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Abstract

An embedding of K, into a hypercube is a mapping of the n ver-
tices of K, to distinct vertices of the hypercube, and the associated
cost is the sum over all pairs of (mapped) vertices of the Hamming dis-
tance between the vertices. Let f(n) denote the minimum cost over all
embeddings of K, into a hypercube (of any dimension). In this note
we prove that f(n) = (n — 1)?, unless n = 4 or n = 8, in which case
f(n)=(n—1)*—1. As an application, we use this theorem to derive
an alternate proof of the fact that the Isolation Heuristic (and the
accompanying variant) for the Multiway Cut problem of [DJP+ 92] is
tight for all k.

1 Preliminaries

K, denotes the complete graph on n vertices. The hypercube of dimension
n has 2" vertices, each vertex being labeled with a string of 0’s and 1’s of
length n. The Hamming distance between two vertices of the hypercube is
the number of positions in which the labels of the two vertices are different.
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A cut of a graph is a subset of vertices of the graph. The edges of a cut are
the set of edges which go from vertices within the subset to vertices outside.

2 Result

Theorem 1 Let E be any set of n distinct vertices vy, ..., v, in a hypercube.
Let f(E) = > d(vi,v;) (where d(.,.) is the Hamming distance function).
1<

Then ' ( e ’
. n—1)—-1 ifn=4,8

Hn) = H}Emf(E) N { (n—1)? otherwise.

Proof: It is clear that the minimum in the case of n = 4 and n = 8 is

achieved by letting F be the set of all vertices in a two-dimensional and

three-dimensional hypercube, respectively. For all other n the minimum is

achieved by taking a vertex and its n — 1 neighbours in an n — 1-dimensional

hypercube.

It remains to show that we cannot do better. Consider any set with e
nodes of even Hamming weight and o nodes of odd Hamming weight, e +0 =
n. To prove our bound, we consider the (Hamming) distances between even
nodes, between odd nodes, and then between even and odd nodes.

It is clear that we have a lower bound of (n — 1)? if either e or o is 1.
Assume, then, without loss of generality that o > e > 2. At best, each pair
of even nodes has distance 2. Similarly for the odd nodes. Consider the
distances between even and odd nodes. For each pair of even nodes ¢; and
€2, there are at most 2 nodes o; and 0, which are each at distance 1 from e,
and ey. The remaining o — 2 odd weight nodes are each an average distance
of at least 2 from both e; and e;. Based on these averages one arrives (as
shown below) at a lower bound for the minimum total Hamming distance of

2(;)+2(g)+(w)60:n2—n—26.

0

Note that n* —n — 2e > n? — 2n. Hence, if € # o, we arrive at a lower
bound of (n — 1)®. Now, consider the remaining case when e = o # 1.
When e = 2,4 we have explicit constructions which match the lower bound
of n? — 2n. It remains to consider the case ¢ = 0o > 3. In order for the



above argument concerning inter-node distances to be tight, the set must
have special structure. Specifically, any pair of nodes having the same parity
must have distance 2. This implies that the even weight nodes lie in a
Hamming ball of radius 1. Similarly for the odd weight nodes. The tightness
of the above argument also implies that for any two odd nodes, no even node
has distance more than 3 from either of them.

We show that this cannot occur (demonstrating that the lower bound
increases to (n — 1)*). Without loss of generality, suppose 4 of the odd nodes
have addresses 0...01,0...010,0...0100 and 0...01000. Consider v, an
even node with non-zero weight (there must be such a node). Considering
the cases weight(v) = 2 and weight(v) > 2 we see that v is at distance at
least 3 from some pair of these nodes. B

3 Application

The original motivation for solving the problem of embedding complete graphs
in hypercubes arose from the Mulitway or n-Way Cut problem. In the n-Way
Cut we are given an edge-weighted graph and n distinguished vertices called
terminals and asked for a minimum weight set of edges that separates every
terminal pair. This problem is simply the min-cut max-flow problem when
n = 2. In [DJP+ 92] it was shown that the problem becomes hard for n = 3.
They also gave a simple approximation algorithm, the Isolation Heuristic,
for arbitrary graphs that came within a factor of 2(1 — 1/n) of the optimal.
They also gave a variant of the Isolation Heuristic which does does better
for n = 4 and n = 8. They state in the paper, without proof, that similar
approaches are bound to fail for all other values of n. Below we formalize
what exactly the Isolation Heuristic and related variants are doing and prove
that improvements cannot be obtained, except for n = 4 and n = 8.

The Isolation Heuristic (and its variant for the cases n = 4 and n = 8)
can be thought of as essentially finding a minimum cost collection of cuts
that separates all pairs of vertices in the unweighted complete graph, K,,, on
n vertices. Here, the cost of a collection (of cuts) is the sum of the costs of
the cuts in it, and the cost of a cut is just the number of edges in it.

Lemma 1 If K,, has a cut collection of cost C separating all pairs of ver-
tices then the n-Way Cut problem has an approzimation within a factor of



2C/n(n —1).

Proof: The proof is a straightforward averaging argument. We associate
each vertex of K,, one-to-one to a terminal of the graph in the n-Way Cut
problem. To a particular cut of K, we correspond the equivalent min-cost
cut of the n-Way Cut problem graph. Consider all possible mappings of the
vertices of K, one-to-one to terminals of the graph. Since the average cost
is within a factor of 2C'/n(n — 1) of the optimal to the n-Way Cut problem
there exists a mapping which achieves this bound. Note that we do not give
an effective way to compute this approximate solution. At this point we are
concerned only with existence. B

Lemma 2 The minimum cost of any cut collection that separates all pairs
of vertices of K,, is equal to f(n).

Proof: Given any cut collection C = {¢1,¢a,...,¢cx} we can create an em-
bedding of equivalent cost in a hypercube of dimension k. We have one
dimension per cut and a vertex of K, gets mapped to that vertex of the
hypercube with a 1 in the ¢’th position of the label iff the original vertex of
of K, is in the ¢th cut. It is easy to see that if £ is the set of mapped vertices
then f(F) is equal to the cost of C.

Similarly, given any embedding £ in a hypercube of dimension &k one can
create a cut collection of equivalent cost by having one cut for each dimension
and putting all those mapped vertices in the cut which have a 1 in the label
at the dimension corresponding to the cut. B

Corollary 1 The best that the Isolation Heuristic and its variants can do is
to get within a factor of 2(1 — 1/n), except when n =4 or 8 in which case
they can get within a factor of 2(1 — 1/n — 1/2n(n — 1)), of the optimal to
the n-Way Cut problem.

Proof: Follows from Theorem 1 and Lemmas 2 and 3. B
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