Alternation in Interaction

M. Kiwi* C. Lundf A. Russell # D. Spielman® R. Sundaram"
MIT & U. Chile AT&T MIT MIT MIT

November 27, 1995

Abstract

We study competing-prover one-round interactive proof systems. We show that one-round proof sys-
tems in which the first prover is trying to convince a verifier to accept and the second prover is trying
to make the verifier reject recognize languages in NEXPTIME, and, with restrictions on communica-
tion and randomness, languages in NP. We extended the restricted model to an alternating sequence
of k competing provers, which we show characterizes ©E_,. Alternating oracle proof systems are also
examined.

*Dept. of Applied Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139. mkiwi@math.mit.edu. On
leave of absence from Dept. de Ingenieria Matematica, U. de Chile. Supported by an AT&T Bell Laboratories PhD Scholarship.
Part of this work was done while the author was at Bell Laboratories.

tAT&T Bell Laboratories, Room 2C324, 600 Mountain Avenue, P. O. Box 636, Murray Hill, NJ 07974-0636 USA,
lund@research.att.com.

{Dept. of Applied Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139. acr@theory.lcs.mit.edu.
Partially supported by an NSF Graduate Fellowship and NSF 92-12184, AFOSR F49620-92-J-0125, and DARPA N0014-92-J-
1799

§Dept. of Applied Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139. spielman@math.mit.edu.
Partially supported by the Fannie and John Hertz Foundation, Air Force Contract F49620-92-J-0125 and NSF grant
9212184CCR. Part of this work was done while the author was at Bell Laboratories.

'Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139. koods@theory.lcs.mit.edu. Research supported by DARPA contract N0014-92-J-1799 and NSF
92-12184 CCR.

1. Introduction

Voter V is undecided about an important issue. A Republican wants to convince her to vote one way and
a Democrat the other. What happens if the Republican has stolen the Democrat’s briefing book and thus
knows the Democrat’s strategy? We show that if the voter can conduct private conversations with the
Republican and the Democrat, then she can be convinced of how to vote on NEXPTIME issues, and, with
suitable restrictions on communication and randomness, of issues in NP.

The framework of cooperating provers has received much attention. Babai, Fortnow and Lund [BFL91]
showed that NEXPTIME is the set of languages that have two-cooperating-prover multi-round proof systems.
This characterization was strengthened when [LS91, FL92] showed that NEXPTIME languages have two-
cooperating-prover one-round proof systems. Recently, Feige and Kilian [FK94] have proved that NP is
characterized by two-cooperating-prover one-round proof systems in which the verifier has access to only
O(logn) random bits and the provers’ responses are constant size. We show that two-competing-prover
proof systems have similar power.

Stockmeyer [St77] used games between competing players to characterize languages in the polynomial-
time hierarchy. Other uses of competing players to study complexity classes include [Reif84, PR79]. Feige,
Shamir and Tennenholtz [FST88] proposed an interactive proof system in which the notion of competition
is present. Recently, Condon, Feigenbaum, Lund and Shor [CFLS93a, CFLS93b] characterized PSPACE
by systems in which a verifier with O(logn) random bits can read only a constant number of bits of a
polynomial-round debate between two players. We show that Ef is the class of languages that can be
recognized by a verifier with similar access to a k-round debate. We call this a system of k£ competing
oracles.

We are naturally led to consider the scenario of k competing provers. In a competing-prover proof
system two teams of competing provers (P;)ier and (F;);er, I C{0,...,k— 1}, interact with a probabilistic
polynomial-time verifier V. The first team of provers tries to convince V' that w is in L, for some pre-specified
word w and language L. The second team has the opposite objective, but V' does not know which team to
trust. Before the protocol begins, the provers fix their strategies in the order specified by their subindices.
These strategies are deterministic. To model the situation of k¥ competing provers, we propose and study
the class k-APP of languages that have k-alternating-prover one-round proof systems.

Definition 1. A language L is said to have a k-APP system with parameters (r(n), ¢(n),[Qo, ..., Qr-1]),
@ € {3,V}, and error (eqcc, €7¢j) if there is a probabilistic polynomial-time non-adaptive verifier V' that
interacts with two teams of competing provers such that

ifw € L then QoPo,...,Qr_1Pr_1 such that
Prob, [(V — Py, ..., Pr—1)(w,r) accepts] > 1 — €qec,

if w & L then QoPo,...,Qr_1P,_1 such that
Prob, [(V < Py,..., Pr_1)(w,r) accepts] < €5,

where the verifier is allowed one round of communication with each prover and where the probabilities are
taken over the random coin tosses of V. Furthermore, V uses O(r(n)) coin flips and the provers’ responses

are of size O(q(n)).

As in [FRS88], no prover has access to the communication generated by or directed to any other prover. We
adopt the following conventions: when the parameters r(n) and ¢(n) are omitted, they are assumed to be
logn and 1 respectively; when the quantifiers do not appear, they are assumed to alternate beginning with
3; when €qcc = €rej = €, We say the system has error €. We define the class k-APP to be the set of languages
that have a k-APP system with error 1/3.

Proof systems related to the one given in Definition 1, but where the provers do not have access to each
others’ strategies, have been studied in [FST88, FKS93].

We define k-alternating-oracle proof systems analogously:

Definition 2. A language L is said to have a k-AOP system with parameters (r(n), ¢(n),[Qo, ..., Qr-1]),
@ € {3,V}, and error (eqcc, €7¢j) if there is a probabilistic polynomial-time non-adaptive verifier V' that
queries two teams of competing oracles such that

ifw € L then QuOy, ..., Qr_10)_1 such that
Prob, [(V < Og,...,05_1)(w,r) accepts] > 1 — €qee,

ifw ¢ L then Q000, ..., Qr_10,_1 such that
Prob, [(V < Oy, ...,05-1)(w,r) accepts] < €re;,

where the probabilities are taken over the random coin tosses of V. Furthermore, V uses O(r(n)) coin flips

and queries O(gq(n)) bits.

The fundamental difference between an alternating-prover proof system and an alternating-oracle proof
system is that provers are asked only one question, whereas oracles may be asked many questions but their
answers may not depend on the order in which those questions are asked. This requirement was labeled
in [FRS88] as the oracle requirement. It follows that a k-AOP system can be viewed as a k-APP system in
which we have imposed the oracle requirement on the provers, and are allowed to ask many questions of each.
The results of [LS91, FL92, FK94] show that, in many different scenarios; two-cooperating-prover one-round
proof systems are equivalent in power to oracle proof systems. In this work we establish conditions under
which alternating-prover proof systems are equivalent in power to alternating-oracle proof systems.

In Section 2, we introduce some of the techniques that we will use to prove our main theorem. Along the
way, we show that the class of languages that have two-alternating-prover proof systems does not depend on
the error parameter, that this class 1s equivalent to NP, and that two-alternating-prover proof systems lose
power if the provers are allowed to choose randomized strategies. In Section 3, we show that k-alternating
oracle systems characterize ¥, We use Section 4 to summarize work of Feige and Kilian [FK94] that
we will need to prove our main theorem. In Section 5 we show that the class of languages that have a
k-alternating-prover proof systems does not depend on the error parameter €, and conclude that

Theorem 3. Ef_l = k-APP.

2. Two-Alternating Prover Proof Systems for NP

Suppose a language L can be recognized by a two-cooperating-prover one-round proof system with verifier
V and provers Po and P1 quantified by ([3,d]) in which V on random string r, asks prover Po question
q(o)(), asks prover P1 question q(l)(), and uses the answers to the questions to decide whether or not to
accept. We will transform this system into a two-alternating-prover proof system with verifier V' and provers
Py, Py quantiﬁed by ([3,¥]). In this latter system, prover Py claims that there exist provers Py and P; that
would convince V to accept. Prover P is trying to show that Py is wrong. The verifier V' will simulate the
verifier V from the original system to generate the questions q(o)() and q(l)() that V would have asked the
cooperating provers. To justify his claim, Py will tell the verifier what]30 or P1 would have said in answer to
any question. To test Pp’s claim, V will pick one of the two questions ¢(®)(r) and ¢!)(r) at random and ask
Py to respond with what the corresponding prover would have said in answer to the question. Unfortunately,
this does not enable V' to get the answer to both questions. To solve this problem, we recall that P; knows
what Py would answer to any question. Thus, the verifier V will send both questions to P;, and request that
P, respond by saying how Py would have answered the questions.

If w € L, then Py is honest, and P; has to lie about what Py would say in order to get the verifier to
reject. If P; lies about what Py said, he will be caught with probability at least 1/2, because P; does not
know which question V' sent to Py. Thus, the verifier will accept with probability at least 1/2.

On the other hand, if w ¢ L, then Py will honestly answer V' by telling V' what Py would have answered
to both questions. In this case, V will accept only if the provers that Py represent would have caused V to
accept. Thus, we obtain a two-alternating-prover proof system with error (1/2,¢€).

We will now show how we can balance these error probabilities by a parallelization of the above protocol
with an unusual acceptance criteria. In our parallelized protocol, we have:

The Queries

e |/ generates m pairs of questions as v would, i.e. V selects r1,...,r, € {0, 1}0(’“(”)) and generates

(0.6 0). (¢ r2), g D)),

@) D))

V' then picks one question from each pair, z.e. chooses

J1s-- > Jm) € {0,1}™, and sends to Py the
questions ¢U1)(r1), ¢V (r3), ..., qU)(r,,) and the tuple j=

(
T=01, - jm)

e V sends all the questions

(00D () (O (r2),4 0 (r2)),
O D))
to Pp.
The Responses

e P, is supposed to respond with

(P (@) (1)), Praa) (r2)),

B (@)

which i1s how the provers]30 and]31 would have answered the questions.

e P issupposed to respond with what Py would have said to ¢@1)(r), ..., ¢@)(ry) and 7= (41, ..., im),
say aZI, ..., a%, for every one of the 2™ possible assignments to 7 (we allow P; to answer this way because
a cheating prover Py may vary its strategy according to the value of J that it receives).

Acceptance Criteria
e V accepts if P did not correctly represent what Py said on the tuple that Py was asked.

o V accepts if there exists a round & and index vector ¥ such that (2); = 0 and () = 1 (switch Zand
if necessary), and such that V on random string r; would accept if given answers ai and aj,.

Lemma 4. A two-cooperating-prover one-round proof system with error (0,¢) can be simulated by a two-
alternating-prover one-round proof system with error (2™, m2™~1e), an m-fold increase in the verifier’s
randomness and an exponential in m increase in the length of the answers returned by the provers.

Proof: Use the proof system described above. If w € L, then Py is going to honestly answer the question
he is asked in each round. We will see that this forces P; to lie in response to all but the set of indices j. If
there is any m-tuple of questions indexed by @, ¥ # J, for which P; honestly represents what P, would say,
then there must be a k such that () # (})z. Thus, if Py honestly represented Py’s answers on tuple 7, the
verifier would accept. If w & L, then the probability that V' accepts is at most € for each k, and ¥ such that
(Dr # (D, for a total error of m2m~1le. O

We will combine this Lemma with a Theorem of Feige and Kilian [FK94] which proves a weak version
of the parallel repetition conjecture [FL92]. (For a formal statement of the parallel repetition conjecture

see [FL92]).
Theorem 5 ([FK94]). For any constant ¢ > 0. A language L is in NP iff L has a 2-APP system wilh
parameters ([3,3]) and error (0,¢).

Corollary 6. For any constani ¢, 0 < ¢ < 1/2. A language L is in NP iff L has a 2-APP system with error
€.

Proof: The reverse direction is trivial, the other direction is a direct consequence of Theorem 5 and
Lemma4. O

Corollary 7. A language L is in NEXPTIME iff L has a 2-APP system with parameters (poly(n), poly(n), [3,V])
and error (1/poly(n),1/exp(n))t.

Proof: Again, the reverse implication is trivial. To prove the forward direction, observe that in [FL92] it
is shown that a language in NEXPTIME has a 2-APP system with parameters (poly(n), poly(n),[3,3]) and
error (0, 1/exp(n)). Hence the corollary follows again from Lemma 4. O

Remark 8. In Section 5, we will want to use the following stronger version of Lemma 4: assume that the
original two-cooperating-prover one-round proof system with verifier V. and honest provers Py and Py had
two-sided error (€gee, €rej). We will say that V accepts in round k if there exists an index vector ¥’ such that
O =0 and (J)x = 1 (switch ¥ and j if necessary), and such that V on random string ry would accept if
given answers ai and a],;. After Py and Py have answered V'’s questions, we will allow player Py to arbitrarily
choose some & fraction of the m rounds and we will say that V accepts in a round if either v accepted in that
round, or if that round was in the fraction that Py chose (Imagine that Py is able to alter the computation
of V. on those rounds). We will change the verifier’s acceptance criteria to:

o V accepls if Py did not correctly represent what Py said on the tuple j that P, was asked.

o V accepts if it accepts for a (§+ PBeqec) fraction of the rounds (we will set 5 so that 6(1—%—111 %) =1,
because we will use a Chernoff bound to bound the probability of error).

This two-alternating-prover proof system has error (e”"M¢wee 4 9~ (1=2(=2fcace)m m2m e, ;).

In two-cooperating-prover proof systems, the power of the proof system is unchanged if the provers are
allowed to choose randomized strategies. We end this section by observing that the situation for competing-
prover proof systems differs.

Say language L has a two-alternating randomized-prover proof system, denoted 2-ARP, if it can be
recognized by a 2-APP system where the provers are allowed to have randomized strategies, that is, before
the protocol begins the provers now choose randomized strategies (instead of only deterministic strategies),
in the order specified by their subindices. Equivalently, a 2-ARP system is a 2-APP system where the provers
have access to private coins.

Lemma 9. For any constant ¢, 0 < € < 1/2, a language L is in P iff L has a 2-ARP system wilh error e.

Proof: [Sketch] The forward direction is trivial. To prove the converse, observe first that if p;, i € {0, 1},
is the probability distribution over deterministic strategies that prover P; chooses, then the probability
pw that the verifier V accepts input w, n = |w|, depends on p; through the probabilities p;(¢;, a;) =
Probp,—,, [Pi(¢;) = a;], where ¢; ranges over the set @); of possible questions to prover P;, and a; over
the set A; of possible responses of prover F;.

Let

pi = (pidi, @i))gieQi aiea,-

R be the set of random strings that the verifier may generate on input w.

7 be the probability that the verifier generates random string 7.

qi(r) be the question that the verifier sends to prover P; on random string r.

Vr.ao,a; e equal to 1 if on input w, random string r, and provers’ responses ag and a; the verifier
accepts, and 0 otherwise.

Ipoly(n) and exp(n) refer to O(n¢) and O (2"6) respectively, for some positive constant c.

Applying the technique of [FL92], it follows that:

P = max C(p), subject to
ro
Yaqo ZPO(QO,GO) =1, Po >0,
Qo

where, C(fp) =

min > 7 Vo, o(d0(r), a0) pr(an (1), an)

700,01
subject to
Va1 Zpl(fh,al)zl, P >0,
a1

where r, qu, q1, ap and a; range over R, QQy, @1, Ag and A; respectively. By strong duality (see [Sc86]),
C(po) can be expressed as the optimum of a linear program in max form. Thus, to compute p,, it is enough
to solve a linear program of poly(n,|Ao|, |A1], |R|) size. Since in our case |Aol, |[41| = O(1), |R| = 29X1°87),
and linear programming is polynomial-time solvable, the lemma follows. O

An analogous result for EXPTIME, for the only if part, was independently obtained in [FKS93].

3. AOP Systems for X/

Feige and Kilian’s proof of Theorem 5 uses an amplification of the main result of [AS92, ALMSS92], which
states that NP = PCP(logn, 1). In our terminology, this says that NP languages have 1-AOP proof systems.
In order to extend our results beyond NP, we will need analogous tools that we can apply to languages in
P, We will begin by showing that languages in X have k-AOP proof systems.

We consider from now on only the case in which & is odd. Our results have analogous statements for
even k.

The next theorem is implicit in [CFLS93a].

Theorem 10 (k odd). For any constant € > 0. Every language L in ¥ has a k-AOP system with error

(0, €).

In the proof of this theorem, we will make use of some facts about Justesen codes. For a string z, let
E(z) denote the Justesen encoding of @ [MST7]. The following facts are standard:

e The length of E(z) is linear (for our purposes, polynomial would suffice) in the length of «.
e There is a polynomial time algorithm that on input returns E(z).

e There is a constant €5 and a polynomial time algorithm Cy such that if y and F(z) differ in at most
an ey fraction of their bits, then Cj(y) = # (in which case we say that @ and y are closer than ey).
Otherwise, Cj(y) outputs “FAILURE” (in which case, we say that y is farther than e; from any
codeword).

Proof: [of Theorem 10] Let L be a language in X' That is, there exists a polynomial-time Turing machine
V such that w € L if and only if 3X,,YX,,...,3X; V(w, X1, ..., X)) accepts [CKS81]. As in [CFLS93a],
we will view the acceptance condition as a game between an 3 player and a V player who take turns writing
down polynomial-length strings X;, with the 3 player writing on the odd rounds.

In our k-AOP, the player who writes in round ¢ purports to write down a Justesen encoding of X;. In
addition, in the k-th round, the 3 player is to write down encodings of everything the V player said and
a PCP(logn,1) proof that V(w, X1,..., Xi) accepts. If each player actually wrote down codewords, then,
using the techniques from [ALMSS92], the verifier would read a constant number of random bits from each
oracle and a constant number of bits to check the PC'P(logn, 1) proof and accept if V(w, X1, ..., X}) would
have accepted, or reject with high probability if V" would have rejected.

In reality, one of the players will be trying to cheat and will have little incentive to write codewords. Let
Y; denote the oracle that is written in the i-th round. If a player writes an oracle Y; that is within ¢; of
a codeword, then the other player will proceed as if Y; was that codeword. On the other hand, if a player
writes an oracle Y; that is farther than €7 from a codeword, then with high probability the verifier will detect
that player’s perfidy.

In the last round, the 3 player writes down strings Z; which he claims are encodings of Y;, for each even
i. In addition, the 3 player will, for each bit of each oracle Y;, provide a PCP(logn, 1) proof that, when
decoded, Z; agrees with Y; on that bit. For each even 4, the verifier will test these PC'P(logn, 1) proofs to
check that C7(7;) agrees with Y; on some constant number of randomly chosen bits. If any of these tests
fails, then the verifier will know that the 3 player has cheated and will reject accordingly. If the Z;’s pass
all the tests, then the verifier will be confident that C7(7;) is close to Y, for all even i. The verifier then
accepts if the last player’s proof indicates either that,

o C;(Y;) = “FAILURE” for some even i, or

o V(w, X1,C5(Ya),...,C5(Yr—1), Xi) accepts (note that the PC'P(logn, 1) proof refers to the X;’s for
odd i through their encoding as Y;, and to the Y;’s for ¢ even through their encoding as 7;).

To see why this protocol works, assume that w € L. In this case, the 3 player will always write codewords.
Moreover, regardless of what oracle Y; the V player writes in turn ¢, the exist player will write Z; = E(Y;).
Thus, the Z;’s will always pass the consistency tests. If one of the V player’s oracles is farther than e; from
a codeword, then the last player will include this fact in his proof, and the verifier will reject. On the other
hand, if for each even i, Y; is close to some codeword X;, then the application of Cy to Y; will result in Y;
being treated as the encoding of X; in the 3 player’s PC'P(logn, 1) proof.

If # € L, then the 3 player will have to cheat in order to win. If the 3 player writes a message Y; that is
not close to a unique codeword, then this will be detected with high probability when the verifier checks the
validity of the PC'P(logn, 1) proof supplied in the last round. If one of the Z;’s misrepresents the oracle,
Y: = E(X;), of a V player, then either C;(Z;) and Y; will have to differ in at least an e; fraction of their
bits, or the 3 player will have to falsify the certification of the computation of Cy on C5(7;) so that it does
not decode to X;. In either case, the 3 player will be caught with high probability. O

We note that Theorem 10 exactly characterizes £ because an alternating-Turing machine with k alter-
nations can guess the k oracles and then compute the acceptance probability of the k-AOP system.

Using Theorem 10 and the standard technique of [FRS88] for simulating an oracle by a pair of provers,
we can transform a k-alternating-oracle proof system into a (k + 1)-alternating-prover proof system.

Corollary 11 (k odd). L € X iff L has a (k + 1)-APP system with parameters ([3,V,3,...,V,3,3]) and

error (0,1 — %), where N is a large constant depending on k.

In order to prove Theorem 3, we have to reduce the error in Corollary 11 and show how to change the
parameters ([3,V,3,...,¥,3,3]) to ([3,V,3,...,¥,3,¥]). In the next two sections we present some of the
necessary ideas that we need to achieve these goals.

4. Previous Work

In Section 5, we will prove an analogue of the theorem of Feige and Kilian [FK94] which applies to k
competing provers. The techniques used in [FK94] provide a deep insight into how a few random variables
influence the value of a multi-variate function. In order to prove our analogue of their theorem, we will need
a better understanding of some of their results, which we will summarize in this section.

Consider a prover P to which we send m randomly suggested questions ¢(r1),. .., ¢(rm) and to which P
answers according to a fixed strategy f = (f1,..., fm), a function from m-tuples (the m-tuple of questions
that P receives), to m-tuples (the m-tuple of answers that P responds with). We would like P to use a global
strategy, f, in which each f; is only a function of ¢(r;). We say that such a prover behaves functionally.
Below, we state the consequences of a prover’s failure to behave in this way.

Say that an f-challenge® (I~, (q(ri));er) s live if 3(a;);c 7 such that

[Prob [(Fila(ro), - alrm)))ier = (ai)ie] > €

T lef

where (is a parameter to be fixed later. If the above inequality holds, say that (a;), ¢ 1s a lwe answer set for
the challenge (N,((7i));c7)- Intuitively, if we know the questions Q= (q(r:));c7 that P receives on rounds
I and that A = (a;);ef is not a live answer set for the challenge (I~, Q), we should not be willing to bet that

P will answer A on rounds I. If P acts functionally in each round, then every challenge (I~, Q) 1s live, since
the questions that P is sent on a round completely determine his answer on that round.

1
For any choice of parameters such that 8 < ¢®, %C‘E’ <n,0 <7y <1 €>max (W, (SlnM)a),

M
where M = m — n, the following lemmas are implicit in the work of Feige and Kilian.

Lemma 12. If A = (a;i)jef 15 not a live answer set for the challenge (I~, (q(ri))icf), then, with probability
at least 1 — ne (over the choices of {ij41,...,1n} and (ri)iEI\f? where T = {iy,...,i,} and I= {i1, ..., 4})
it holds that R
(Pr)ob fila(r)y .. q(rm)) = az, for alli € I| < {4+ ne.
Ti)igl
Intuitively, the preceding Lemma says that if 4 is not a live answer set for the challenge (I~, (q(ri));ici)s

and in addition to knowing the questions that P receives in rounds I we know the questions sent to P in
rounds I O I, we usually should still not be willing to bet that P will answer A in rounds /. Observe that
knowledge of all the questions that P receives completely determines the answers in rounds 7.

Lemma 13. There is a good j for f, j < vn, such that if more than a ¢ fraction of the challenges
(1,(q(ri));ei) (over the choices of I = {i1,...,i;} and (ri);cf) are live, then for a (1 — () fraction of
the live challenges (I,Q = (q(r:));cf), for every i & I, and for each live answer set A = (a;);cj for the
challenge (I1,Q), it holds that there is a function Fy i g i such that
i€ I NI filg(rr), .. qlrm)) £ Py, o ala(r)}| g
[T\ 1|

Z 1- 6a
where the probability is taken over the choices of (ri)igf and T\ I= {i41, ...

yin}

In other words, to every prover P we can associate a j such that if a non-negligible fraction of the
challenges (I Q) are live, where |I| = j, and if P answers the challenge (I Q) with live answer set A, then,
P acts ‘almost’ functlonally in a significant fraction of the rounds I\ I, for most of the live challenges (I Q)

5. APP systems for ©7

In Corollary 11 we characterized E in terms of alternating-prover proof systems with error (0, 1— N) where
N 18 a large constant, and where the quantifiers associated to the provers, except the last two, alternated.
The goal of this Section is to again provide alternating-prover proof systems for ©f languages which in
addition achieve:

e Low error rates, and

e The quantifiers associated to all the provers alternate.

2We omit f whenever it is clear from context.

To achieve these goals we follow an approach similar to the one taken in Section 2. First, we prove that
languages that have a (k + 1)-APP system with parameters ([3,V,3,...,V,3,3]) and error (0,1 — %), can
be recognized by a (k + 3)-APP system with parameters ([3,V,3,...,V,V,3,3,3]) and error «, for any
constant o, 0 < a < 1/2.3 Notice that we achieve this without increasing the number of alternations of the
quantifiers associated to the provers. This step can be viewed as an analogue of Theorem 5 which applies to
competing-prover proof systems. We then show how to convert the proof systems obtained in the first step
into (k+ 1)-APP systems in which all the quantifiers associated to the provers alternate. This latter step is
performed without significantly increasing the error probability.

We describe below a protocol which achieves the first goal of this section. Consider a language that has a
(k+1)-APP with parameters ([3,V,3,...,¥,3,3]) and error (0,1— %) with verifier V and provers Py, ..., Pg.

~

Let q(l)(r) denote the question that the verifier V', on random string r, asks the prover]31. Consider now
a verifier V' interacting with provers Py, ..., Py12 quantified by ([3,V,3,...,V,3,3,3,V]) respectively. The
underlying idea of the protocol we are about to describe is the following: the verifier V' tries to parallelize
V’s protocol. In order to force cheating provers to behave functionally, a Consistency Test is implemented.
This test requires the use of two (one for each competing team of provers) additional provers (P41 and
Pry2). If a team of provers fails the consistency test then their claim will be rejected. Honest provers
will behave functionally in each round and thus they will always be able to PASS the Consistency Test.
Nevertheless, it may be that cheating provers have a significant probability of passing the Consistency Test,
but honest provers cannot determine the strategy which the cheating provers use to answer each round from
the knowledge of their strategy alone. The protocol implemented by the verifier V' will allow honest provers
to make a set of ‘educated’ guesses regarding the strategies that the cheating provers might be using to
answer each of the questions posed to them. Thus, either cheating provers will fail the Consistency Test,
or the verifier V' will end up (with high probability) with a set of rounds most of which can be treated as
independent executions of V's protocol.

In what follows we describe the questions that V' makes, the format in which the provers are supposed
to answer, and the acceptance criteria.

The Queries

e V chooses I C {1,...,m}, |I| = n at random, and selects for every 7 € I random string r; as the old
verifier V would have.

V selects Vj € {0,...,k}, Vie {l,...,m}\ I, random string rl(»j) as the old verifier ¥ would have.
Forie {l,...,m},j€{0,...,k} let

; r; ifiel,
pgj)z{

rl(»j) otherwise.

o V chooses I} C T\ U0<]»<lfj, |I;] = yn, at random together with a random ordering m; of I; for
1=0,...,k (we will later set y = m)

e V sends to prover P, 1 € {0,...,k}, (q(l)(pgl)); ied{l,..., m}\U0<]»<l I;), (when a question is sent to
a prover the verifier indicates the round ¢ € {1,...,m} to which the question corresponds).

e V sends to prover Py, | € {0,...,k — 1} all questions (q(j)(ri))iejj, the set of indices I;, and the
orderings 7;, for all j € {0,...,1}.

V sends to provers Pr41 and Ppys the questions (q(l)(ri))iejl, the set of indices I; and the orderings
7y, for all 1 € {0,... k}.

The Responses

3In fact, a (k + 2)-APP with parameters ([3,V,3,...,V,¥,3,3]) v and similar error rates suffices, but proving this would
unnecessarily complicate our exposition.

The format of each prover’s answer is a tree.

For a graph tree T (we will only consider rooted trees), we say that a node v € V(T) is at level 7 if its
distance to the root of T'is i. We say that an edge e € E(T) is at level 7 if it is rooted at a node of
level z.

Definition 14. Let J C {0,...,r} be a set of indices. We say that a tree T is a J-tree if nodes at
level 57 € J have only one child.

We will consider the nodes and edges of our trees as being labeled. Internal nodes will be labeled by
sets of indices. Edges rooted at a node labeled J will be labeled by a tuple of strings (a;);es. We
denote the label of a node v (resp. edge e) by Lr(v) (resp. Lr(e)).

Definition 15. Let v be a node of level [of tree T, and vy, ..., v;_1 the sequence of nodes along the
path from the root of T to v. Define the history of v as follows:

HI=[Lr(vo), Lr(vo, v1)] ... [Lr(vi1), Lr(vi1,v)]

P, responds with a tree T;.
o Tj, for 1 € {0,...,k} is a tree of depth [labeled as follows:

— An internal node v at level j is labeled by I;.

— Every internal node v at level j has an edge rooted at v for every possible set of answers of F; to
questions (q(])(ri))iejj, and labeled by this tuple of answers.

— A leaf is labeled “CONCEDE DEFEAT”, “GARBAGE” or by the answers to the questions
(a0 0si e {1 om\ Ungjar 1)

o Tht1 (resp. Ti4o)is a K-tree of depth k+1, where K = {0,2,...,k—1,k} (resp. K ={1,3,...,k—2}),
labeled as follows:
— Nodes and edges at levels j ¢ K are labeled as in the trees described above.
— The only edge of level j € K rooted at v is labeled by a tuple of answers (Clgj))iejj.

Assume now that Tp,..., T} are in the proper format. Define the sequence of leaves v; € V(T7),
[€ {0,...k} as follows: wo is the only node of Ty, if wg,...,v; have been determined, and

(agj);i e{l,...,m}\ U0<s<j Is) is the label of v;, then viy1 is the leaf of tree 7j11 with history
[lo, (atiere] - [Ir, (@ Yien):
Define for j € {0,..., k} the following path:
P(Th.. 1) = o, (@ ien] - [0 (@ e, .

Note that there is only one leaf in Ty 41 and Ty 42 that have the same history. The history of both these
leaves determines a common path of Tj41 and T2 which we denote by,

P/(To. o, T) = oy (@ ier) o [(@' e]
Acceptance Criteria

The verifier V' checks that

1. The responses of the provers have the proper format. If a prover does not comply with the format
of the responses its claim is immediately rejected (honest provers will always answer in the proper
format).

10

1. The following Consistency Test PASSES.
V compares P = P(Ty,..., Ti) and P' = P'(Th41, Th+2). Two different situations may arise:
(a) P =P, in this case we say that the consistency test PASSES.
(b) P # P’ in this case let I be the smallest j such that (Clgj))iejj # (a ’5]))261 V then rejects
Pr’s claim.
V then accepts iff for more than a 1 — — fraction of the rounds i € I\ U0<]<k I; the old verifier v
(0)

(where ¢ is a large constant whose value we will set later)

on random string r; would accept if given answers a, () from provers Po, .. Pk respectively,

Lemma 16 (k odd). For any constant o, 0 < o < 1/2. Fwery language L recognized by a (k + 1)-APP
with parameters ([3,¥,...,V,3,3]) and error (0,1— %), where N is a large constant, has a (k+3)-APP with
parameters ([3,¥,...,V,V,3,3,3]) and error o.

Proof: [Sketch] Use the protocol described above. First we show how honest provers respond. Assume P
is honest, [< k, then P; will generate a tree T; of the proper format. We only have to show how the leaves
on T are labeled. Let wug, ..., u; be a path in 77 from the root ug to the leaf u;. In labeling u;, P; considers
the strategies fo,..., fi—1 that Py, ..., P_1 use in labeling the leaves (abusing notation) wug,...,u;—1 of
Ty, ..., T;_1 with history Hf;, .. .,Ha_l respectively. For s € {0,...,1 — 1}, let j; be the smallest good j,
as defined by Lemma 13, for f,. Let I, C I, be the set of the first j, indices of I, as determined by 7,. Let

Q, = (q(s)(ri))iefs be the set of questions on rounds I,, and A, = (égs))iefs be the set of answers in rounds

I induced by the label of the leaf u;.
Define the following events:

Event EFy : Vs € {0,...,]— 1}, the answer sets A, are live for the f,-challenge (fs, Qs)

Event Ey : Vs € {0,...,1— 1}, more than a ¢ fraction of the fs-challenges (fs ={i,...,4.}, (q(s)(ri))iefs)
(over the choices of I, = {iy,...,4;,} and (ri);ez,) ave live.

For an appropriate choice of parameters we can distinguish two cases,

Events E; and Ez occur:Vi € {1,...,m}\ Uy ;1 Ls, Vs € {0, — 1}, P; determines (if possible) the
functions F LA, (as in Lemma 13), and the optimal strategy for answering round ¢, say P!, of
an (I + 1)- th prover of a k-APP of the form given in Corollary 11, where the first { provers are glven
by F o, Ao ,...,F Qi Aiy If P; is unable to determine some Ff 0.4 he labels u; with

“CONDCEDE bEFEAT’” that 1s, Pl recognizes that cheating provers have outsmarted him. Otherwise,
P; answers round 7 of u; accordmg to P/,

Otherwise: P; labels u; with “GARBAGE”, that is, P; expresses its confidence that the cheating provers
will not PASS the consistency test.

It follows that honest provers never fail the consistency test, since in each leaf of their respective response
tree honest provers answer each round functionally.
Consider now the leaf vy of Ty and the leaves vy, ..., vy of Ti,...,Tp with history P(Tp),
SP(To, ..., Th-1), fix above u; = vy, for ¢ € {0,...,k}, { = k+ 1, and define events F; and F as
before.

If £ does not occur: then, from Lemma 12, cheating provers will PASS the consistency test with prob-
ability at most ¢ + 2(k 4+ 1)yne < 3¢ (assuming (k 4+ 1)yne < ().

If £y does not occur: then from the preceding paragraph, we conclude that cheating provers will PASS
the consistency test with probability at most 4¢.

If £y and E; occur: then, Lemma 13 implies that with probability at most @ZC the honest provers are
outsmarted by the cheating provers; otherwise, with probability at least 1 — kzﬂé at least (1 — (k +

1)y — %)n of the rounds i € I\Uostk I; are answered according to Fy 5. i, Py, i 6, Ay

11

Let p = £%2(6 +¢)+7¢, and n' = (1 — (k+ 1)y)n. Now, choose v = m, § = +/C, ¢ small enough so

¢ < 1/(2eN(k+2))? (hence pr = (1= (k+ 1)y = T2 5 > 1 —) and p = HE2(/T+)+ 7¢ < /2, n
large enough so n > 2N log(2/a) and n > 2(~°/v, € small enough so 8¢ < ¢ and (k + 1)yne < {, M large
enough soif M = m—mn, ¢ > max(w, (%)1/3). Remember that all the above mentioned parameters
are constants.

If w € L, with probability at least 1 — p > 1 — «/2, the old verifier will accept for a fraction of at least

p>1-— % of the rounds 7 € I\U0<]»<k I;, and thus V will accept.

If w ¢ L, then the probability of V' accepting is at most p + 9—n'/N < a, (where the bound on the
probability of acceptance follows by choosing ¢ to be a constant large enough so that A(1— %)— 1%%,—6(- %) <
—1/N, where h(-) is the binary entropy function).

Finally, note that the order of the provers might as well have been Py, ..., Py_2, Pryo, Pr—1, Pr, Pry1.

O

Note that the protocol used to prove Lemma 16, is more generous with the cheating provers than actually
required. We can modify the protocol by requiring that prover P; respond with a tree 7; which is also an
Si-tree, where s € S; if s < [and prover Ps is in P;’s team. The labels of the edges of 77 at level s,
s € 57, can now be required to be consistent with the labels that P assigns to the leaves of 7. Combining
this modified protocol, the protocol that Feige and Kilian [FK94] use in their proof of Theorem 5, and the
protocol described in Remark 8, we can prove:

Lemma 17. For any constant €, 0 < ¢ < 1/2. Every language L recognized by a (k + 3)-APP system with
parameters ([3,V,...,V,¥,3,3,3]) and error « for any constant o, can be recognized by a (k+1)-APP system
with parameters ([3,¥,...,V,3,V]) and error e.

Proof: Omitted. 0O

We can now prove our main theorem:

Theorem 3. For any constant ¢, 0 < ¢ < 1/2. A language L is in SF if and only if it has a (k + 1)-APP
system with error e.

Proof: If L has a (k + 1)-APP system with error € < 1/2, then a ©£ Turing machine can guess the
strategy of the first k& provers, compute for each one of the polynomially many questions that the last prover
can receive, the optimal constant-size response, and then calculate the acceptance probability of the verifier.
The other direction follows from Theorem 10, Lemmas 16 and 17. O

We observe that Theorem 3 is best possible in the sense that unless the polynomial-time hierarchy
collapses, all ©¥ languages do not have (k + 1)-APP systems with one-sided error:

Remark 18. For any constant € > 0. If language L has a (k+1)-APP system with error (0, €) (resp. (¢,0))
then L 15 in Ef_l.

Proof: Omitted, but not difficult. 0O

We hope that the theorems presented in this paper can be used to prove non-approximability results for
non-artificially constructed problems.

6. Acknowledgments

This paper owes its existence to Joan Feigenbaum; we give her a special thanks. We would like to thank Uri
Feige and Joe Kilian for explaining their early results to us and for providing us with an early draft of their
paper. We would like to thank Mario Szegedy for suggesting that we generalize Corollary 6 and for atypical
contributions. We would also like to thank Michel Goemans, Shafi Goldwasser and Mike Sipser for helpful
discussions.

12

References

[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. “Proof verification and intractability
of approximation problems”. Proc. of the 33rd IEEE FOCYS, pages 14-23, 1992.

[AS92] S. Arora, and S. Safra. “Probabilistic checking of proofs”. In Proc. of the 33rd IEEE FOCS, pages
2-13, 1992.

[BFLI1] L. Babai, L. Fortnow, and C. Lund. “Nondeterministic exponential time has two-prover interactive
protocols”. Computational Complexity, 1:3-40, 1991.

[CFLS93a] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. “Probabilistically checkable debate systems
and approximation algorithms for PSPACE-hard functions”. In Proc. of the 25th ACM STOC,
pages 305314, 1993.

[CFLS93b] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. “Random debaters and the hardness of
approximating stochastic functions”. DIMACS TR 93-79, Rutgers University, Piscataway NJ,
1993.

[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. “Alternation”. Journal of the ACM, 28:114—
133, 1981.

[FST88] U. Feige, A. Shamir, and M. Tennenholtz. “The Noisy Oracle Problem”. Proc. Crypto 88, pages
284-296, 1988”.

[FK94] U. Feige and J. Kilian, “Two prover protocols - Low error at affordable rates”. Proc. of the 26th
ACM STOC, pages 284-296, 1988”.

[FKS93] J. Feigenbaum, D. Koller, and P. Shor. Private communication.

[FL92] U. Feige, and L. Lovdsz. “Two-provers one-round proof systems: their power and their problems”.

Proc. of the 24th ACM STOC, pages 733-744, 1992.

[FRS88] L. Fortnow, J. Rompel, and M. Sipser. “On the power of multi-prover interactive protocols”. Proc.
of the 3rd Annual Conference on Structure tn Complexity Theory, pages 156-161, 1988.

[LS91] D. Lapidot, and A. Shamir. “Fully parallelized multi prover protocols for NEXP-time”. In Proc.
of the 32nd IEFEE FOCS, pages 13-18, 1991.

[MS77] F.J. MacWilliams, and N. J. A. Sloane. The Theory of Error-Correcting Codes. North Holland,
Amsterdam, 1977.

[PR79] G. Peterson, and J. Reif. “Multiple-person alternation”. In Proc. of the 20th IEEE FOCS, pages
348-363, 1979.

[Reif84] J. H. Reif. “The complexity of two-player games of incomplete information”. J. Comput. System
Science, 29, pages 274-301, 1984.

[Sc86] A. Schriyver. Theory of Linear and Integer Programming. Wiley, Chicester, 1986.

[St77) L.J. Stockmeyer. “The polynomial-time hierarchy”. In Theoretical Computer Science 3, pages
1-22, 1977.

13

