
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 221 (1999) 139-155
www.elsevier.com/locate/tcs

Improving spanning trees by upgrading nodes

Sven O. Krumke a,., Hartmut Noltemeier b, Hans-C. Wirth b,
Madhav V. Marathe c, R. Ravi d, S.S. Ravi e'l, R. Sundaram f

a Konrad-Zuse-Zentrum fiir Informationstechnik Berlin (ZIB), Takustr. 7,
14195 Berlin-Dahlem, Germany

b Department of Computer Science, University of Wiirzbur 9, Am Hubland, 97074 Wiirzburg, Germany
c Los Alamos National Laboratory, P.O. Box 1663, MS B265, Los Alamos, N M 87545, USA

d GSIA, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e Department of Computer Science, University at Albany - SUNY, Albany, N Y 12222, USA

f Delta Trading Co. Work done while at MIT, Cambridge MA 02139, USA

Abstract

We study bottleneck constra&ed network upgradin 9 problems. We are given an edge weighted
graph G = (V ,E) where node v E V can be upgraded at a cost of c(v). This upgrade reduces the
delay of each link emanating from v. The goal is to find a minimum cost set of nodes to be
upgraded so that the resulting network has good performance. The performance is measured by
the bottleneck weight of a minimum spanning tree.

We give a polynomial time approximation algorithm with logarithmic performance guarantee,
which is tight within a small constant factor as shown by our hardness results. (~) 1999 Published
by Elsevier Science B.V. All rights reserved.

Keywords: NP-hardness; Approximation algorithms; Network design; Spanning tree

1. Introduction

Several problems arising in areas such as communication networks can be expressed
in the following general form: Enhance the performance of an underlying network by
carrying out upgrades at certain nodes or edges of the network [2, 13, 14, 9].

In communication networks, upgrading a node corresponds to installing faster com-
munication equipment at that node. Such an upgrade reduces the communication

* Corresponding author.
E-mail addresses: krumke@informatik.uni-wuerzburg.d400.de (S.O. Krumke), noltemei@informatik.uni-

wuerzburg.de. (H. Noltemeier), wirth@informatik.uni-wuerzburg.de. (H.C. Wirth), madhav@c3.1anl.gov.
(M.V. Marathe), ravi+@cmu,edu. (R. Ravi), ravi@cs.albany.edu (S.S. Ravi), koods@theory.lcs,mit.edu.
(R. Sundaram)

1 Supported by NSF Grant CCR-9734936.

0304-3975/99/S-see front matter Q 1999 Published by Elsevier Science B.V. All rights reserved.
PII: S0304-3975(99)00030-4

140 S.o. Krumke et al. / Theoretical Computer Science 221 (1999) 139-155

delay along each edge emanating from the node. Similarly, upgradin9 an edge can be
achieved by replacing the old line with a new optical cable. In general, there is a cost
for improving each node or edge in the existing network by a unit amount. The goal
is to design a strategy to upgrade the network such that it has a good performance
while the upgrading cost is minimized.

2. Preliminaries and problem definition

The node based upgradin9 model discussed in this paper can be formally described
as follows. Let G=(V,E) be a connected undirected graph with n:=lV] vertices
and m:= IE[edges. For each edge e CE, we are given three integers do(e)>>.dl(e)>>.
d2(e)>>.O. The value di(e) represents the length or delay of the edge e if exactly i of
its endpoints are upgraded. Thus, the upgrade of a node v reduces the delay of each
edge incident with v.

For each node v E V the value c(v) specifies how expensive it is to upgrade the
node. For a subset W of V, the cost of upgrading all the nodes in W, denoted by
c(W), is equal to ~vcwc(v). The edge weight function resulting from an upgrade of
the node set W is denoted by dw, that is

d0(e) if none of the endpoints of e belongs to W,
dw(e)= dl(e) if exactly one endpoint of e belongs to W,

d2(e) if both endpoints of e belong to W.

We call the maximum delay of an edge in a subgraph the bottleneck delay of that
subgraph. The bottleneck 9raph Bottleneck(G, dw,D) contains all edges e EE with

dw(e) <~D.
Given a bound D on the bottleneck delay of a subgraph, we partition the set of edges

into four sets according to how many of the endpoints must be upgraded in order to
decrease the delay of an edge below the threshold D. An edge of delay do(e)<~D
is called an uncritical edge. An edge e is said to be 1-criticaL if do(e)>D>~dl(e),
and 2-critical, if dl(e)>D>~d2(e). Finally, if d2(e)>D, the edge e is called useless.
Without loss of generality we can assume that the graph does not contain any useless

edges.
We are now ready to formulate the problems studied in this paper.

Definition 1 (Bottleneck tree upgrading problem). Let G=(V,E) be an edge and
node weighted graph as above. Given a bound D, the bottleneck spannin9 tree up-
9rodin9 problem (NODE UPGRADING COST, BOTTLENECK, SPANNING TREE), is to upgrade
a set W C V of nodes such that the resulting graph has a spanning tree of bottleneck
delay at most D and c(W) is minimized.

The long problem name (NODE UPGRADING COST, BOTTLENECK, SPANNING TREE) might
read confusing. However, the above problem is an example for a bicriteria problem.

S.O. Krumke et al. / Theoretical Computer Science 221 (1999) 139-155 141

The notation and the framework developed for this class of problems are described in

the following two subsections.

2.1. Bicriteria problems and approximations

A general bicriteria network upgrade problem (f l , f 2 , 5 e) is defined by two mini-

mization objectives f l and f2 and a class 5 a of subgraphs. The problem specifies a
budget value D on the objective f2. A solution x is valid, if it belongs to the graph
class 5 e and satisfies the constraint f2(x)<~D on the objective f2. The goal is to find

a fl-minimal solution amongst all valid solutions.
Since the problems which arise are hiP-hard in general, it is meaningful to search

for approximate solutions which can be computed in polynomial time.

Definition 2 (Performance of approximation). Let P = (f l , f 2 , 5 ~) be a bicriteria
problem. A polynomial time algorithm has performance (~, fl) for P, if for all instances

the algorithm produces a solution x E 5 e such that f2(x)<<, ft. D and fl(x)~< 7. f l (x*),
where x* denotes an optimal (valid) solution and D is the given bound on objective ./~

in the instance.

2.2. Dual problems

The problem in Definition 1 is formulated by specifying a bound on the bottleneck
delay after the upgrade, while the upgrading cost is to be minimized. It is also mean-
ingful to consider the corresponding dual problem (BOTTLENECK, NODE UPGRADING COST,
SPANNING TREE), where we are given a bound on the upgrading cost and want to obtain
the best-possible bottleneck delay while staying within our budget restrictions.

The following lemma shows that if we have a good approximation algorithm for
(NODE UPGRADING COST, BOTTLENECK, SPANNING TREE), we can convert it into a good
approximation algorithm for the dual problem (BOTTLENECK, NODE UPGRADING COST,
SPANNING TREE) with only a minor additional computational effort.

We will use this result and formulate our approximation algorithms only for (NODE
UPGRADING COST, BOTTLENECK, SPANNING TREE), which will be more convenient.

Lemma 3. Suppose that A is a bicriteria approximation algorithm for (NODE
UPGRADING COST, BOTTLENECK, SPANNING TREE) with a performance of (ct, fl). Then, one
can construct an approximation algorithm for (BOTTLENECK, NODE UPGRADING COST,
SPANNING TREE) with performance of (fl,~) by using (9(logm)_C (9(logn) calls to A,
plus an overhead of (9(m logm) elementary operations.

Proof. Let A be an (ct, fl)-approximation algorithm for (NODE UPGRADING COST,
BOTTLENECK, SPANNING TREE). We will show how to use A to construct a (fl, ct)-
approximation algorithm for the dual problem.

An instance of (BOTTLENECK, NODE UPGRADING COST, SPANNING TREE) is specified
by a graph G = (F , E) , the node cost function c, the weight functions do, dl, and d2

142 S.O. Krumke et al. / Theoretical Computer Science 221 (1999) 139-155

on the edges and the bound B on the node upgrading cost. We denote by OPT the
optimum bottleneck weight of an MST after upgrading a node set of cost at most B.

Observe that OPT is an integer such that D2<~OPT<~Do where De :=mineEE d2(e)
and Do := maxeEE do(e). Moreover, the set

M := {do(e),dl(e),d2(e): e EE}

of possible values for OPT has size C(m).
We sort M in time C(mlogm). Then we use a binary search to find the minimum

integer D E M with the following property: Algorithm A outputs an upgrading set of
cost at most 0tB, if it is applied to the instance of (NODE UPGRADIN~ COST, BOTTLENECK,
SPANNIN~ TREE) given by the weighted graph G as above and the bound D on the
bottleneck weight of an MST after the upgrade. It is easy to see that this binary search
indeed works, uses (9(loglM[)C C(logm) calls to algorithm A, and terminates with a
value D ~<OPT. The corresponding upgrading set W leads to an MST in (G, dw) with
bottleneck weight at most ft. D<<,fl. OPT and upgrading cost c(W)<~o~. B. []

By similar techniques, an approximation algorithm for (BOTTLENECK, NODE UPGRADING
COST, SPANNING TREE) can be converted into an approximation algorithm for (NODE
UPGRADING COST, BOTTLENECK, SPANNING TREE). In this case we use the bicriteria algo-
rithm to search for the optimal upgrading cost. This is stated in the following lemma.

Lemma 4. Suppose that A is a bicriteria approximation algorithm for (BOTTLENECK,
NODE UPGRADING COST, SPANNING TREE) with a performance of (~, fl). Then, there is
a (fl, ot)-approximation alyorithm for (NODE UPGRADING COST, BOTTLENECK, SPANNING
TREE).

It should be noted that the conversion of an algorithm for (NODE UPGRADING COST,
BOTTLENECK, SPANNING TREE) has the nice property that the running time increases only
by a factor of C(log n), while the other way round we get a factor of (?(log C), where

C= ~cvC(V).

3. Related work

Some node upgrading problems have been investigated under a simpler model by
Paik and Sahni [14]. In their model, the delay of an edge is decreased by constant
factors of 6 or 6 2, when one or two of its endpoints are upgraded, respectively. Clearly,
this model is a special case of the model treated in our paper.

Under their model, Paik and Sahni studied the upgrading problem for several per-
formance measures including the maximum delay on an edge and the diameter of the
network. They presented N P-hardness results for several problems. Their focus was
on the development of polynomial time algorithms for special classes of networks
(e.g. trees, series-parallel graphs) rather than on the development of approximation

S.O. Krumke et al. / Theoretical Computer Science 221 (1999) 139-155 143

algorithms. Our constructions can be modified to show that all the problems consid-

ered here remain NP-hard even under the Paik-Sahni model.
A special case of the problems studied in this paper is the case of all nodes having

the same upgrading costs. For spanning trees, these problems, namely (UPGRADING
SIZE, BOTTLENECK, SPANNING TREE) and its dual version (BOTTLENECK, UPGRADING SIZE,
SPANNING TREE), are investigated in [8]. The authors give a (5 +4 In A, 1)-approximation
algorithm for (UPGRADING SIZE, BOTTLENECK, SPANNING TREE), where A is the maximum
degree of the graph. The algorithm can be implemented to run in time C(n + m). The
analysis showed a better performance guarantee of (2 + 2 In A, 1) for the case that the

input does not contain any 2-critical edges.
A related problem is (UPGRADING COST, BOTTLENECK, GRAPH) which has been intro-

duced called LINKDELAY in [14]. Paik and Sahni showed that this problem is NP-hard.

A (2, 1)-approximation algorithm for LINKDELAY has been provided in [8].
Edge-based network upgrading problems have also been considered in the literature

[13,2, 10, 7]. There, each edge has a current weight and a minimum weight below
which the edge weight cannot be decreased. Upgrading an edge corresponds to de-
creasing the weight of that particular edge and there is a cost associated with such an
upgrade. The goal is to obtain an upgraded network with the best performance.

4. An algorithm for bottleneck upgrading

In this section, we present our approximation algorithm for (NODE UPGRADING COST,
BOTTLENECK, SPANNING TREE). This algorithm provides a performance guarantee of
(21nn, 1) on a graph G=(V,E) with n := IV[nodes. In Section 6 we will counterbal-
ance this approximation result with a hardness result which shows that, unless NP C
DTIME(NC~(I°gI°gN)), this performance is essentially the best possible.

4.1. Overview

We first give a brief overview of our algorithm. The algorithm maintains a set W
of nodes, a set F of edges and a set cg of clusters which partition the node set V
of the given graph G. The set cg of clusters is initialized to be the set of connected

components of the bottleneck graph Bottleneck(G, dw,D),

Algorithm 1. Approximation algorithm for spanning trees
Input: A graph G:-(V,E), three edge weight functions do, dl,d2, a node weight

function c, and a number D

1 W+-[~
2 G' +-- Bottleneck(G, dw,D)
3 Cl Cq +--- connected components of G'
4 F +-- set of edges of G ~
5 while G~= (V,F) has more than one connected component do
6 {Assume that cg = {C~ Cp) is the set of components)

144 S.O. Krumke et al./ Theoretical Computer Science 221 (1999) 139-155

7 Find a node v E V in the graph with minimum quotient cost as defined
in Definition 5.

8 Let CI Cr be the components in W chosen in Step 7 above, where
w.l.o.g, v E CI.

9 Let e2 er be a set o f edges in G connecting v to C2 Cr, respectively
10 F+--FrO{e2 ,er} {Merge C1,C 2 Cr into one component}
11 W ~ W tO {v} {Add center (see Definition 7) to upgrading set}
12 for i+ -2 , . . . , r do

13 if ei : (v, vi) is 2-critical then

14 W +- W U {vi} {Add finger (see Definition 7) to upgrading set}
15 end if
16 end for

{Note that the total cost o f the nodes added to the solution W is
r

exactly c(v) + ~j=l c(v, Ca-).}
17 Cl Cp, +-- connected components of G ' = (V , F)
18 end while
19 return W

containing only those edges e which have a delay do(e) of at most D. The set W
contains the upgraded nodes and is initially empty.

The algorithm iteratively merges clusters until only one cluster remains. To this end,

in each iteration it determines a node v of minimum quotient cost. The quotient cost
of a node v is the ratio whose numerator is the cost o f v plus the costs o f some

nodes adjacent to v in different clusters via 2-critical edges, and whose denominator
is the number of clusters which have nodes adjacent to v. A precise definition of

the quotient cost appears in Eq. (1) below. This quotient cost measures the "average
upgrading cost" o f v and the vertices that are adjacent to v through 2-critical edges.
The algorithm then adds v and the nodes mentioned above to the solution set W and
merges the corresponding clusters.

The algorithm is shown in Algorithm 1. It is easy to see that the set W output by
the algorithm is indeed a valid upgrading set, since all the edges added to F in Step 10
will be of delay at most D after upgrading the nodes in W.

Definition 5 (Quotient cost). Let cg= {CI Cp} be the connected components of
(V,F) at some iteration of the algorithm.

I f vC Cj or v is adjacent to a node in C a via a 1-critical edge, then we set c(v, Ca.):= 0.
I f all the edges from v to Ca are 2-critical, then we set c(v, Cj) to be the minimum

cost o f a node in Cj adjacent to v. I f there is no edge between v and any node in Ca.,
then c(v, Ca.) := +c~.

We now define the quotient cost q(v) of v as follows:

r

q(v) := min min (1)
2<~r<~p {Cb...,Cr} C_~ r

S.O. Krumke et al. I Theoretical Computer Science 221 (1999) 13~155 145

Notice that the quotient cost o f a node can be computed in polynomial time: We can

order the components in ~ as C1, C2, Ca in nondecreasing order of c(v, Cj) (where,
without loss o f generality, v E C1). In computing the quotient cost o f v, it is sufficient

to consider the p subsets of cg of the form {CI, C2 , Cr}, where 2 ~<r~< p.
In the sequel, we use W* to denote an optimal upgrading set, i.e., an upgrading

set o f minimal cost OPT :----c(W*). We now proceed to prove the following theorem

which indicates the performance guarantee provided by the algorithm.

Theorem 6. Algorithm 1 as applied to (NODE UPGRADING COST, BOTTLENECK, SPANNING

TREE) has a performance of (21nn, 1), where n denotes the number of nodes in the

graph.

Our proof of Theorem 6 relies mainly on an averaging lemma which is proved by

using the notion of a claw decomposition introduced below.

4.2. Claw decompositions

Definition 7 (Claw, claw decomposition). A graph G = (V,E) is called a claw, if there

is a node c E V such that the edge set E is o f the form E = {(c, v): v C V\{c} }. The
node c is called a center of the claw, the remaining nodes are called fingers. The center
is uniquely determined if there are at least 3 nodes in the claw. A claw consisting of

one single node is called a trivial claw.
Let G be a graph with node set V. A claw decomposition of V in G is a collection

of node-disjoint nontrivial claws, which are all subgraphs of G and whose vertices

form a partition of V.

The following theorem can be proven by an easy induction on n :=]V[:

Theorem 8. Let G be a connected graph with node set V, where [V[>~2. Then there

& a claw decomposition o f V in G.

4.3. An averaging lemma

L e m m a 9. Let v be a node chosen in Step 7 of Algorithm 1 and let C denote the total

cost of the nodes added to the solution set W in this iteration. Let there be p clusters

before v is chosen and assume that in this iteration r clusters are merged. Then

C OPT
- - 4 - -
r p

Proof. Let T* be an optimal tree with the nodes W* be the upgraded nodes. Let

OPT := c(W*) be the cost o f the optimal solution. Let cg = C I , . . . , Cp be the clusters
when the node v was chosen and let T*(v) be the graph obtained from T* by con-
tracting each Cj to a supernode. T*(v) is connected and contains all supernodes. We
then remove edges (i f necessary) from T*(v) so as to make it a spanning tree. Note

that all the edges in this tree are critical.

146 S.O. Krumke et al. I Theoretical Computer Science 221 (1999) 139-155

Let A C_ W* be the set of nodes in the optimal solution that are adjacent to another

cluster in T*(v). Clearly, the cost of these nodes is no more than OPT. Take a claw

decomposition of T*(v). We now obtain a set of claws in the graph G itself in the
following way: Initialize E ~ to be the empty set. For each claw in the decomposition
with center Cj and fingers ' ' C~ C t we do the following: For each edge (C1, Cj) the
optimal tree T* must have contained an edge (u,w) with u E C~ and w C C/'. Notice

that since this edge was critical, at least one of the vertices u and w must belong to
A C_ W*. We add (u,w) to U.

It is easy to see that the subgraph of G induced by the edges in E t consists of disjoint
nontrivial claws. Also, all edges in the claws were critical and the total number of nodes

in the claws is at least p. We need one more useful observation: If a claw center is
not contained in A, then a / / the fingers of the claw must be contained in A, since the
edges in the claw were critical.

Let Ac be the set of nodes from A acting as centers in the just generated claws. Let
A1 denote the fingers of the claws contained in A which are connected to their claw

center via a 1-critical edge, whereas A2 stands for the set of fingers adjacent to the
center via a 2-critical edge and also contained in A. For each claw with exactly two

nodes we designate an arbitrary one of the nodes to be the center. Then by construction,
Ac, A1, and A2 are disjoint. Therefore,

OPTs> ~ c(u)+ ~ c(u). (2)
uCAcUA2 uCAt

For a node u c A~, let Nu denote the number of vertices in the claw centered at u. We

have seen that if a center is not in A, then all the fingers belong to the optimal solution.
Clearly, this can only happen, if the claw centered at u does not contain a 2-critical

edge. Thus, we can estimate the total number of nodes in the claws from above by
summing up the cardinalities of the claws with centers in A and for all other claws
adding twice the number of fingers. Hence,

Nu + 2]All >~]{w: w belongs to some claw}] ~>p, (3)
uCA~

since the total number of nodes in the claws is at least p.

We now estimate the first sum in (2). I f uEA~, then the quotient cost of u is at
most the cost of u plus the cost of the fingers in the claw that are in A2 divided by
the total number of nodes in the claw. This in turn is at least C/r by the choice of the
algorithm in Step 7. By summing up over all those centers, this leads to

c(u)>~ C- ~ Nu. (4)
uEAcUA2 F uEAc

Now, for a node u in A~, its quotient cost is at most c(u)/2, which again is at least
C/r. Thus,

c(u)>~ ~ 2 C = 2 [A , I C (5)
uEAt uGAt 1~ F "

S.O. Krumke et al. I Theoretical Computer Science 221 (1999) 139-155 147

Using (4) and (5) in (2) yields

OPT >/ ~ c (u)+ ~ c (u)
uEAcUA2 uEAI

> / - ~ Nu +21A,I
F \ uCAc

(3) C
>~--p.

r

This proves the claim. []

4.4. A potential function argument

We are now ready to complete the proof of the performance stated in Theorem 6.
Assume that the algorithm uses f iterations of the loop and denote by Vl vf the
vertices chosen in Step 7 of the algorithm.

Let 4)j denote the number of clusters after choosing node vj in this iteration. Thus,
for instance, 4)o = t, the number of components at the beginning of the whole algorithm
and 4)f= 1, since we end up with one cluster. Let the number of clusters merged using
node v/ be ~ and the total cost of the vertices added in that iteration be cj. Then we

have

4) j = 4) j - - l - - (~ -- l). (6)

Notice that, since ~ ~>2, we have ~ - 1/> l~.. Using this inequality in (6) we obtain

4)j...< 4) j_, _ l~ . . (7)

Observe that 4)j/>2 for j = 0 f - 1, since the algorithm does not stop before the
f t h iteration. Notice also that 4)f= l. Then by Lemma 9, we have

r: >>. cs4)J- ~ (8)
OPT

for all O<~j<~f. We now use an analysis technique due to Leighton and Rao [12] to
complete the proof. Substituting Eq. (8) into (7) yields

cj
l cj4)j_, = 4)j-1 (1 2OPT) (9) 4)j<'~4)j-1 2 OPT

Using recurrence (9), we obtain

f (1 cj
4)c--< 4)o H) - (10)

j=l 2 OPT

Taking natural logarithms on both sides and simplifying using the estimate In(1 -z)~<
- z , we obtain

2OPTln(4)° cj.

148 s.o. Krumke et al. / Theoretical Computer Science 221 (1999) 13~155

Notice that by Lemma 9 we have

~3 ~<OPT<2 OPT, ej <~ OPT ~j_I

and so the logarithms of all the terms in the product of (10) are well defined.

Note also that 00~<n:= IVl and ~bf= 1 and hence from (11) we get

f
cj ~<2 OPT Inn. (12)

j--I

Notice that the total cost of the nodes chosen by the algorithm is exactly the sum
~f=l cj. This completes the proof of Theorem 6. []

4.5. Running time

We now sketch an efficient implementation of Algorithm 1. The results are summa-
rized in the following theorem:

Theorem 10. Algorithm 1 can be implemented to run in time C(nm~(m,n)), where
n denotes the number of nodes, m the number of edges in the graph, and ~ is the
inverse of Ackerman's function.

Proof. The main effort lies in the computation of the minimum quotient cost in Step 7.
Suppose we have for each node v E V a sorted list L(v)= (C1, C2 Cp) of clusters

such that c(v, C1)<~c(v, C 2) ~ . . . <~c(v, Cp). Then, the cost of the set {C1 Cr} is
minimal amongst all r-element collections of clusters, so we do not have to test all
possible r-element sets of clusters.

Since, for fixed v, the number p of clusters is bounded by the number of adjacent
nodes, Step 7 can be implemented to run in time C(m).

To maintain the sorted lists we use the help of a fast disjoint-set data structure [4].
We initialize the data structure with the clusters formed by uncritical edges. The costs
of the clusters are computed as stated in Step 7. After each step, we assure that the data
structure again represents the clusters which are formed by edges whose weight does
not exceed the threshold. This is done by merging those clusters which are connected

by edges involved in the current upgrading, i.e. those edges which are incident with
nodes upgraded in the current step. Such merging of clusters is efficiently supported by
the data structure. The time needed in one iteration of the while loop is (9(m~(m,n)).
For details we refer to [11].

Since in each iteration the number of clusters is decreased by at least 1, there are
at most n iterations. This results in a total running time of (9(nmcffm, n)). []

Using Lemma 3 we obtain the following approximation result for the dual problem.

S.O. Krumke et al. I Theoretical Computer Science 221 (1999) 139-155 149

Theorem 11. There exists an approximation algorithm for (BoTtLENECK, NODE
UP~RADIN~ COST, SPANNINC TREE) with performance (1,2Inn). It can be implemented

to run in time C(nm~(m,n)logn).

5. Treewidth-bounded graphs

In this section we will show that (NODE UPGRADING COST, BOTTLENECK, SPANNING
TREE) can be solved in polynomial time if restricted to the class of treewidth-bounded
graphs. For the sake of a better presentation we will first show how to solve the
problem in polynomial time on series-parallel graphs. Then, we will describe how the

ideas carry over to treewidth-bounded graphs.
Treewidth-bounded graphs were introduced by Robertson and Seymour [15]. Inde-

pendently, Bern et al. [3] introduced the notion of decomposable graphs. Later, it was
shown [1] that the class of decomposable graphs and the class of treewidth-bounded
graphs coincide. A class of decomposable graphs F is given by a set of recursive rules

that satisfy the following conditions [3]:
(1) The rules define a finite number of primitive graphs.
(2) Each graph in F has an ordered (possibly empty) set of special nodes called

terminals. The number of terminals in each graph is bounded by a global constant.
(3) There is a finite collection of binary composition rules that operate only at ter-

minals, either by identifying two terminals or adding an edge (called attachment
edge) between terminals. A composition rule also determines the terminals of the
resulting graph, which must be a subset of the terminals of the two graphs being

composed.
Series-parallel graphs are an example of decomposable graphs and can be defined by

the following rules [3].
(1) The set of primitive graphs consists of the single graph P with node set {s, t} and

the single edge (s, t). The node s is the "start-terminal" of P and the node t is the

"end-terminal" of P.
(2) Let G1 = (V1,EI) and G2 = (Vz,E2) be series-parallel graphs with terminals st, tl

and s2, t2, respectively. Then
(a) The graph obtained by identifying tt and s2 is a series-parallel graph, with sl

and t2 as its terminals. This graph is the series composition of G1 and G2.
(b) The graph obtained by identifying Sl and s2 and also tx and t2 is a series-

parallel graph, the parallel composition of G1 and G2. This graph has Sl (= s2)

and tl(= tz) as its terminals.
Let F be any class of decomposable graphs. Following [3], we assume that a given

graph G c F is accompanied by a parse tree specifying how G is constructed using the
rules. The size of the parse tree is linear in the size of G. Moreover, we may assume
without loss of generality that the parse tree is a binary tree.

150 S.O. Krumke et al. I Theoretical Computer Science 221 (1999) 13~155

5.1. Restriction to series-parallel 9raphs

Let G be a series-parallel graph with the two terminals s and t. We call an edge sub-

graph G / of G consisting of two disjoint spanning trees containing s and t, respectively,
a terminal forest.

For a set M C_{s,t}, define C(M) to be the least cost of an upgrading set W in G

with W N {s, t} = M such that after upgrading this set G contains a bottleneck spanning

tree of delay at most D. If there is no upgrading set W such that the bottleneck delay

can be reduced to be at most D and W N { s , t } = M , then C (M) : = + o o . In the same

way as we defined C, we define C t for the minimum upgrading cost to obtain a
terminal forest of bottleneck delay at most D.

Clearly, if we know the four values C(M), we can tell the optimum objective func-

tion value. We will now show that for a series-parallel graph G we can compute C and

C I by using the information of the decomposition tree of G in a total of C(n+m) time.

The basic idea is to keep track of which terminals belong to an optimal upgrading set.

In the sequel we write M \ v and M to v instead of M\{v} and M U {v}, respectively,
for the sake of brevity.

First, we will take care of the case that G is the series composition of G1 and G2.

Assume that we have already computed the values C and C ~ for G1 and Gz. Denote
them by C1, C I and C2, C~, respectively.

It is easy to see that the restriction of any tree T to GI and G2, respectively, is

again a tree. Thus, we can compute C with the help of Cl and C2 in the following
way.

C(M) = min{ Cl (M\ t) + C2(M\s), CI(M U t) + C2(M (3 s) - c(fi)}.

The first term above considers the case when the terminal q(= s2) is not upgraded.
The second term takes care of ti being upgraded.

Similarly, we now compute C r for G. A terminal forest in G must either be a

terminal forest in G1 and a tree in G2 or vice versa. No other possibilities exist. It
now follows that C can be computed by

C'(M) = min{Cl(M\t) + C2(M\s), CI(M tO t) + C2(M U s) - C(tl),

C1(M\t}) + C~(M\s), C,(M U t) + C~(M tO s) - c(tl)}.

We now consider the case that G is parallely composed from G1 and G2. Again, we

assume that the two arrays C and C ~ are already available for G1 and G2.

We start with the computation of C. A tree T in G must be a tree in exactly one
of the graphs G1 and G2 and a terminal forest in the second one. We just need to
distinguish between the cases covering the upgrade of the terminals of G1 and G2. We

must make sure that sl is upgraded if and only if s2 is. We thus obtain C by the
following formula:

C({s, t}) = min{ Cl({s, t}) + C2({s, t}) - c(sl) - c(q),

c~({s,t}) + c~({s u t }) - c (s ~) - c(t~) } ,

S.O. Krumke et aLI Theoretical Computer Science 221 (1999) 139-155 151

C({t}) = min{C~({t}) + C2({t}) - c(q), Cl({t}) + C~({t})] - c(tl)},

C({s}) = min{Cl({s}) + C2({s}) - c(s~), C~({s}) + C~({s}) - c(s,)},

C(0) = min{Ci(0)+ C2(0), CI(0) + C~(0)}.

We proceed with C'. If G' is a terminal forest of G, it is straightforward to see that
the restriction to both graphs GI and G2 is a terminal forest of that particular graph.
Thus, C' can be computed by using the information from C I and C~ by the following
formula:

C({s, t }) : C~({s, t}) + C~{s, t} - C(Sl) - C(tl),

c ({ t }) = c l d t }) + G ({ t }) -

= c' ds}) + C ds}) - c (s ,) ,

c(o) = c l (o) +

Finally, observe that for a series-parallel graph consisting of the two terminals s and
t and the edge (s, t) we can trivially compute the arrays C and C'.

Using the above recurrences, the array C can be computed in linear time for a
series-parallel graph G, provided a decomposition tree for G is given. Since such a
decomposition tree with C(n + m) nodes can be computed in C(n + m) time [16], we
can conclude that the dynamic programming algorithm presented above runs in total
time C(n+m). It should be noted that by also keeping track of the respective upgrading
sets we cannot only find the optimal function value but also the optimal upgrading set.

Theorem 12. I f restricted to the class of series-parallel graphs, the problem (NODE
UPGRADING COST, BOTTLENECK, SPANNING TREE) can be solved optimally in C(n + re)-
time.

5.2. Extension to treewidth-bounded graphs

Theorem 13. I f restricted to any class of treewidth bounded graphs with no more
than k terminals, where k is fixed, the problem (NODE UPGRADING COST, BOTTLENECK,
SPANNING TREE) can be solved optimally in time C((2k)2k(n + m)).

Proofl Let tl tk be the terminals of G and let n be a partition of these terminals.
Define a n-terminal forest F to be a spanning forest of G with the following properties:
(1) For each block of n the forest F contains a tree spanning all the vertices in that

block.
(2) No pair of trees is connected.
The notion of a n-terminal forest generalizes the concept of spanning trees and terminal
forests introduced above. In the case of series-parallel graphs, the set of terminals is
{s, t}. The possible partitions of {s, t} are nl = ({s, t}, 0) and n2 = ({s}, {t}). Partition
7~ 1 corresponds to a spanning tree of G, while n2 gives us a terminal tree.

152 S.O. Krumke et al. / Theoretical Computer Science 221 (1999) 139-155

We keep the following information along with each partition rt of terminals of G

and each subset M of the terminals {tl , tk }.

C~(M) := Minimum cost of a subset W _C V with W n {h ,tk} : M

such that after upgrading the vertices in W the graph G

contains a n-terminal forest of bottleneck cost at most D.

For the above-defined cost, if there is no subset W C_ V satisfying the required condi-

tions the value of C ' (M) is defined to be + ~ . Note that the number of cost values

associated with any graph in F is C((2k)k). We now show how the cost values can be

computed in a bottom-up manner given the parse tree for G. Since the method is very

similar to the case of series-parallel graphs treated above we only sketch the main

ideas.
To begin with, since F is fixed, the number of primitive graphs is finite. For a

primitive graph, each cost value can be computed in constant time, since the number
of forests to be examined is fixed. Now consider computing the cost values for a graph

G constructed from subgraphs GI and G2, where the cost values for G1 and G2 have

already been computed.
Let a partition n and a subset M of the terminals {tl , tp} of G be given. Any

upgrading set W in G with W A { t l tp} = M resulting in a n-terminal tree of bot-

tleneck delay at most D induces two upgrading sets, one in G1 and one in G2. Since

we have maintained the best cost values for all possibilities for G~ and G2, we can
reconstruct for the partition n and the set M the cost value C~(M). We can do this in

time independent of the sizes of GI and G2 because they interact only at the terminals

to form G, and we have maintained all relevant information.
Hence, we can generate all possible cost values for G by considering combinations of

all relevant pairs of cost values for G1 and G2. This takes time (9(1) per combination for
a total time of C(2 2k • k 2k). As in [3], we assume that the size of the given parse tree for

G is C(n +m). Thus the dynamic programming algorithm takes time (9((2k)2k(n +m)) .

This completes the proof. []

The algorithm presented in the proof of the last theorem, although being linear for

fixed k, is only practical for small values of k, since the constant factor (2k) 2k in front
of the n + m grows extremely fast with k. Thus, the above results might be considered

to be more of theoretical interest than application oriented.

6. Hardness results

In this section we establish our hardness results for the node upgrading problems
under study. We show that (NODE UP~RADINC COST, BOTTLENECK, SPANNINO TREE) is
hard to approximate within a logarithmic factor.

S. O. Krumke et al. / Theoretical Computer Science 221 (1999) 139-155 153

We first recall the results from [5] about the hardness o f approximating MINIMUM

DOMINATING SET and MIN SET COVER.

Theorem 14. Unless NPC_ DTIMF(NC"(I°gI°gN)), the MINIMUM DOMINATING SET problem
on a graph with n vertices cannot be (polynomial time) approximated within a factor
of ~ < Inn.

Moreover, the MtN SET COVER problem, with a ground set M, can not be approxi-
mated within a factor of ~ < ln[M[.

Theorem 15. For an &stance of (NODE UPGRADING COST, BOTTLENECK, SPANNING TREE)
denote by n the number of nodes in the input graph. Let ~ < ½ In n, and f be any
polynomial time computable function. Then, unless NP C_ DTIME(NCC'O°gI°gN)), there is
no polynomial time approximation algorithm for (NODE UPGRADING COST, BOTTLENECK,
SPANNING TREE) with performance (~, f (n)).

Proof. We give a reduction from MINIMUM DOMINATING SET [6, Problem GT2]. An

instance of MINIMUM DOMINATING SET consists of a graph G----(V,E). A dominating set
is a subset V' C_ V of nodes, such that each node w f~ V' is adjacent to a node of V.

A Dominating Set of an instance I is a solution for MINIMUM DOMINATING SET, if its

cardinality is minimal amongst all Dominating Sets o f I.

Given an instance G = (V , E) of MINIMUM DOMINATING SET with n := I VI nodes, we

construct an instance G ~ - - (V ' , U) of (NODE UPGRADING COST, BOTTLENECK, SPANNING

TREE) as follows. First, insert all nodes and edges from G into G ~. Then, add a new

node r (the root) and connect it to all nodes of V. The number of nodes in G ~ equals
n ~ = n + 1. Notice that In n' = ln(n + 1) ~< ln(n 2) = 2 Inn.

The upgrading cost o f the root is set to c(r):= L := In Inn] + 1, the upgrading costs

for the remaining nodes are set to 1. For each edge e ~ E U , we set do(e ~) := f (n ~) + 1
and dl(e ~) : = d 2 (e ') : = 1. The bound on the bottleneck weight of the resulting MST is
set to 1.

If U is a Dominating Set in G, then there is a set o f nodes to upgrade in G ~ such that

the cost for upgrading is no more than I Ut and that the resulting MST has bottleneck

weight no more than 1. To see this, upgrade all nodes in U. Since each node from U

has upgrading cost 1 (the only node with different upgrading cost is the root which is

not contained in G), the total upgrade cost is exactly IU[. The resulting MST is a tree

of height 2: its root is the node r, at first level there are all upgraded nodes (i.e. those

in U), and at second level all remaining nodes (i.e. those in V - U). Since all edges

of this tree are incident with a node of level 1, the weight of all edges is 1.

Let there be an (~,f(n~))-approximation algorithm for (NODE UPGRADING COST,
BOTTLENECK, SPANNING TREE). Denote by T' the resulting MST of G r. The bottleneck

weight of T ~ is no more than f(n~). Therefore all o f its edges have weight 1 and the
upgraded nodes must form a Dominating Set on G ~.

Let OPT ~< n be the cost o f an optimal upgrade node set. Then, the upgrading cost of
T ~ is at most OPTs ~< n ½ In n ~ ~< n In n <L. Consequently, the root cannot be upgraded

154 S.O. Krumke et al. / Theoretical Computer Science 221 (1999) 139-155

in the produced solution. Hence the set of upgraded nodes forms a Dominating Set

on G.

We conclude that the algorithm can be used as an c~-approximation algorithm for

M~NIMUM DOMINATING SET which is a contradiction to the result o f Feige [5]. []

A similar construction shows the hardness even in the case that all vertices have

upgrading cost 1.

Theorem 16. (NODE UPGRADING COST, BOTTLENECK, SPANNING TREE) is NP-hard even if
all vertices have upgrading cost 1. Also, unless NP C DTIME(N~(I°gI°gN)), even in this
unit cost case for any ~ < ½ In n, and polynomial time computable function f there is
no polynomial time approximation algorithm with performance (~, f (n)).

ProoL We use a similar reduction as in the proof o f the preceding theorem. The

instance G'= (V~,E ') of (NODE UPGRADING COST, BOTTLENECK, SPANNING TREE) is con-

structed as follows. First, insert all nodes and edges from G into G ~. Then add a new

node r (the root) and connect it to all nodes o f V. Third, for each claw in G with

center v and fingers N(v), set up a collection L(v) of new nodes. Connect each of

these nodes to all nodes o f {v} UN(v). Choose the number L of the nodes in L(v) as

L = In Inn] + 1.
Let K := n + Ln, then the number of nodes in G ~ equals n t = K + 1. Notice that

In n t = ln((L + 1)n + 1) ---- ln(n rn In n] + 2n + 1) ~< ae ln(n 3) = 3 In n.

The upgrading cost o f each node equals 1 per definition. For each edge e ~ C U ,

we set do(e ~) := f (n ~) + 1 and dl(e r) :=d2(e ~) := 1. The bottleneck weight bound on
(UPGRADING SIZE, TOTAL WEIGHT, SPANNING TREE) is set to 1.

As before, upgrading all nodes in U results in an MST of bottleneck weight 1: its

root is r, at first level are the nodes o f U, at second level the nodes of V - U. We

now have to deal with the remaining nodes in the collections L(v) for each v E V.

Since U is a dominating set in G, each star {v} UN(v) around v must contain at least

one node v ~ which is contained in U. So, we can connect all nodes of L(v) through

edges of weight 1 via v t to the MST. Therefore, all the edges in the resulting MST

have weight 1.

Let there be an (~,f(n~))-approximation algorithm for (UPGRADING SIZE, TOTAL

WEIGHT, SPANNING TREE). Denote by T ~ the resulting MST of G t. All edges o f T t

have weight 1.

Let OPT ~< n be the cost o f an optimal chosen upgrade set. Then, the upgrading cost
o f T' is at most OPT. u ~< n ½ In n t ~< n In n < L. Consider the star around an arbitrary node

v. Each of the nodes in L(v) is connected via a light edge to the tree. If none o f the

nodes in the star would be upgraded, then each of the L nodes in L(v) must be upgraded

which would exceed the available budget. Therefore, at least one node of each star o f G

is upgraded and the set o f upgraded nodes, restricted to the node set V, forms a Dom-
inating Set o f G. We conclude that the algorithm can be used as an co-approximation
algorithm for MINIMUM DOMINATING SET which is a contradiction as before. []

S.O. Krumke et al. I Theoretical Computer Science 221 (1999) 139-155 155

References

[1] S. Amborg, B. Courcelle, A. Proskurowski, D. Seese, An algebraic theory of graph reductions, J. ACM
40 (1993) (5) 1134-1164.

[2] O. Berman, Improving the location of minisum facilities through network modification, Ann. Oper. Res.
40 (1992) 1-16.

[3] M.W. Bern, E.L. Lawler, A.L. Wong, Linear-time computation of optimal subgraphs of decomposable
graphs, J. Algorithms 8 (1987) 216-235.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA,
1990.

[5] U. Feige, A threshold of In n for approximating set cover, Proc. 28th Annual ACM Symp. on the
Theory of Computing (STOC'96), 1996, pp. 314-318.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability (A Guide to the Theory of NP-Completeness),
W.H. Freeman and Company, New York, 1979.

[7] S.E. Hambrush, H.-Y. Tu, Edge weight reduction problems in directed acyclic graphs, J. Algorithms 24
(1997) 66-93.

[8] S.O. Krumke, M.V. Marathe, H. Noltemeier, R. Ravi, S.S. Ravi, Network improvement problems,
in: P.M. Pardalos, D. Du (Eds.), Network Design: Connectivity and Facilities Location, AMS-
DIMACS Volume Series in Discrete Mathematics and Theoretical Computer Science, vol. 40, American
Mathematical Society, Providence, RI, 1998, pp. 247-268.

[9] S.O. Krumke, H. Noltemeicr, S.S. Ravi, M.V. Marathe, K.U. Drangmeister, Modifying networks to
obtain low cost trees, Proc. 22nd Int. Workshop on Graph-Theoretic Concepts in Computer Science,
Cadenabbia, Italy, Lecture Notes in Computer Science, vol. 1197, June 1996, pp. 293-307.

[10] S.O. Krumke, H. Noltemeier, S.S. Ravi, M.V. Marathe, K.U. Drangmeister, Modifying networks to
obtain low cost subgraphs, Theoret. Comput. Sci. 203 (1998) 91-121.

[11] S.O. Krumke, On the approximability of location and network design problems, Ph.D. Thesis, Lehrstuhl
ffir Informatik I, Universit~it Wiirzburg, December 1996.

[12] F.T. Leighton, S. Rao, An approximate max-flow min-cut theorem for uniform multicommodity
flow problems with application to approximation algorithms, Proc. 29th Annual IEEE Symp. on the
Foundations of Computer Science (FOCS'88), 1988, pp. 422431.

[13] C. Phillips, The network inhibition problem, Proc. 25th Annual ACM Symp. on the Theory of
Computing (STOC'93), May 1993, pp. 288-293.

[14] D. Paik, S. Sahni, Network upgrading problems, Networks 26 (1995) 45-58.
[15] N. Robertson, P. Seymour, Graph minors IV, treewidth and well-quasi-ordering, J. Combin. Theory Ser.

B 48 (1990) 227-254.
[16] J. Valdes, R.E. Tarjan, E.L. Lawler, The recognition of series-parallel digraphs, SIAM J. Comput. 11

(1982) (2) 298-313.

