
ing congestion, average hop-distance, call blocking probability or
maximizing traffic throughput, and clear channel density.

Chen and Banerjee [CB95] realized that these policies often
lead to scenarios where a significant number of wavelengths, avail-
able at the input and output ports of the routers, cannot be used
due to potential wavelength conflict. They focus on maximizing
the wavelength utilization at a Latin Router in static wavelength
routing. They show that achieving improved wavelength utiliza-
tion also automatically improves overall network performance.
Some of the wavelength assignment in routers are predetermined.
This could be due to traffic demands, delay limits, fault-tolerance
requirements, or other constraints. This scenario corresponds to
a partially filled Latin Square. Hence, algorithms to maximize
the number of non-zero entries in a partially filled Latin Square
are very useful. They present two algorithms, Algorithm 1 – a
backtracking algorithm that takes exponential time in the worst
case and Algorithm 2 – a heuristic that could potentially modify
preassigned wavelengths, thus rendering it unfit for use in most
situations of practical interest.

1.3 Our Contributions
In this paper we focus on algorithms that maximize the wave-

length utilization at a Latin Router. Reducing the number of
unassigned or zero entries (i.e., increasing the density) of the PLS
associated with a router is of the utmost practical importance in
optical networks as this ensures reduced wastage of the valuable
resources of ports and wavelengths. We present two fast approx-
imation algorithms – GREEDY and MATCH – for the problem of
maximizing the number of entries that can be added to a partially
filled Latin Square. These are the first known polynomial-time ap-
proximation algorithms for the Latin Square completion problem
that achieve non-trivial worst-case performance guarantees. These
algorithms are easily implementable and have very small constants
in their running times thus making them eminently suitable for ac-
tual use in real-world optical switches. We also provide strong
experimental evidence to show that, in practice, these algorithms
are, in fact, near-optimal. Unlike Algorithm 2 of [CB95], neither
of these algorithms changes preassigned entries. GREEDY pos-
sesses the extra advantage of being usable in a dynamic situation
where routing requests are online.

In addition, we present BRANCHBOUND – a back-tracking algo-
rithm that finds an optimal solution to the problem of maximizing
the number of entries that can be added to a partially filled Latin
Square. BRANCHBOUND is a more efficient version of Algorithm 1
of [CB95], that dynamically prunes the search space to save time.
The efficacy of this pruning is demonstrated by the fact that we
are able to obtain performance results for large Latin Routers in
our simulations. Without some form of pruning, any attempts at
simulation would fail to yield results in a reasonable amount of
time.

All the algorithms we present possess provable worst-case guar-
antees. This is very important from a practical standpoint. Heuris-
tics that do not have worst-case performance guarantees tend to
be commercially unviable since they cannot provide any insur-
ance against downside risks. And in fact, the results in Figure
8 indicate that our algorithms achieve near-optimal average-case
performance. The average-case performance is of great signifi-
cance since these algorithms are meant to be used over and over
again in on-line situations.

1.4 Organization
The rest of the paper is organized as follows: Section 2.1

contains a formal description of the problem; Section 2.2 is a

description of BRANCHBOUND; Section 2.3 is a description of
GREEDY; Section 2.4 is a description of MATCH; Section 3 contains
the experimental results showing that MATCH and GREEDY are fast
and near-optimal in practice.

2 Algorithms for Switch Configuration
2.1 The Problem

As stated before, the problem of achieving conflict-free wave-
length routing is modeled by utilizing Latin Routers [BH93].
These are routing devices that employ the concept of a Latin Square
(LS). Before actually stating the problem we develop some basic
concepts and terminology.

Definition 1 An n� n LS L is an n�n matrix with the following
properties: (1) 8i; j; Li;j 2 f1; 2; : : : ; ng, (2) 8i; j1 6= j2; Li;j1 6=Li;j2 , and (3) 8i1 6= i2; j; Li1;j 6= Li2;j
Stated informally, an n � n LS is a matrix with entries fromf1; 2; : : : ; ng such that no row or column contains the same ele-
ment twice.

Definition 2 An n � n Partial Latin Square (PLS) is an n � n
matrix with entries from the set f0gSf1; 2; : : : ; ng (0 is used as
a placeholder to denote emptiness) such that each row and each
column never contains an element from the set f1; 2; : : : ; ng more
than once.

IfL is a PLS then a non-zero entryLij denotes that the wavelengthLij is routed from input port i to output port j. A zero entry
denotes an unassigned entry. Thus the state of a Latin Router can
be described by a PLS. We also refer to the entries in a PLS/LS
as colors. We use the terminology degree of freedom of a 0 entry
in a PLS to refer to the number of colors that can be validly used
in that entry. See Figure 3 for an example of a PLS. The color of
the entry (1; 3) is 4. The degree of freedom of the (2; 3) entry is 1
since there is only one color that can be validly used in that entry,
namely the color 3.

0 0 4 3 1 2 4 3
2 4 0 1 2 4 3 1
3 1 0 4 3 1 2 4
4 3 1 2 4 3 1 2

Figure 3: A 4� 4 PLS and its corresponding LS

Definition 3 The density of an n�n PLS is the fraction of entries
that are non-zero. �(L) is used to denote the density of L.

The PLS in Figure 3 has density 3=4. An LS is a PLS that has
density 1. As noted before, a reduction in the zero entries achieves
an increased usage of ports and wavelengths. This motivates the
following definitions:

Definition 4 A PLS L� is said to extend or be an extension of a
PLS L if L� can be obtained by altering only zero entries of L. A
PLS that cannot be extended is said to be blocked.

Definition 5 A PLS is said to be completable if it can be extended
to an LS.

See Figure 3 for an LS obtained by extending the PLS. Not all
PLSs can be completed (see Figure 4). At this point we have
developed sufficient notation to state our problem succinctly:

Given a PLS, find an extension of it with maximum density.

1 : : : n-1 1
n 1

. . .
2

Figure 4: Blocked n � n PLSs with n entries

The computational complexity of finding a maximum-density ex-
tension of a given PLS was unresolved for a long time. Colbourn,
finally, proved that the problem of determining whether a given
PLS is completable is NP-complete [Col84]. Therefore, the nat-
ural goal is to find a fast (polynomial time) algorithm that given
a PLS, extends it to an LS of as large a density as possible. We
formally define the notion of an approximation algorithm.

Definition 6 LetL be any PLS. Let OPT denote a maximum density
extension of L. A polynomial-time algorithm is said to be a �-
approximation algorithm if, given L, it finds an extension HEU

such that (�(HEU)� �(L)) � 1�(�(OPT)� �(L)).
It is clear that � � 1 and the closer � is to 1, the better the quality
of approximation.

In the rest of this section, we discuss three algorithms: The first
algorithm, BRANCHBOUND, is a backtracking algorithm that does
dynamic pruning to find a maximum density extension OPT. The
second algorithm, GREEDY, is a 3-approximation algorithm. The
third algorithm, MATCH, is a 2-approximation algorithm.

2.2 Branch and Bound Algorithm
The algorithm in [CB95] is the natural backtracking algorithm.

It tries to improve the running time by exhaustively trying the
empty entries in the increasing order of their degrees of freedom.
We give a better backtracking algorithm below. This algorithm,
in addition to using the above heuristic, prunes the search space
efficiently and is hence faster in practice.
Algorithm Description. Backtracking is a general and proven
method for exhaustively going through the space of all possible
solutions. BRANCHBOUND does a search of the (potentially (n+1)-
ary) tree corresponding to the choices of colors for each 0 entry
in the PLS. But since the number of possible nodes in the tree
is hugely exponential – Θ(nn2) – BRANCHBOUND employs four
techniques to cut down the running time.

Preprocessing. To prevent costly recomputation at each step
BRANCHBOUND sets up an elaborate data structure ahead of
time. This data structure permits quick table lookup of the
set of possible colors that can be validly used in a 0 entry.
The data structure also permits a quick lookup of the list of
invalidations that would be caused by setting entry Li;j to
color k, for all i; j; k.

Implicit Depth first search. The entire algorithm is coded in a
conventional higher-level language. To save time spent pro-
cessing function calls BRANCHBOUND is implemented as an
iterative loop that implicitly traverses the tree in depth first
fashion.

Degree of Freedom. To reduce the number of backtracking steps
the degree of freedom concept is used in a fashion identical
to that of Algorithm 1 of [CB95]. The order of 0 entries tried
for backtracking is based on the degree of freedom of the
entries.

Dynamic Pruning. At any point the algorithm maintains the best
solution found so far. At each node it does a quick evaluation

BRANCHBOUND(L):
preprocess Ld :=#, L� := L, s := state at the root
while d 6= ? do

case d#: if 9 (possibly better) CHILD(s) thenL� := max(L;L�), s := CHILD(s), d :=#
else d :=!!: if 9 SIBLING(s) thens := SIBLING(s), d :=#
else d :="": if 9 PARENT(s) thens := PARENT(s), d :=!
else d := ?

end whileL = L�
Figure 5: The BRANCHBOUND Algorithm

GREEDY(L):
for 1 � i; j � n do

for 1 � k � n do
if Li;j = 0 ^ LEGAL (L; i; j; k) thenLi;j := k

end for
end for

Figure 6: The GREEDY Algorithm

(using the data structure) to figure out if the best potential
solution in the subtree rooted at that node could better the
best solution found so far. If so it continues the search else it
aborts the search at that node.

A sketch of the algorithm is shown in Figure 5.

Performance. It is clear that BRANCHBOUND obtains a solution
that is as good as that of OPT.

Running Time. Since the problem is NP-complete, BRANCH-

BOUND could potentially take Ω(nn2) time.

2.3 Greedy Algorithm
Algorithm Description. GREEDY is a straightforward algorithm
that fills in the 0 entries in a greedy manner. GREEDY considers
each 0 entry in the PLS, fills it with any legal color, and moves
on to the next 0 entry. The algorithm is presented in Figure 6.
The algorithm can be seen to be quite local in nature when making
decisions about the choice of empty entries to fill and choice of
the color to fill in the chosen empty entry. Thus it is ideal for use
in a dynamic situation where requests are online. LEGAL(i; j; k)
is a predicate that is true when k is a valid color for entry (i; j).
Performance.

Theorem 1 GREEDY is a 3-approximation algorithm.

The interested reader can find the proof in [RRS96] that GREEDY
is a 3-approximation algorithm. The crux of the proof depends on
the observation that the decision by GREEDY to place color k in
entry Li;j can at most affect the strategy of OPT in three ways – to

MATCH(L):
for 1 � k � n do

let Gk = (V; V 0; Ek) withV := f1; : : : ; ng, V 0 := f10; : : : ; n0gEk := f(i; j0) j Li;j = 0 ^ LEGAL(L; i; j; k)gMk := MAXIMUM-MATCHING (Gk)
for (i; j0) 2Mk doLi;j := k

end for

Figure 7: The MATCH Algorithm

place k in some other empty entry in row i, or to place k in some
other empty entry in column j, or to place some other color k0 inLi;j . Thus, in the worst-case, GREEDY can fill in m entries in the
PLS when OPT could have filled in 3m entries.

It was also shown in [RRS96] by a probabilistic argument that
any n � n PLS can always be filled to density one-half. This
automatically gives us that GREEDY performs much better (i.e., is
a (2 + �)-approximation algorithm, for small �) when the initial
PLS is sparse (i.e., has only o(n2) entries filled).

Running Time. By preprocessing the given PLS, we can construct
bit vectors (of length n) representing allowable colors for each row
and column. Once we have this data structure, picking a legal color
to fill in a 0 entry can be done in O(n) time. Updating the data
structures takes O(1) time. Thus, the entire algorithm is very
simple and can be implemented in O(n3) time.

Additional Heuristic. We also provide an additional heuristic
(without analysis) which seems to improve the algorithm a little,
as indicated by our experiments. This is also partially motivated
by the concept of degree of freedom. Instead of examining the
0 entries in an arbitrary order, the algorithm chooses to examine
them in the order of increasing degrees of freedom. This is done
by computing the degree of freedom for each 0 entry in the PLS,
sorting the 0 entries in ascending order, and using the sorted or-
der to fill in a greedy manner. The time taken by this algorithm
(GREEDY+) still remains O(n3).
2.4 Matching Algorithm
Algorithm Description. Unlike GREEDY the decision to fill in
a 0 entry in the PLS with a particular entry is made in a global
fashion in MATCH. The essence is to consider each color k of
the PLS and do the following: construct a (bipartite) graph onf1; : : : ; ng [f10; : : : ; n0g with an edge (i; j0) whenever Li;j is
empty and k is a legal color. We then obtain a maximum matching
(a collection of non-intersecting edges) of this graph and the edges
selected for matching dictate that those 0 entries should be filled
with color k. The algorithm is presented in Figure 7.

Performance.

Theorem 2 MATCH is a 2-approximation algorithm.

The interested reader can find a proof in [RRS96] that MATCH
is a 2-approximation algorithm. We give here a gist of the main
idea involved. The argument is based on the observation that for
each color k, the number of 0 entries OPT can fill with k is at most
the cardinality of the maximum matching of the graph constructed
for k. The decision by MATCH to place k in Li;j can at most affect
the decision of OPT to place k0 in Li;j and k elsewhere. Since
MATCH decides according to the maximum matching, the number

of entries it fills with color k is at least as many as that of OPT.
Thus, in the worst-case, MATCH can fill in m entries in the PLS
when OPT could have filled in 2m entries.

Running Time. For each color, we can build a n2 node bipar-
tite graph and run the maximum matching algorithm MAXIMUM-
MATCHING of Hopcroft-Karp [HK73], which runs inO(n2:5) time.
Thus, the total algorithm can be implemented in O(n3:5) time.

Additional Heuristic. We also provide an additional heuristic
(without analysis) which seems to improve the algorithm a lit-
tle. This is also motivated by the degree of freedom parameter.
Instead of an arbitrary order to examine the colors, we examine
in the order of increasing cardinality of matching. At each step
of the algorithm, we select the color that has the least cardinality
matching. The time taken by this algorithm (MATCH+), however,
increases to O(n4:5).

Another point in favor of our algorithms is the fact that the
notion of row/column/color are all used in an interchangeable
fashion. Hence, our algorithms can be adapted in a dynamic
setting where, for instance, the preassigned entries are specified
row by row, column by column, or color by color.

3 Experimental Results
To study the applicability of our approximation algorithms in

practice, we performed simulation studies. We are mainly con-
cerned with the quality of the output (i.e., the number of filled
entries in the final PLS) and the time taken for execution. We then
compare the performance against BRANCHBOUND (which is OPT,
as far as the quality of the result is concerned). The simulations
were conducted on 4� 4 to 9� 9 PLSs that were randomly filled
with initial densities from 20% to 80%. The performance of vari-
ous algorithms are shown in Figure 8. The table shows the output
densities obtained and execution time (in ms) averaged over sev-
eral trials (100 trials). The simulations were written in C++ and
run on a Sparc-20. The results in the tables can be taken in at a
glance by inspecting the graphs in Figure 9. From our results,

3 4 5 6 7 8 9 10
70

75

80

85

90

95

100

Latin Square Size

F
in

al
 D

en
si

ty
 (

%
)

BranchBound

Match

Greedy

3 4 5 6 7 8 9 10
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

Latin Square Size

Ti
m

e
(m

s)

BranchBound

Match

Greedy

Figure 9: Performance of Algorithms when Initial Density = 50%

it is clear that the approximation algorithms with their heuristics

Algorithm 4 � 4 PLS 5 � 5 PLS 6 � 6 PLS
Initial% 20 40 60 80 20 40 60 80 20 40 60 80

GREEDY Final% 96 87 85 83 91 85 86 86 90 87 85 85
Time 0 0.08 0.08 0.12 0.08 0.08 0.32 0.12 0.24 0.08 0.12 0.12

GREEDY+ Final% 82 89 87 83 92 87 85 86 93 91 87 86
Time 0.36 0.32 0.16 0.24 0.48 0.36 0.12 0.08 0.56 0.36 0.16 0.24

MATCH Final% 100 87 87 83 94 91 87 86 98 91 86 85
Time 1 0.52 0.76 0.36 1.24 1.08 1 0.68 1.88 1.64 1.4 1.08

MATCH+ Final% 100 96 87 83 100 90 87 86 100 92 86 85
Time 1.36 1.44 1.04 0.6 3.24 2.72 2.2 1.2 6.28 5.4 4.32 2.56

BRANCHBOUND Final% 100 100 87 83 100 93 87 86 100 95 88 86
Time 2.52 1.12 0.32 0.16 9.84 2.64 0.68 0.12 75.04 14.68 2.04 0.16

Algorithm 7 � 7 PLS 8 � 8 PLS 9 � 9 PLS
Initial% 20 40 60 80 20 40 60 80 20 40 60 80

GREEDY Final% 87 87 85 85 89 88 86 88 91 89 86 85
Time 0.24 0.28 0.08 0 0.25 0.32 0.32 0.2 0.6 0 0.32 0.12

GREEDY+ Final% 90 90 87 85 89 91 88 88 91 92 89 85
Time 0.72 0.6 0.24 0.32 1 0.76 0.44 0.28 1.8 1 0.96 0.2

MATCH Final% 96 92 88 85 100 94 89 88 97 95 88 85
Time 3 2.72 2.16 1.64 4 3.4 2.76 2.16 5.6 4.7 3.48 2.76

MATCH+ Final% 99 96 87 85 100 95 88 88 100 95 89 85
Time 10.32 8.88 6.96 3.28 17 16.3 11.48 5.84 27.4 22.7 17.6 7.72

BRANCHBOUND Final% 100 98 90 85 100 98 90 88 100 99 91 85
Time 1227 153 7.04 0.4 589 12k 16.16 0.4 246k 401k 144.56 0.48

Figure 8: Experimental Evaluation of the Algorithms

perform extremely well in practice. As expected, BRANCHBOUND
runs fast when the density is large (since there are less choices).
This suggests a combined approach in practice – using the approx-
imation algorithms at low densities and BRANCHBOUND at higher
densities.

4 Conclusions
In this paper we present three algorithms to complete a Latin

Router in which some of the entries may have been preassigned.
Two of the algorithms are fast polynomial time approximation
algorithms with provable worst-case bounds. The third is an ex-
haustive search-based algorithm that uses pruning to dynamically
shrink the search-space. These algorithms have applications to
the problem of lightpath assignment in wide area wavelength rout-
ing optical networks. We also present simulation results which
show that on average the two approximation algorithms are near-
optimal, in addition to being very fast.

Acknowledgements
We thank Madhav Marathe (Los Alamos), Ram Ramanathan

(BBN Systems), and Suresh Subramaniam (U. of Washing-
ton/M.I.T. Lincoln Labs) for their suggestions. We also thank
Chien Chen (Stevens Tech) for providing the C code for their
implementation.

References
[BH92] R. A. Barry and P. A. Humblet. Bounds on the number

of wavelengths needed in WDM networks. In LEOS ’92
Summer Topical Meeting Digest, pp. 21–22, 1992.

[BH93] R. A. Barry and P. A. Humblet. Latin routers, design and
implementation. IEEE/OSA J. of Lightwave Technology,
pp. 891–899, 1993.

[CB95] C. Chen and S .Banerjee. Optical switch configuration
and lightpath assignment in wavelength routing multi-
hop lightwave networks. In INFOCOM, pp. 1300–1307,
1995.

[CGK92] I. Chlamtac, A. Ganz, and G. Karmi. Lightpath com-
munications: An approach to high bandwidth optical

WANs. IEEE Trans. on Communication, 40(7):1171–
1182, 1992.

[CNW90] N. K. Cheung, K. Nosu, and G. Winzer, editors. IEEE
JSAC: Special Issue on Dense WDM Networks, vol. 8,
1990.

[Col84] C. J. Colbourn. The complexity of completing partial
latin squares. Discrete Applied Mathematics, 8:25–30,
1984.

[Gre92] P. E. Green. Fiber-Optic Networks. Prentice-Hall, 1992.

[HK73] J. E. Hopcroft and R. M. Karp. An n 5
2 algorithm for

maximum matchings in bipartite graphs. SIAM J. on
Computing, 2(4):225–231, 1973.

[IEE93] IEEE/OSA. J. of Lightwave Technology, special issue on
Broad-Band Optical Networks, vol. 11, 1993.

[IK92] M. Irshid and M. Kavehrad. A wdm cross-connected
star topology for multihop lightwave networks. J. of
Lightwave Technology, pp. 828–835, June 1992.

[LL93] K.-C. Lee and V.O.K. Li. Routing and switching in a
wavelength convertible optical network. In INFOCOM,
pp. 578–585, 1993.

[Ram93] R. Ramaswami. Multi-wavelength lightwave networks
for computer communication. IEEE Communications
Magazine, 31(2):78–88, 1993.

[RRS96] S. Ravi Kumar, A. Russell, and R. Sundaram. Ap-
proximating latin square extensions. In COCOON, pp.
280–289, 1996.

[RS94] R. Ramaswami and K.N. Sivarajan. Optimal routing
and wavelength assignment in all-optical networks. In
INFOCOM, pp. 970–979, 1994.

[ZA94] Z. Zhang and A. Acampora. A heuristic wavelength as-
signment algorithm for multihop WDM networks with
wavelength routing and wavelength reuse. In INFO-
COM, pp. 534–543, June 1994.

