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GSIA, Carnegie Mellon Unï ersity, Pittsburgh, Pennsyl̈ ania 15213
E-mail: ravi q @cmu.edu

S. S. Ravi‡
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We study budget constrained network upgrading problems. We are given an
Ž .undirected edge-weighted graph G s V, E , where node ¨ g V can be upgraded

Ž .at a cost of c ¨ . This upgrade reduces the weight of each edge incident on ¨ . The
goal is to find a minimum cost set of nodes to be upgraded so that the resulting
network has a minimum spanning tree of weight no more than a given budget D.
The results obtained in the paper include

1. On the positive side, we provide a polynomial time approximation algo-
rithm for the above upgrading problem when the difference between the maximum
and minimum edge weights is bounded by a polynomial in n, the number of nodes
in the graph. The solution produced by the algorithm satisfies the budget con-

Ž .straint, and the cost of the upgrading set produced by the algorithm is OO log n
times the minimum upgrading cost needed to obtain a spanning tree of weight at
most D.

Ž OO Žlog log n..2. In contrast, we show that, unless NP : DTIME n , there can be
no polynomial time approximation algorithm for the problem that produces a
solution with upgrading cost at most a - ln n times the optimal upgrading cost

Ž .even if the budget can be violated by a factor f n , for any polynomial time
Ž . Ž . kcomputable function f n . This result continues to hold, with f n s n being any

polynomial, even when the difference between the maximum and minimum edge
weights is bounded by a polynomial in n.

3. Finally, we show that using a sample binary search over the set of
admissible values, the dual problem can be solved with an appropriate performance
guarantee. Q 1999 Academic Press

Key Words: approximation algorithms; bicriteria problems; spanning trees; net-
work design; combinatorial algorithms.

1. INTRODUCTION AND PROBLEM FORMULATION

1.1. Motï ation

Several problems arising in areas such as communication networks and
VLSI design can be expressed in the general form: Enhance the perfor-
mance of a given network by upgrading a suitable subset of nodes. In
communication networks, upgrading a node corresponds to installing faster
communication equipment at that node. Such an upgrade reduces the
communication delay along each edge emanating from the node. In signal
flow networks used in VLSI design, upgrading a node corresponds to
replacing a circuit module at the node by a functionally equivalent module
containing suitable drivers. Such an upgrade decreases the signal transmis-

w xsion delay along the wires connected to the module PS95 . Usually, there
is a cost associated with upgrading a node, and this motivates the study of
problems of the following type: find an upgrading set of minimum cost so
that the resulting network satisfies certain performance requirements.

The performance of the upgraded network can be quantified in a
number of ways. In this paper, we consider the weight of a minimum
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spanning tree in the upgraded network as the performance measure. We
show that this network problem is NP-hard. So, the focus of the paper is
on the design of efficient approximation algorithms.

1.2. Preliminary Definitions

1.2.1. Node Upgrade Model

The node-based upgrading model discussed in this paper can be formally
Ž .described as follows. Let G s V, E be a connected undirected graph. For

Ž . Ž . Ž .each edge e g E, we are given three integers d e G d e G d e G 0.0 1 2
Ž .The value d e represents the length or delay of the edge e if exactly i ofi

its endpoints are upgraded.
Thus, the upgrade of a node ¨ reduces the delay of each edge incident

Ž . Ž .on ¨ . The integral value c ¨ specifies how expensive it is to upgrade the
Ž .node ¨. The cost of upgrading all vertices in W : V, denoted by c W , is

Ž .equal to Ý c ¨ .¨ g W
Given a set W : V of vertices, denote by d the edge weight functionW

resulting from the upgrade of the vertices in W; that is, for an edge
Ž .u, ¨ g E

< <� 4d u , ¨ [ d u , ¨ , where i s W l u , ¨ .Ž . Ž .W i

Our model is a generalization of the node upgrade model introduced by
w xPaik and Sahni in PS95 . In their model, the reduction in edge weight

resulting from an upgrade of nodes is determined by a constant 0 - a - 1
in the following way: if exactly one endpoint of an edge is upgraded, then
its weight is reduced by the factor a ; if both endpoints are upgraded, the
weight is reduced by the factor a 2. Clearly, the Paik]Sahni model is a
special case of the node upgrade model used in this paper.

1.2.2. Background: Bicriteria Problems and Approximation

The problem considered in this paper involves two optimization objec-
tives, namely, the upgrading cost and the weight of a minimum spanning
tree in the upgraded network. A framework for such bicriteria problems

w q xhas been developed in MR 95 . Since this framework is used throughout
w q xthis paper, we briefly review the relevant definitions from MR 95 .
Ž .A generic bicriteria problem can be specified as a triple f , g, G , where

f and g are two objectives and G specifies a class of subgraphs. An
instance of a bicriteria problem specifies a budget on the objective g. A
subgraph in the class G is a ¨alid solution if it satisfies this budget
constraint. The goal is to find a valid solution that minimizes the objec-
tive f.
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Using this notation, the problem treated in this paper can be expressed
Ž .as NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE . The inter-

pretation of this notation is that the budgeted objective is the weight of a
minimum spanning tree in the upgraded network, and the goal is to
minimize the upgrade cost.

Ž . Ž .DEFINITION 1 Approximation algorithm . A polynomial time algo-
Ž . Ž .rithm for a bicriteria problem f , g, G is said to have performance a , b ,

Ž .if it has the property: For any instance of f , g, G , the algorithm

1. either produces a solution from the subgraph class G for which
the value of objective g is at most b times the specified budget and the
value of objective f is at most a times the minimum value of a solution
from G that satisfies the budget constraint, or

2. correctly provides the information that there is no subgraph from
G which satisfies the budget constraint on g.

1.3. Problem Definition

Ž .We denote the total length of a minimum spanning tree MST in G
Ž .with respect to the weight function d by MST G, d .W W

Ž .DEFINITION 2 Upgrading the MST problem . Given an edge and node
Ž .weighted graph G s V, E as above and a bound D, the upgrade mini-

Žmum spanning tree problem, denoted by NODE UPGRADING COST, TOTAL
.WEIGHT, SPANNING TREE , is to upgrade a set W : V of nodes such that

Ž . Ž .MST G, d F D and c W is minimized.W

Ž .The problem NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE

is formulated by specifying a budget on the weight of a tree while the
upgrading cost is to be minimized. We will refer to this problem as the
primal problem. It is also meaningful to consider the corresponding dual

Žproblem, denoted by TOTAL WEIGHT, NODE UPGRADING COST, SPANNING
.TREE , where we are given a budget on the upgrading cost and the goal is

to minimize the weight of a spanning tree in the resulting graph.

Ž .DEFINITION 3 Dual problem . Given an edge and node weighted graph
Ž .G s V, E as above and a bound B on the upgrading cost, the problem

Ž .TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE is to upgrade a
Ž . Ž .set W : V of nodes such that c W F B and MST G, d is minimized.W

There is a close relationship between the approximabilities of the primal
and the dual problems. We will show in Section 3 that a good bicriteria
approximation algorithm for one of the problems can be used to design a
good approximation algorithm for the other in a generic way; that is, given
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Ž . Žan a , b -approximation algorithm for the problem NODE UPGRADING
. Ž .COST, TOTAL WEIGHT, SPANNING TREE , one can obtain a b , a -ap-

Žproximation algorithm for the problem TOTAL WEIGHT, NODE UPGRADING
.COST, SPANNING TREE .

2. SUMMARY OF RESULTS AND RELATED WORK

2.1. Summary of Results

We derive our approximation results under the following assumption.

Ž .Assumption 4. There is a polynomial p such that D y D F p n ,0 2
Ž . Ž .where D [ max d e and D [ min d e are the maximum0 eg E 0 2 eg E 2

and minimum edge weight respectively, and n denotes the number of
nodes in the graph.

The main results of this paper are:

1. We present a polynomial time approximation algorithm, which for
ŽŽ .2 Ž . .any fixed « ) 0, provides a performance guarantee of 1 q « OO log n , 1

Žfor any instance of NODE UPGRADING COST, TOTAL WEIGHT, SPANNING
.TREE satisfying Assumption 4.

Ž OO Žlog log n..2. In contrast, we show that unless NP : DTIME n , there
Žcan be no polynomial time approximation algorithm for NODE UPGRAD-

. Ž Ž ..ING COST, TOTAL WEIGHT, SPANNING TREE with a performance of a , f n
for any a - ln n and any polynomial time computation function f. This

Ž . kresult continues to hold, with f n s n being any polynomial, even when
Assumption 4 holds.

3. We also show that using a simple binary search over the set of
admissible values, an approximation algorithm with a performance guaran-

Ž Ž .2 Ž ..tee of 1, 1 q « OO log n can be obtained for any instance of the dual
Ž .problem TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE satis-

fying Assumption 4.

It should be noted that our approximation algorithm for the problem
Ž .NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE produces solu-
tions in which the budget constraint is strictly satisfied. This is unlike many
bicriteria network design problems where it is necessary to violate the
budget constraint to efficiently obtain a solution that is near-optimal with

w q xrespect to the objective function MR 95 .

2.2. Related Work

As mentioned earlier, a simple node upgrading model has been consid-
w xered by Paik and Sahni PS95 . Under their model, Paik and Sahni studied



IMPROVING SPANNING TREES 97

the upgrading problem for several performance measures, including the
maximum delay on an edge and the diameter of the network. They
presented NP-hardness results for several problems. Their focus was on
the development of polynomial time algorithms for special classes of

Ž .networks e.g., trees, series-parallel graphs rather than on the develop-
ment of approximation algorithms. Our constructions can be modified to
show that all the problems considered here remain NP-hard even under
the Paik]Sahni model.

While in this paper we choose the total weight of a minimum spanning
tree as a measure of the performance of the upgraded network, there are
other useful performance measures. One of these measures, namely the
bottleneck weight of a minimum bottleneck spanning tree, leads to the

Ž .problem NODE UPGRADING COST, BOTTLENECK WEIGHT, SPANNING TREE .
w q xThis bottleneck problem has been investigated in KM 97 .

Edge-based network upgrading problems have also been considered in
w q q xthe literature Ber92, KN 96b, KN 96a . There, each edge has a current

Žweight and a minimum weight below which the edge weight cannot be
.decreased . Upgrading an edge corresponds to decreasing the weight of

that particular edge, and there is a cost associated with such an upgrade.
This goal is to obtain an upgraded network with the best performance. In
w q xKN 96b the authors consider the problem of edge-based upgrading to
obtain the best possible MST subject to a budget constraint on the

Ž .upgrading cost and present a 1 q « , 1 q 1r« -approximation algorithm.
ŽGeneralized versions, where there are other constraints e.g., bound on

.maximum node degree and the goal is to obtain a good Steiner tree, are
w q xconsidered in KN 96a . Other references addressing problems that can be

winterpreted as edge-based improvement problems include FSO96, HT97,
xPhi93 .

3. DUAL PROBLEMS AND APPROXIMABILITY

In this section we formally state and prove our claim from Section 1.3
that the dual problems defined in this paper are closely related with
respect to their approximability. We show that a generic approximation
algorithm for one problem can be converted into an approximation algo-
rithm for the dual. The main tool for obtaining this result is a binary
search over an appropriate set of admissible values, which is a common

Žtechnique for treating problems when the objectives are interchanged see,
w x.e.g. AMO93 .

LEMMA 5. If there exists an approximation algorithm for the problem
Ž .NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE with a perfor-
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Ž .mance of a , b , then there is an approximation algorithm for the problem
Ž .TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE with perfor-

Ž .mance of b , a .

Ž . ŽProof. Let A be an a , b -approximation algorithm for NODE UP-
.GRADING COST, TOTAL WEIGHT, SPANNING TREE . We will show how to use

Ž .A to construct a b , a -approximation algorithm for the dual problem.
ŽAn instance of TOTAL WEIGHT, NODE UPGRADING COST, SPANNING

. Ž .TREE is specified by a graph G s V, E , the node cost function c, the
weight functions d , i s 0, 1, 2, on the edges and the bound B on the nodei
upgrading cost. We denote by OPT the optimum weight of an MST after
upgrading a vertex set of cost at most B. Observe that OPT is an integer

Ž . Ž . Ž .such that n y 1 D F OPT F n y 1 D , where D [ min d e and2 0 2 eg E 2
Ž .D [ max d e .0 eg E 0

ŽWe use binary search to find the minimum integer D such that n y
. Ž . Ž1 D F D F n y 1 D and algorithm A applied to the instance of NODE2 0

.UPGRADING COST, TOTAL WEIGHT, SPANNING TREE given by the weighted
graph G as above and the bound D on the weight of an MST after the
upgrade, outputs an upgrading set of cost at most aB. It is easy to see that
this binary search indeed works and terminates with a value D F OPT.

Ž .The corresponding upgrading set W then satisfies MST G, d F bD FW
Ž .bOPT and c W F aB.

Using a similar technique, one can also establish the following result.

LEMMA 6. If there exists an approximation algorithm for the problem
Ž .TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE with a perfor-

Ž .mance of a , b , then there is an approximation algorithm for the problem
Ž .NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE with a perfor-

Ž .mance of b , a .

In view of Lemma 5, the next section focuses on the development of an
Žapproximation algorithm for the problem NODE UPGRADING COST, TOTAL

.WEIGHT, SPANNING TREE .

4. THE ALGORITHM

ŽIn this section we develop our approximation algorithm for the NODE
.UPGRADING COST, TOTAL WEIGHT, SPANNING TREE problem. Without loss

Žof generality, we assume that for a given instance of NODE UPGRADING
.COST, TOTAL WEIGHT, SPANNING TREE the bound D on the weight of the

Ž .minimum spanning tree after the upgrade satisfies D G MST G, d , since2
Ž .no upgrade strategy can shorten an edge e g E below d e , and therefore2

it is impossible to obtain a minimum spanning tree of weight strictly lower
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Ž .than MST G, d in our upgrading model. Thus, we can assume that there2
always exists a subset of the nodes which, when upgraded, leads to an MST
of weight at most D. We remind the reader that our algorithm also uses

Ž .Assumption 4 stated in Section 2 regarding the edge weights in the given
instance.

4.1. O¨er̈ iew of the Algorithm

Our approximation algorithm can be thought of as a local impro¨ement
type of algorithm. To begin with, we compute an MST in the given graph

Ž . Ž .with edge weights given by d e . This value equals d e for the initial0 W
case W s B, where W : V is the set of upgraded nodes maintained by the
algorithm. During each iteration, we select a node and a subset of its
neighbors and upgrade them by adding them to the set W. The policy used
in the selection process is that of finding a set which gives us the best ratio
improvement, which is defined as the ratio of the improvement in the total
weight of the spanning tree to the total cost spent for upgrading the
chosen nodes. Having selected such a set, we recompute the MST and
repeat our procedure. The procedure is halted when the weight of the
MST is at most the required bound D. To find a subset of nodes with the
best ratio improvement in each iteration, we use an approximate solution
to the Two Cost Spanning Tree Problem defined below.

Ž .DEFINITION 7 Two Cost Spanning Tree Problem . Given a connected
Ž .undirected graph G s V, E , two edge weight functions, c and l, and a

Ž .bound B, find a spanning tree T of G such that the total cost c T is at
Ž .most B and the total cost l T is a minimum among all spanning trees that

obey the budget constraint.

In the framework of bicriteria problems, the above problem can be
Ž .expressed as l-TOTAL WEIGHT, c-TOTAL WEIGHT, SPANNING TREE . This

w xproblem has been addressed by Ravi and Goemans RG96 who obtained
the following result.

THEOREM 8. For all « ) 0, there is a polynomial time approximation
algorithm for the Two Cost Spanning Tree Problem with a performance of
Ž . Ž 1r « Ž 2 3 ..1, 1 q « . The running time of the algorithm is OO n m log n q n log n .

We now explain in more detail the basic outline of our algorithm. As
stated above, in each iteration our algorithm selects a node and a subset of
its neighbors for upgrading. These vertices are always contained in a claw,
which is defined as follows.

Ž . Ž .DEFINITION 9 Claw, marked claw . A graph C s V, E is called a
�Ž . � 44claw, if E is of the form E s ¨ , w : w g V _ ¨ for some node ¨ g V.
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The node ¨ is said to be the center of the claw. A claw with at least two
nodes is called a nontrï ial claw. A marked claw is a claw C with a subset
Ž .M C ; C of its vertices marked for upgrading.

Notice that a claw’s center is not uniquely determined if the claw
contains less than three nodes.

The reasons why our algorithm always chooses the marked vertices in
marked claw for upgrading in each iteration are twofold. On the one hand,
we can show how to decompose an optimal solution into a set of marked
claws one of which provides a ‘‘good’’ upgrading set at the current stage
Ž .see Lemma 14 . On the other hand, we are able to find a ‘‘good’’ claw in

w xeach iteration by using the algorithm from RG96 to solve a couple of
Ž .auxiliary instances of the Two Cost Spanning Tree problem see Lemma 15 .

In each of these instances of Two Cost Spanning Tree Problem, we add
edges derived from one particular marked claw to the current MST to
obtain an auxiliary graph H. Each edge from the claw is added twice, once
in an ‘‘original version’’ with old weight, and another time as a parallel
edge in an upgraded version. We then define the two edge weight func-
tions on the resulting graph H. One weight function reflects the upgrading
cost while the other reflects the resulting weight of the edges. Using the

w xalgorithm from RG96 we find a spanning tree T in H which is light withH
respect to its weight and does not cost too much in terms of upgrading.

Ž .Depending on which edges original or upgraded from the claw are
contained in T , we derive a marked claw. The best of all these markedH
claws is used to determine the upgrading set chosen in the current
iteration.

4.2. Algorithm and Performance Guarantee

The remainder of Section 4 is devoted to a proof of the following
theorem.

THEOREM 10. For any fixed « ) 0, there is a polynomial time approxima-
ŽŽ .2 Ž . .tion algorithm that pro¨ides a performance guarantee of 1 q « OO log n , 1

Žfor any instance of NODE UPGRADING COST, TOTAL WEIGHT, SPANNING
.TREE satisfying Assumption 4.

The algorithm referred to in Theorem 10 is obtained by executing
Ž .Algorithm UPGRADE-MST see Figs. 1 and 2 for a polynomial number of
Žvalues of the parameter V. Details regarding the values of V used by the

.algorithm appear in Section 4.5. Algorithm UPGRADE-MST uses Proce-
dure COMPUTE-QC whose description appears in Fig. 3. We address the
running time of our algorithm in Section 4.7.

Before we embark on a proof of the performance guarantee stated in
Theorem 10, we give the overall idea behind the proof. Recall that each
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FIG. 1. Approximation algorithm for node upgrading under total weight constraint.

Žbasic step of the algorithm consists of finding a marked claw i.e., a node
.and a subset of its neighbors to upgrade.

Let W be a subset of the nodes upgraded so far and let T be an MST
Ž .with respect to d ; that is, T s MST G, d . For a claw C with nodesW W

Ž . Ž .M C : C marked, we define its quotient cost q C to be

¡ c M CŽ .Ž .
, if M C / B,Ž .~q C [Ž . d T y MST T j C , dŽ . Ž .W W j M ŽC .¢q`, otherwise.

Ž . Ž .In other words, q C is the cost of the vertices in M C divided by the
Ž .decrease in the weight of the MST when the vertices in M C are also

FIG. 2. Illustration of one iteration of Algorithm UPGRADE-MST. Left: Graph with
Ž . Ž .upgraded nodes black and MST solid lines . Center: An optimal claw with marked nodes.

Right: MST after the additional upgrade of the marked nodes.
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FIG. 3. Algorithm for computing a good claw.

upgraded and edges in the current tree T can be exchanged for edges in
the claw C. Notice that this way the real profit of upgrading the vertices in
Ž .M C is underestimated, since the weights of edges outside of C may also

decrease.
Our analysis shows that in each iteration, there exists a claw of quotient

Ž Ž . X .cost at most 2 OPTr d T y D , where T is an MST at the beginning ofW

the iteration and W is the set of nodes upgraded so far. Essentially, this
means that in each iteration, there is a claw whose quotient cost is
bounded by the ratio of twice the optimum cost and the remaining effort.
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FIG. 4. Example of the auxiliary graph constructed by Procedure COMPUTE-QC. Left:
Ž . Ž .Graph with upgraded nodes black and MST solid lines ; node ¨ is considered as the center

of a claw. Right: Constructed instance of the Two Cost Spanning Tree Problem; thick edges
have nonzero c-cost and dashed edges have l-cost according to d .1

We can then use a potential function argument to show that this yields a
logarithmic performance guarantee.

4.3. Bounded Claw Decompositions

Ž .DEFINITION 11. Let G s V, E be a graph and W : V a subset of
marked vertices. Let k G 1 be an integer constant. A k-bounded claw
decomposition of G with respect to W is a collection C , . . . , C of nontrivial1 r
claws, which are all subgraphs of G, with the properties:

r Ž . r Ž .1. D V C s V and D E C s E.is1 i is1 i

2. No node from W appears in more than k claws.
3. The claws are edge-disjoint.
4. If a claw C contains nodes from W, then its center also belongsi

to W.

An example of a 2-bounded claw decomposition is shown in Fig. 5.

Ž .LEMMA 12. Let F be a forest in G s V, E and let W : V be a set of
marked nodes. Then there is a 2-bounded claw decomposition of F with
respect to W.

Proof. We show how to decompose each tree T in the forest F to get a
2-bounded decomposition.

If each node in T has degree one, then T consists of a single edge which
is a nontrivial claw. Otherwise, let ¨ be an arbitrary vertex of degree at
least two where at least one of its neighbors is of degree one. If all
neighbors of ¨ are of degree one, then T is again already a nontrivial claw
and we are done.
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FIG. 5. Left: Tree with marked nodes. Right: 2-bounded claw decomposition resulting
from the construction described in the proof of Lemma 12.

Let N be the neighbors of ¨ in T which are of degree one. Construct a¨
� 4claw C with center ¨ by selecting as its vertex set N j ¨ . Remove the¨ ¨

vertices in N from T. Call the resulting tree T X. Observe that T X consists¨
of at least two vertices.

Repeat the above procedure with T X until we end up with a single claw.
Add this claw to the collection of claws. If there are claws sharing the
same center, join them into one single claw. At this point, each vertex
appears in at least one and in at most two of the claws.

Ž .Condition 4 of Definition 11 can be satisfied by splitting a claw whose
center does not belong to W into claws consisting of one edge each.

For our proof we will make use of the following lemma.

LEMMA 13. Let T and T X be two spanning trees of G. Then for each edge
X X X Ž . Xset S : T y T there is an edge set S : T y T such that T y S j S and

Ž X X.T y S j S are both spanning trees of G.

LEMMA 14. Let T [ T be an MST at the beginning of iteration i, i.e.,iy1
Ž .T s MST G, d , where W [ W is the upgrading set constructed so far.W iy1

Ž .Then there is a marked claw C where its center ¨ is also marked and ¨ f W
Ž .with quotient cost q C satisfying

2 OPT
q C F ; c M C F OPT.Ž . Ž .Ž .

d T y DŽ .W

X Ž .Proof. Let T s MST G, d be an MST after the additionalW j OPT
Ž X.upgrade of the vertices in OPT. Clearly, d T F D. Apply LemmaW j OPT

12 to T X with the vertices in Z [ OPT_W marked. The lemma shows that
there is a 2-bounded claw decomposition of T X with respect to Z. Let the

Ž .claws be C , . . . , C . In each claw C , the corresponding nodes M C [ C1 r j j j

lZ from Z are marked. Since the decomposition is 2-bounded with
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respect to Z, it follows that

r

c M C F 2 ? OPT. 1Ž .Ž .Ž .Ý j
js1

Ž Ž ..Moreover, the cost c M C of the marked nodes in each single claw Cj j
does not exceed OPT, since we have marked only nodes from Z.

For the remaining part of the proof, we denote by E the edge set of
Ž .graph G with weights given by d ; in particular we have T s MST E . WeW

denote by CX those edges from claw C whose weights in the current graphj j
Ž . Ž .G, d differ from the weights in the upgraded graph G, d . Then,W W j OPT
T X is an MST in the graph with edge set E j Dr CX. It is convenient tojs1 j
denote by T or T X both the tree itself and the weight of the tree. Thus we
have

r
X X XMST E j C s T s d T F D. 2Ž . Ž .D j W j OPTž /

js1

We will now prove the inequality

r r
X XMST E j C F MST E j C q r y 1 ? MST EŽ . Ž .Ž .Ý Dj jž /

js1 js1

s T X q r y 1 ? T . 3Ž . Ž .

Ž .At first, we swap edges between the r trees on the right-hand side of 3 .
We will start with T X [ T X and apply Lemma 13 iteratively r y 1 times. In0
step i, i s 1, . . . , r y 1, choose SX [ T X l CX. By Lemma 13 there existsi iy1 i
a set S : T such thati

T [ T y S j SX ; T X [ T X y CX j SŽ . Ž .i i i i iy1 i i

are both spanning trees. After r y 1 steps, we end up with the set of trees
� X 4T , . . . , T , T on the right-hand side, while the total weight remains1 ry1 ry1
the same.

Ž . Ž X X.Since T s T y S j T l C , i s 1, . . . , r y 1, we have T : E ji i iy1 i i
CX. Hence,i

T G MST E j CX , i s 1, . . . , r y 1. 4Ž . Ž .i i

Moreover, from the construction, T X : E j CX , since from the initialry1 r
tree T X all edges from claws CX , . . . , CX have been swapped out. There-0 1 ry1
fore,

T X G MST E j CX . 5Ž . Ž .ry1 r
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Ž . Ž . Ž .Summing up over 4 and 5 , we get immediately Inequality 3 . Equations
Ž . Ž .2 and 3 now yield

r
XMST E j C F D q r y 1 ? MST E 6Ž . Ž . Ž .Ž .Ý j

js1

r
Xm MST E y D F MST E y MST E j C , 7Ž . Ž . Ž .Ž .Ž .Ý j

js1

and consequently,

Ýr c M C 2 ? OPTŽ .Ž .js1 j F . 8Ž .Xr MST E y DŽ .Ý MST E y MST E j CŽ . Ž .Ž .js1 j

An averaging argument now shows the existence of a claw with the desired
properties.

4.4. Finding a Good Claw in Each Iteration

Lemma 14 implies the existence of a marked claw with the required
properties. We will now deal with the problem of finding such a claw.

LEMMA 15. Suppose that the bound V gï en by algorithm UPGRADE-MST
satisfies V G OPT. Then, during each iteration i, the algorithm chooses a
marked claw CX such that

OPT2X Xq C F 2 1 q « ; c M C F 1 q « V ,Ž . Ž . Ž . Ž .Ž .
d T y DŽ .W

where T [ T is an MST at the beginning of iteration i and W [ W isiy1 iy1
the set of nodes upgraded so far.

Ž .Proof. By Lemma 14, there is a marked claw C with quotient cost q C
Ž Ž . .at most 2OPTr d T y D . Let ¨ be the center of this claw. By LemmaW

Ž . Ž Ž ..14, ¨ is marked. Let c C [ c M C be the cost of the marked nodes in
Ž .C and L [ MST T j C, d be the weight of the MST in T j CW j M ŽC .

resulting from the upgrade of the marked vertices in C. Then, by the
Ž .definition of the quotient cost q C we have

c C OPTŽ .
q C s F 2 . 9Ž . Ž .

d T y L d T y DŽ . Ž .W W

Consider the iteration of Procedure COMPUTE-QC when it processes the
instance I of Two Cost Spanning Tree Problem with graph G and¨ , K ¨
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Ž . Ž . Ž . Ž .c C F K - 1 q « ? c C . The tree MST T j C, d induces aW j M ŽC .
Ž . Ž .spanning tree in G of total c-cost at most c C which is at most K and¨

of total l-length no more than L. Thus, the algorithm from Theorem 8 will
Ž .find a tree T such that its total c-cost c T is bounded from above by¨ , K ¨ , K

Ž . Ž .2 Ž . Ž .1 q « K F 1 q « c C and of total l-length l T no more than L.¨ , K
By construction, the marked claw CX computed by Procedure COMPUTE-

Ž . Ž Ž . Ž ..QC from T has quotient cost at most c T r d T y l T , which¨ , K ¨ , K W ¨ , K
2Ž . Ž . Ž Ž . . Ž .is at most 1 y « c C r d T y L . The lemma now follows from 9 .W

4.5. Guessing an Upper Bound on the Impro¨ement Cost

We run our Algorithm UPGRADE-MST depicted in Fig. 1 for all values of

2 t
V g 1, 1 q « , 1 q « , . . . , 1 q « , where t [ log c V .Ž . Ž . Ž . Ž .� 4 1q«

We then choose the best solution among all the solutions produced. Our
Ž .analysis shows that when OPT F V - 1 q « ? OPT, the algorithm will

indeed produce a solution. In the sequel, we estimate the quality of this
solution. Assume that the algorithm uses f q 1 iterations and denote by
C , . . . , C , C the claws chosen in Step 4b of the algorithm. Let c [1 f fq1 i
Ž Ž ..c M C denote the cost of the vertices upgraded in iteration i. Then, byi

construction

2c F 1 q « V F 1 q « OPT for i s 1, . . . , f q 1. 10Ž . Ž . Ž .i

4.6. Potential Function Argument

We are now ready to complete the proof of the performance stated in
Theorem 10. Let MST denote the weight of the MST at the end ofi

Ž .iteration i, i.e., MST [ d T . Define f [ MST y D. Since we havei W i i ii

assumed that the algorithm uses f q 1 iterations, we have f G 1 fori
Ž Ž ..i s 0, . . . , f and f F 0. As before, let c [ c M C denote the cost offq1 i i

the vertices upgraded in iteration i. Then

cLemma 15 iq1
f s f y MST y MST F 1 y f , 11Ž . Ž .iq1 i i iq1 iž /a ? OPT

Ž .2where a [ 2 1 q « . We now use an analysis technique due to Leighton
w x Ž . Ž .and Rao LR88 . The recurrence 11 and the estimate ln 1 y t F yt

give us

f f0
c F a ? OPT ? ln . 12Ž .Ý i f fis1
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Notice that the total cost of the nodes chosen by the algorithm is exactly
fq1 Ž . Ž .the sum Ý c . By 12 and 10 we haveis1 i

fq1 f f02 2c s c q c F 1 q « OPT q 2 1 q « OPT ? ln . 13Ž . Ž . Ž .Ý Ýi fq1 i f fis1 is1

Ž .We will now show how to bound f rf . Notice that f s MST y D G 1,0 f f f
since the algorithm uses f q 1 iterations and does not stop after the f th

Ž .Ž .iteration. We have f s MST y D F n y 1 D y D , where D and0 0 0 2 0
D denote the maximum and the minimum edge weights in the graph. It2

Ž Ž Ž ... Ž .now follows from Assumption 4 that ln f g OO log np n : OO log n .0
Ž .Using this result in 13 yields

fq1
2 2c F 1 q « ? OPT q 2 1 q « OO log n ? OPTŽ . Ž . Ž .Ý i

is1

2g 1 q « OO log n ? OPT.Ž . Ž .

This completes the proof.

4.7. Running Time

In this section we consider the running time of our algorithm. Let
Ž . < < < <G s V, E be the input graph and denote by n [ V and m [ E the

number of vertices and edges in G, respectively.
We first estimate the running time needed by Procedure COMPUTE-QC.

Ž . iWhen called with parameter V s 1 q « for some integer i, Procedure
w xCOMPUTE-QC runs the algorithm from RG96 on n ? i instances of Two

Cost Spanning Tree Problem. The total effort is dominated by the n ? i calls
to the algorithm for Two Cost Spanning Tree Problem, which needs
Ž 1r « Ž 2 3 .. Ž 1r « 3 .OO n m log n q n log n : OO n m log n time. Thus, the total time

Ž 1q1r« 3 .for one such call to COMPUTE-QC is in OO i ? n m log n .
Algorithm UPGRADE-MST uses at most n iterations. In each iteration,

we compute an MST and call Procedure COMPUTE-QC, which dominates
Ž 2q1r« 3 .the running time. This leads to a bound of OO i ? n ? m log n for the

ŽŽ . i.running time of Algorithm UPGRADE-MST 1 q « .
As pointed out in Section 4.5, this algorithm is run with test parameter

Ž . i u Ž .vV s 1 q « , for i s 1, 2, . . . , log c V . This yields an overall running1q«

time of

u Ž .vlog c V1q«

2q1r« 3 2 2q1r« 3i ? OO n ? m log n : OO log c V ? n ? m log nŽ .Ž . Ž .Ý 1q«
is1

for the algorithm.
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5. HARDNESS RESULT

In this section we prove the hardness result stated in Section 2. The
proof relies on the following lemma.

LEMMA 16. Let a and f be two polynomial time computable functions.
Let a be nondecreasing, and let c ) 1 and N g N be constants such that
Ž . Ž . Ž Ž . Ž ..a n q 1 F c ? a n for all n G N. Then the existence of an a n , f n -ap-

Žproximation algorithm for NODE UPGRADING COST, TOTAL WEIGHT, SPAN-
. Ž .NING TREE implies the existence of a c ? a n -approximation algorithm for

MINIMUM DOMINATING SET. Here, n denotes the number of ¨ertices in the
input graphs.

Note that requiring the existence of the constant c is not a serious
Ž .restriction, since we can always assume that a n F n.

wProof. We perform a reduction from MINIMUM DOMINATING SET GJ79,
xProblem GT2 . An instance of MINIMUM DOMINATING SET is given by an

Ž .undirected graph G s V, E . A node set D : V is a minimum dominat-
ing set, if each node in V _ D is incident to a node in D, and D is of
minimum cardinality among all nodes sets with the domination property.

Ž .Given an instance G s V, E of MINIMUM DOMINATING SET, add a new
Ž .node r the root to the graph and connect r to all the nodes in V. Let

X < <n s V q 1 be the resulting number of nodes. For all edges, set the initial
Ž X.weights to l [ n ? f n q 1, and the weights in the upgrading case to0

Ž . u Ž .vl [ l [ 1. The upgrade cost of the root is set to c r [ n ? c ? a n q 1,1 2
all remaining nodes have to upgrading cost 1. The constraint on the total

< <weight is n [ V .
Ž Ž X. Ž X..Now suppose there is an a n , f n -approximation algorithm for

Ž .NODE UPGRADE COST, TOTAL WEIGHT, SPANNING TREE . Observe that for
the instance of this problem constructed above, there is always a feasible
solution, namely, the upgrading set consisting of all vertices in the graph.
Thus, if applied to this instance, the algorithm must output an upgrading

Ž X.set of cost at most a n times the optimum upgrading cost such that the
Ž X.upgraded network contains an MST of weight at most f n ? n.

It is easy to see that upgrading a dominating set of size u in G yields a
minimum spanning tree in GX which fulfills the weight constraint and has
upgrade cost equal to u. Thus the optimum upgrading cost OPT is at most
the size of the minimum dominating set.

Conversely, each upgrading set in GX not containing the root and
resulting in a MST of weight at most n is also a dominating set in G. Now
observe that any spanning tree of weight more than n has weight at least

Ž X. Ž X.l s n ? f n q 1 ) n ? f n . Thus, to satisfy the weight constraint within a0
Ž X .factor of f n , the algorithm must output a spanning tree consisting of
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edges of weight 1 only. Moreover, due to the high cost of upgrading the
root, the algorithm can never choose the root for upgrading: let u be the
size of a smallest dominating set, then OPT F u by our observations from

Ž X .above. The algorithm produces a solution of cost at most a n ? OPT F
Ž X. Ž . Ž .a n ? u F c ? a n ? u F c r .

Ž Ž X. Ž X..Thus, an a n , f n -approximation algorithm can be used to obtain a
Ž .dominating set in the original graph G whose size is at most c ? a n times

the cardinality of an optimum dominating set.

Ž . ŽCOROLLARY 17 nonapproximability . Let f be any polynomial time
. Ž . Ž .computable function and a n - 1 y « ln n for fixed « ) 0. Unless NP :

Ž OŽlog log n..DTIME n , there can be no polynomial time approximation algorithm
Ž .for NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE with perfor-

Ž Ž . Ž ..mance guarantee a n , f n , where n denotes the number of ¨ertices in the
input graph.

w x Ž OŽlog log n..Proof. Feige Fei96 has shown that, unless NP : DTIME n ,
Ž .there can be no a n -approximation algorithm for MINIMUM DOMINATING

Ž .SET when a n - ln n.
ŽŽ . Ž ..For some « ) 0, assume that there is a 1 y « ln n, f n -approximation

Ž .algorithm for NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE .
Then there are constants « X, c, and N, such that for n G N

1 y « X

ln n q 1 F c ? ln n; 1 y « ln n F ln n.Ž . Ž .
c

ŽŽ X. .With help of Lemma 16 we can conclude that there exists a 1 y « ln n -
approximation algorithm for MINIMUM DOMINATING SET, which contradicts
Feige’s result.
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