
Alternation in InteractionM. Kiwi�MIT & U. Chile C. LundyAT&T A. Russell zMIT D. SpielmanxMIT R. Sundaram{MITNovember 27, 1995AbstractWe study competing-prover one-round interactive proof systems. We show that one-round proof sys-tems in which the �rst prover is trying to convince a veri�er to accept and the second prover is tryingto make the veri�er reject recognize languages in NEXPTIME, and, with restrictions on communica-tion and randomness, languages in NP. We extended the restricted model to an alternating sequenceof k competing provers, which we show characterizes �Pk�1. Alternating oracle proof systems are alsoexamined.
�Dept. of Applied Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139. mkiwi@math.mit.edu. Onleave of absence from Dept. de Ingenier��aMatem�atica, U. de Chile. Supported by an AT&T Bell Laboratories PhD Scholarship.Part of this work was done while the author was at Bell Laboratories.yAT&T Bell Laboratories, Room 2C324, 600 Mountain Avenue, P. O. Box 636, Murray Hill, NJ 07974-0636 USA,lund@research.att.com.zDept. of Applied Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139. acr@theory.lcs.mit.edu.Partially supported by an NSF Graduate Fellowship and NSF 92-12184, AFOSR F49620-92-J-0125, and DARPA N0014-92-J-1799xDept. of Applied Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139. spielman@math.mit.edu.Partially supported by the Fannie and John Hertz Foundation, Air Force Contract F49620-92-J-0125 and NSF grant9212184CCR. Part of this work was done while the author was at Bell Laboratories.{Laboratory for Computer Science, Massachusetts Institute of Technology,Cambridge, MA 02139. koods@theory.lcs.mit.edu. Research supported by DARPA contract N0014-92-J-1799 and NSF92-12184 CCR. 1

1. IntroductionVoter V is undecided about an important issue. A Republican wants to convince her to vote one way anda Democrat the other. What happens if the Republican has stolen the Democrat's brie�ng book and thusknows the Democrat's strategy? We show that if the voter can conduct private conversations with theRepublican and the Democrat, then she can be convinced of how to vote on NEXPTIME issues, and, withsuitable restrictions on communication and randomness, of issues in NP.The framework of cooperating provers has received much attention. Babai, Fortnow and Lund [BFL91]showed that NEXPTIME is the set of languages that have two-cooperating-prover multi-round proof systems.This characterization was strengthened when [LS91, FL92] showed that NEXPTIME languages have two-cooperating-prover one-round proof systems. Recently, Feige and Kilian [FK94] have proved that NP ischaracterized by two-cooperating-prover one-round proof systems in which the veri�er has access to onlyO(logn) random bits and the provers' responses are constant size. We show that two-competing-proverproof systems have similar power.Stockmeyer [St77] used games between competing players to characterize languages in the polynomial-time hierarchy. Other uses of competing players to study complexity classes include [Reif84, PR79]. Feige,Shamir and Tennenholtz [FST88] proposed an interactive proof system in which the notion of competitionis present. Recently, Condon, Feigenbaum, Lund and Shor [CFLS93a, CFLS93b] characterized PSPACEby systems in which a veri�er with O(logn) random bits can read only a constant number of bits of apolynomial-round debate between two players. We show that �Pk is the class of languages that can berecognized by a veri�er with similar access to a k-round debate. We call this a system of k competingoracles.We are naturally led to consider the scenario of k competing provers. In a competing-prover proofsystem two teams of competing provers (Pi)i2I and (Pi)i2�I , I � f0; : : : ; k� 1g, interact with a probabilisticpolynomial-time veri�er V . The �rst team of provers tries to convince V that ! is in L, for some pre-speci�edword ! and language L. The second team has the opposite objective, but V does not know which team totrust. Before the protocol begins, the provers �x their strategies in the order speci�ed by their subindices.These strategies are deterministic. To model the situation of k competing provers, we propose and studythe class k-APP of languages that have k-alternating-prover one-round proof systems.De�nition 1. A language L is said to have a k-APP system with parameters (r(n); q(n); [Q0; : : : ; Qk�1]),Qi 2 f9; 8g, and error (�acc; �rej) if there is a probabilistic polynomial-time non-adaptive veri�er V thatinteracts with two teams of competing provers such thatif ! 2 L then Q0P0; : : : ; Qk�1Pk�1 such thatProbr [(V $ P0; : : : ; Pk�1)(!; r) accepts] � 1� �acc;if ! 62 L then �Q0P0; : : : ; �Qk�1Pk�1 such thatProbr [(V $ P0; : : : ; Pk�1)(!; r) accepts] � �rej;where the veri�er is allowed one round of communication with each prover and where the probabilities aretaken over the random coin tosses of V . Furthermore, V uses O(r(n)) coin ips and the provers' responsesare of size O(q(n)).As in [FRS88], no prover has access to the communication generated by or directed to any other prover. Weadopt the following conventions: when the parameters r(n) and q(n) are omitted, they are assumed to belogn and 1 respectively; when the quanti�ers do not appear, they are assumed to alternate beginning with9; when �acc = �rej = �, we say the system has error �. We de�ne the class k-APP to be the set of languagesthat have a k-APP system with error 1/3.Proof systems related to the one given in De�nition 1, but where the provers do not have access to eachothers' strategies, have been studied in [FST88, FKS93].We de�ne k-alternating-oracle proof systems analogously:De�nition 2. A language L is said to have a k-AOP system with parameters (r(n); q(n); [Q0; : : : ; Qk�1]),Qi 2 f9; 8g, and error (�acc; �rej) if there is a probabilistic polynomial-time non-adaptive veri�er V thatqueries two teams of competing oracles such that 2

if ! 2 L then Q0O0; : : : ; Qk�1Ok�1 such thatProbr [(V $ O0; : : : ; Ok�1)(!; r) accepts] � 1� �acc;if ! 62 L then �Q0O0; : : : ; �Qk�1Ok�1 such thatProbr [(V $ O0; : : : ; Ok�1)(!; r) accepts] � �rej;where the probabilities are taken over the random coin tosses of V . Furthermore, V uses O(r(n)) coin ipsand queries O(q(n)) bits.The fundamental di�erence between an alternating-prover proof system and an alternating-oracle proofsystem is that provers are asked only one question, whereas oracles may be asked many questions but theiranswers may not depend on the order in which those questions are asked. This requirement was labeledin [FRS88] as the oracle requirement. It follows that a k-AOP system can be viewed as a k-APP system inwhich we have imposed the oracle requirement on the provers, and are allowed to ask many questions of each.The results of [LS91, FL92, FK94] show that, in many di�erent scenarios, two-cooperating-prover one-roundproof systems are equivalent in power to oracle proof systems. In this work we establish conditions underwhich alternating-prover proof systems are equivalent in power to alternating-oracle proof systems.In Section 2, we introduce some of the techniques that we will use to prove our main theorem. Along theway, we show that the class of languages that have two-alternating-prover proof systems does not depend onthe error parameter, that this class is equivalent to NP, and that two-alternating-prover proof systems losepower if the provers are allowed to choose randomized strategies. In Section 3, we show that k-alternatingoracle systems characterize �Pk . We use Section 4 to summarize work of Feige and Kilian [FK94] thatwe will need to prove our main theorem. In Section 5 we show that the class of languages that have ak-alternating-prover proof systems does not depend on the error parameter �, and conclude thatTheorem 3. �Pk�1 = k-APP.2. Two-Alternating Prover Proof Systems for NPSuppose a language L can be recognized by a two-cooperating-prover one-round proof system with veri�erbV and provers bP0 and bP1 quanti�ed by ([9; 9]) in which bV , on random string r, asks prover bP0 questionq(0)(r), asks prover bP1 question q(1)(r), and uses the answers to the questions to decide whether or not toaccept. We will transform this system into a two-alternating-prover proof system with veri�er V and proversP0; P1 quanti�ed by ([9; 8]). In this latter system, prover P0 claims that there exist provers bP0 and bP1 thatwould convince bV to accept. Prover P1 is trying to show that P0 is wrong. The veri�er V will simulate theveri�er bV from the original system to generate the questions q(0)(r) and q(1)(r) that bV would have asked thecooperating provers. To justify his claim, P0 will tell the veri�er what bP0 or bP1 would have said in answer toany question. To test P0's claim, V will pick one of the two questions q(0)(r) and q(1)(r) at random and askP0 to respond with what the corresponding prover would have said in answer to the question. Unfortunately,this does not enable V to get the answer to both questions. To solve this problem, we recall that P1 knowswhat P0 would answer to any question. Thus, the veri�er V will send both questions to P1, and request thatP1 respond by saying how P0 would have answered the questions.If ! 2 L, then P0 is honest, and P1 has to lie about what P0 would say in order to get the veri�er toreject. If P1 lies about what P0 said, he will be caught with probability at least 1=2, because P1 does notknow which question V sent to P0. Thus, the veri�er will accept with probability at least 1=2.On the other hand, if ! 62 L, then P1 will honestly answer V by telling V what P0 would have answeredto both questions. In this case, V will accept only if the provers that P0 represent would have caused bV toaccept. Thus, we obtain a two-alternating-prover proof system with error (1=2; �).We will now show how we can balance these error probabilities by a parallelization of the above protocolwith an unusual acceptance criteria. In our parallelized protocol, we have:The Queries� V generates m pairs of questions as bV would, i.e. V selects r1; : : : ; rm 2 f0; 1gO(r(n)) and generates�(q(0)(r1); q(1)(r1)); (q(0)(r2); q(1)(r2));3

: : : ; (q(0)(rm); q(1)(rm))� :V then picks one question from each pair, i.e. chooses (j1; : : : ; jm) 2 f0; 1gm, and sends to P0 thequestions q(j1)(r1); q(j2)(r2); : : : ; q(jm)(rm) and the tuple ~| = (j1; : : : ; jm).� V sends all the questions �(q(0)(r1); q(1)(r1)); (q(0)(r2); q(1)(r2));: : : ; (q(0)(rm); q(1)(rm))�to P1.The Responses� P0 is supposed to respond with � bPj1(q(j1)(r1)); bPj2(q(j2)(r2));: : : ; bPjm(q(jm)(rm))� ;which is how the provers bP0 and bP1 would have answered the questions.� P1 is supposed to respond with what P0 would have said to q(i1)(r1); : : : ; q(im)(rm) and~{ = (i1; : : : ; im),say a~{1; : : : ; a~{m, for every one of the 2m possible assignments to~{ (we allowP1 to answer this way becausea cheating prover P0 may vary its strategy according to the value of ~| that it receives).Acceptance Criteria� V accepts if P1 did not correctly represent what P0 said on the tuple that P0 was asked.� V accepts if there exists a round k and index vector ~{ such that (~{)k = 0 and (~|)k = 1 (switch ~{ and ~|if necessary), and such that bV on random string rk would accept if given answers a~{k and a~|k.Lemma 4. A two-cooperating-prover one-round proof system with error (0; �) can be simulated by a two-alternating-prover one-round proof system with error (2�m;m2m�1�), an m-fold increase in the veri�er'srandomness and an exponential in m increase in the length of the answers returned by the provers.Proof: Use the proof system described above. If ! 2 L, then P0 is going to honestly answer the questionhe is asked in each round. We will see that this forces P1 to lie in response to all but the set of indices ~|. Ifthere is any m-tuple of questions indexed by ~{, ~{ 6= ~|, for which P1 honestly represents what P0 would say,then there must be a k such that (~{)k 6= (~|)k. Thus, if P1 honestly represented P0's answers on tuple ~{, theveri�er would accept. If ! 62 L, then the probability that V accepts is at most � for each k, and ~{ such that(~{)k 6= (~|)k, for a total error of m2m�1�. 2We will combine this Lemma with a Theorem of Feige and Kilian [FK94] which proves a weak versionof the parallel repetition conjecture [FL92]. (For a formal statement of the parallel repetition conjecturesee [FL92]).Theorem 5 ([FK94]). For any constant � > 0. A language L is in NP i� L has a 2-APP system withparameters ([9; 9]) and error (0; �).Corollary 6. For any constant �, 0 < � < 1=2. A language L is in NP i� L has a 2-APP system with error�. 4

Proof: The reverse direction is trivial, the other direction is a direct consequence of Theorem 5 andLemma 4. 2Corollary 7. A language L is in NEXPTIME i� L has a 2-APPsystem with parameters (poly(n); poly(n); [9;8])and error (1=poly(n); 1=exp(n))1.Proof: Again, the reverse implication is trivial. To prove the forward direction, observe that in [FL92] itis shown that a language in NEXPTIME has a 2-APP system with parameters (poly(n); poly(n); [9; 9]) anderror (0; 1=exp(n)). Hence the corollary follows again from Lemma 4. 2Remark 8. In Section 5, we will want to use the following stronger version of Lemma 4: assume that theoriginal two-cooperating-prover one-round proof system with veri�er bV and honest provers bP0 and bP1 hadtwo-sided error (�acc; �rej). We will say that bV accepts in round k if there exists an index vector ~{ such that(~{)k = 0 and (~|)k = 1 (switch ~{ and ~| if necessary), and such that bV on random string rk would accept ifgiven answers a~{k and a~|k. After P0 and P1 have answered V 's questions, we will allow player P0 to arbitrarilychoose some � fraction of the m rounds and we will say that V accepts in a round if either bV accepted in thatround, or if that round was in the fraction that P0 chose (Imagine that P0 is able to alter the computationof V on those rounds). We will change the veri�er's acceptance criteria to:� V accepts if P1 did not correctly represent what P0 said on the tuple ~| that P1 was asked.� V accepts if it accepts for a (�+��acc) fraction of the rounds (we will set � so that �(1� 1� �ln 1�) = �1,because we will use a Cherno� bound to bound the probability of error).This two-alternating-prover proof system has error (e�m�acc + 2�(1�2��2��acc)m; m2m�1�rej).In two-cooperating-prover proof systems, the power of the proof system is unchanged if the provers areallowed to choose randomized strategies. We end this section by observing that the situation for competing-prover proof systems di�ers.Say language L has a two-alternating randomized-prover proof system, denoted 2-ARP, if it can berecognized by a 2-APP system where the provers are allowed to have randomized strategies, that is, beforethe protocol begins the provers now choose randomized strategies (instead of only deterministic strategies),in the order speci�ed by their subindices. Equivalently, a 2-ARP system is a 2-APP system where the provershave access to private coins.Lemma 9. For any constant �, 0 < � < 1=2, a language L is in P i� L has a 2-ARP system with error �.Proof: [Sketch] The forward direction is trivial. To prove the converse, observe �rst that if �i, i 2 f0; 1g,is the probability distribution over deterministic strategies that prover Pi chooses, then the probabilityp! that the veri�er V accepts input !, n = j!j, depends on �i through the probabilities �i(qi; ai) =ProbPi �i [Pi(qi) = ai], where qi ranges over the set Qi of possible questions to prover Pi, and ai overthe set Ai of possible responses of prover Pi.Let,~�i = (�i(qi; ai))qi2Qi;ai2Ai .R be the set of random strings that the veri�er may generate on input !.�r be the probability that the veri�er generates random string r.qi(r) be the question that the veri�er sends to prover Pi on random string r.Vr;a0 ;a1 be equal to 1 if on input !, random string r, and provers' responses a0 and a1 the veri�eraccepts, and 0 otherwise.1poly(n) and exp(n) refer to O(nc) and O�2nc� respectively, for some positive constant c.5

Applying the technique of [FL92], it follows that:p! = max~�0 C(~�0); subject to8q0 Xa0 �0(q0; a0) = 1; ~�0 � 0;where, C(~�0) = min~�1 Xr;a0;a1�rVr;a0;a1 �0(q0(r); a0) �1(q1(r); a1)subject to8q1 Xa1 �1(q1; a1) = 1; ~�1 � 0;where r, q0, q1, a0 and a1 range over R, Q0, Q1, A0 and A1 respectively. By strong duality (see [Sc86]),C(~�0) can be expressed as the optimum of a linear program in max form. Thus, to compute p! it is enoughto solve a linear program of poly(n; jA0j; jA1j; jRj) size. Since in our case jA0j; jA1j = O(1), jRj = 2O(logn),and linear programming is polynomial-time solvable, the lemma follows. 2An analogous result for EXPTIME, for the only if part, was independently obtained in [FKS93].3. AOP Systems for �PkFeige and Kilian's proof of Theorem 5 uses an ampli�cation of the main result of [AS92, ALMSS92], whichstates that NP = PCP(logn; 1). In our terminology, this says that NP languages have 1-AOP proof systems.In order to extend our results beyond NP, we will need analogous tools that we can apply to languages in�Pk . We will begin by showing that languages in �Pk have k-AOP proof systems.We consider from now on only the case in which k is odd. Our results have analogous statements foreven k.The next theorem is implicit in [CFLS93a].Theorem 10 (k odd). For any constant � > 0. Every language L in �Pk has a k-AOP system with error(0; �).In the proof of this theorem, we will make use of some facts about Justesen codes. For a string x, letE(x) denote the Justesen encoding of x [MS77]. The following facts are standard:� The length of E(x) is linear (for our purposes, polynomial would su�ce) in the length of x.� There is a polynomial time algorithm that on input x returns E(x).� There is a constant �J and a polynomial time algorithm CJ such that if y and E(x) di�er in at mostan �J fraction of their bits, then CJ (y) = x (in which case we say that x and y are closer than �J).Otherwise, CJ (y) outputs \FAILURE" (in which case, we say that y is farther than �J from anycodeword).Proof: [of Theorem 10] Let L be a language in �Pk . That is, there exists a polynomial-time Turing machineV such that ! 2 L if and only if 9X1; 8X2; : : : ; 9Xk V (!;X1; : : : ; Xk) accepts [CKS81]. As in [CFLS93a],we will view the acceptance condition as a game between an 9 player and a 8 player who take turns writingdown polynomial-length strings Xi, with the 9 player writing on the odd rounds.In our k-AOP, the player who writes in round i purports to write down a Justesen encoding of Xi. Inaddition, in the k-th round, the 9 player is to write down encodings of everything the 8 player said anda PCP (logn; 1) proof that V (!;X1; : : : ; Xk) accepts. If each player actually wrote down codewords, then,using the techniques from [ALMSS92], the veri�er would read a constant number of random bits from eachoracle and a constant number of bits to check the PCP (logn; 1) proof and accept if V (!;X1; : : : ; Xk) wouldhave accepted, or reject with high probability if V would have rejected.6

In reality, one of the players will be trying to cheat and will have little incentive to write codewords. LetYi denote the oracle that is written in the i-th round. If a player writes an oracle Yi that is within �J ofa codeword, then the other player will proceed as if Yi was that codeword. On the other hand, if a playerwrites an oracle Yi that is farther than �J from a codeword, then with high probability the veri�er will detectthat player's per�dy.In the last round, the 9 player writes down strings Zi which he claims are encodings of Yi, for each eveni. In addition, the 9 player will, for each bit of each oracle Yi, provide a PCP (logn; 1) proof that, whendecoded, Zi agrees with Yi on that bit. For each even i, the veri�er will test these PCP (logn; 1) proofs tocheck that CJ (Zi) agrees with Yi on some constant number of randomly chosen bits. If any of these testsfails, then the veri�er will know that the 9 player has cheated and will reject accordingly. If the Zi's passall the tests, then the veri�er will be con�dent that CJ (Zi) is close to Yi, for all even i. The veri�er thenaccepts if the last player's proof indicates either that,� CJ (Yi) = \FAILURE" for some even i, or� V (!;X1; CJ(Y2); : : : ; CJ (Yk�1); Xk) accepts (note that the PCP (logn; 1) proof refers to the Xi's forodd i through their encoding as Yi, and to the Yi's for i even through their encoding as Zi).To see why this protocol works, assume that ! 2 L. In this case, the 9 player will always write codewords.Moreover, regardless of what oracle Yi the 8 player writes in turn i, the exist player will write Zi = E(Yi).Thus, the Zi's will always pass the consistency tests. If one of the 8 player's oracles is farther than �J froma codeword, then the last player will include this fact in his proof, and the veri�er will reject. On the otherhand, if for each even i, Yi is close to some codeword Xi, then the application of CJ to Yi will result in Yibeing treated as the encoding of Xi in the 9 player's PCP (logn; 1) proof.If x 62 L, then the 9 player will have to cheat in order to win. If the 9 player writes a message Yi that isnot close to a unique codeword, then this will be detected with high probability when the veri�er checks thevalidity of the PCP (logn; 1) proof supplied in the last round. If one of the Zi's misrepresents the oracle,Yi = E(Xi), of a 8 player, then either CJ (Zi) and Yi will have to di�er in at least an �J fraction of theirbits, or the 9 player will have to falsify the certi�cation of the computation of CJ on CJ (Zi) so that it doesnot decode to Xi. In either case, the 9 player will be caught with high probability. 2We note that Theorem 10 exactly characterizes �Pk because an alternating-Turing machine with k alter-nations can guess the k oracles and then compute the acceptance probability of the k-AOP system.Using Theorem 10 and the standard technique of [FRS88] for simulating an oracle by a pair of provers,we can transform a k-alternating-oracle proof system into a (k + 1)-alternating-prover proof system.Corollary 11 (k odd). L 2 �Pk i� L has a (k + 1)-APP system with parameters ([9; 8; 9; : : : ; 8; 9; 9]) anderror (0; 1� 1N), where N is a large constant depending on k.In order to prove Theorem 3, we have to reduce the error in Corollary 11 and show how to change theparameters ([9; 8; 9; : : :; 8; 9; 9]) to ([9; 8; 9; : : :; 8; 9; 8]). In the next two sections we present some of thenecessary ideas that we need to achieve these goals.4. Previous WorkIn Section 5, we will prove an analogue of the theorem of Feige and Kilian [FK94] which applies to kcompeting provers. The techniques used in [FK94] provide a deep insight into how a few random variablesinuence the value of a multi-variate function. In order to prove our analogue of their theorem, we will needa better understanding of some of their results, which we will summarize in this section.Consider a prover P to which we send m randomly suggested questions q(r1); : : : ; q(rm) and to which Panswers according to a �xed strategy f = (f1; : : : ; fm), a function from m-tuples (the m-tuple of questionsthat P receives), to m-tuples (the m-tuple of answers that P responds with). We would like P to use a globalstrategy, f , in which each fi is only a function of q(ri). We say that such a prover behaves functionally.Below, we state the consequences of a prover's failure to behave in this way.7

Say that an f-challenge2 (~I; (q(ri))i2~I) is live if 9(ai)i2~I such thatProb(ri)i62~I �(fi(q(r1); : : : ; q(rm)))i2~I = (ai)i2~I� � �;where � is a parameter to be �xed later. If the above inequality holds, say that (ai)i2~I is a live answer set forthe challenge (~I; (q(ri))i2~I). Intuitively, if we know the questions ~Q = (q(ri))i2~I that P receives on rounds~I and that ~A = (ai)i2~I is not a live answer set for the challenge (~I; ~Q), we should not be willing to bet thatP will answer ~A on rounds ~I . If P acts functionally in each round, then every challenge (~I; ~Q) is live, sincethe questions that P is sent on a round completely determine his answer on that round.For any choice of parameters such that 8� < �5, 2 ��5 < n, 0 < < 1, � � max�256 lnMM ; �8 lnMM � 13 �,where M = m � n, the following lemmas are implicit in the work of Feige and Kilian.Lemma 12. If ~A = (ai)i2~I is not a live answer set for the challenge (~I; (q(ri))i2~I), then, with probabilityat least 1� n� (over the choices of fij+1; : : : ; ing and (ri)i2In~I , where I = fi1; : : : ; ing and ~I = fi1; : : : ; ijg)it holds that Prob(ri)i62I hfi(q(r1); : : : ; q(rm)) = ai; for all i 2 ~Ii < � + n�:Intuitively, the preceding Lemma says that if ~A is not a live answer set for the challenge (~I; (q(ri))i2~I),and in addition to knowing the questions that P receives in rounds ~I we know the questions sent to P inrounds I � ~I , we usually should still not be willing to bet that P will answer ~A in rounds ~I . Observe thatknowledge of all the questions that P receives completely determines the answers in rounds ~I .Lemma 13. There is a good j for f , j < n, such that if more than a � fraction of the challenges(~I; (q(ri))i2~I) (over the choices of ~I = fi1; : : : ; ijg and (ri)i2~I) are live, then for a (1 � �) fraction ofthe live challenges (~I; ~Q = (q(ri))i2~I), for every i 62 ~I , and for each live answer set ~A = (ai)i2~I for thechallenge (~I; ~Q), it holds that there is a function Ff;i; ~Q; ~A such thatPr"��fi2I n ~I :fi(q(r1); : : : ; q(rm)) 6=Ff;i; ~Q; ~A(q(ri))g��jI n ~Ij � 2�� #� 1� �;where the probability is taken over the choices of (ri)i 62~I and I n ~I = fij+1; : : : ; ing.In other words, to every prover P we can associate a j such that if a non-negligible fraction of thechallenges (~I; ~Q) are live, where j~Ij = j, and if P answers the challenge (~I; ~Q) with live answer set ~A, then,P acts `almost' functionally in a signi�cant fraction of the rounds I n ~I, for most of the live challenges (~I; ~Q).5. APP systems for �PkIn Corollary 11 we characterized �Pk in terms of alternating-prover proof systems with error (0; 1� 1N), whereN is a large constant, and where the quanti�ers associated to the provers, except the last two, alternated.The goal of this Section is to again provide alternating-prover proof systems for �Pk languages which inaddition achieve:� Low error rates, and� The quanti�ers associated to all the provers alternate.2We omit f whenever it is clear from context. 8

To achieve these goals we follow an approach similar to the one taken in Section 2. First, we prove thatlanguages that have a (k + 1)-APP system with parameters ([9; 8; 9; : : : ; 8; 9; 9]) and error (0; 1� 1N), canbe recognized by a (k + 3)-APP system with parameters ([9; 8; 9; : : : ; 8; 8; 9; 9; 9]) and error �, for anyconstant �, 0 < � < 1=2.3 Notice that we achieve this without increasing the number of alternations of thequanti�ers associated to the provers. This step can be viewed as an analogue of Theorem 5 which applies tocompeting-prover proof systems. We then show how to convert the proof systems obtained in the �rst stepinto (k+ 1)-APP systems in which all the quanti�ers associated to the provers alternate. This latter step isperformed without signi�cantly increasing the error probability.We describe below a protocol which achieves the �rst goal of this section. Consider a language that has a(k+1)-APP with parameters ([9; 8; 9; : : : ; 8; 9; 9]) and error (0; 1� 1N) with veri�er bV and provers bP0; : : : ; bPk.Let q(l)(r) denote the question that the veri�er bV , on random string r, asks the prover bPl. Consider nowa veri�er V interacting with provers P0; : : : ; Pk+2 quanti�ed by ([9; 8; 9; : : :; 8; 9; 9; 9; 8]) respectively. Theunderlying idea of the protocol we are about to describe is the following: the veri�er V tries to parallelizebV 's protocol. In order to force cheating provers to behave functionally, a Consistency Test is implemented.This test requires the use of two (one for each competing team of provers) additional provers (Pk+1 andPk+2). If a team of provers fails the consistency test then their claim will be rejected. Honest proverswill behave functionally in each round and thus they will always be able to PASS the Consistency Test.Nevertheless, it may be that cheating provers have a signi�cant probability of passing the Consistency Test,but honest provers cannot determine the strategy which the cheating provers use to answer each round fromthe knowledge of their strategy alone. The protocol implemented by the veri�er V will allow honest proversto make a set of `educated' guesses regarding the strategies that the cheating provers might be using toanswer each of the questions posed to them. Thus, either cheating provers will fail the Consistency Test,or the veri�er V will end up (with high probability) with a set of rounds most of which can be treated asindependent executions of bV 's protocol.In what follows we describe the questions that V makes, the format in which the provers are supposedto answer, and the acceptance criteria.The Queries� V chooses I � f1; : : : ;mg, jIj = n at random, and selects for every i 2 I random string ri as the oldveri�er bV would have.� V selects 8j 2 f0; : : : ; kg, 8i 2 f1; : : : ;mg n I, random string r(j)i as the old veri�er bV would have.For i 2 f1; : : : ;mg, j 2 f0; : : : ; kg let �(j)i = � ri if i 2 I,r(j)i otherwise.� V chooses Il � I n S0�j<l Ij , jIlj = n, at random together with a random ordering �l of Il forl = 0; : : : ; k (we will later set = 12(k+1)).� V sends to prover Pl, l 2 f0; : : : ; kg, (q(l)(�(l)i); i 2 f1; : : : ;mg nS0�j<l Ij), (when a question is sent toa prover the veri�er indicates the round i 2 f1; : : : ;mg to which the question corresponds).� V sends to prover Pl+1, l 2 f0; : : : ; k � 1g all questions (q(j)(ri))i2Ij , the set of indices Ij , and theorderings �j, for all j 2 f0; : : : ; lg.� V sends to provers Pk+1 and Pk+2 the questions (q(l)(ri))i2Il , the set of indices Il and the orderings�l, for all l 2 f0; : : : ; kg.The Responses3In fact, a (k + 2)-APP with parameters ([9;8;9; : : : ;8;8;9;9]) v and similar error rates su�ces, but proving this wouldunnecessarily complicate our exposition. 9

The format of each prover's answer is a tree.For a graph tree T (we will only consider rooted trees), we say that a node v 2 V (T) is at level i if itsdistance to the root of T is i. We say that an edge e 2 E(T) is at level i if it is rooted at a node oflevel i.De�nition 14. Let J � f0; : : : ; rg be a set of indices. We say that a tree T is a J-tree if nodes atlevel j 2 J have only one child.We will consider the nodes and edges of our trees as being labeled. Internal nodes will be labeled bysets of indices. Edges rooted at a node labeled J will be labeled by a tuple of strings (aj)j2J . Wedenote the label of a node v (resp. edge e) by LT (v) (resp. LT (e)).De�nition 15. Let v be a node of level l of tree T , and v0; : : : ; vl�1 the sequence of nodes along thepath from the root of T to v. De�ne the history of v as follows:HTv=[LT (v0);LT (v0; v1)] : : : [LT (vl�1);LT (vl�1; v)]Pl responds with a tree Tl.� Tl, for l 2 f0; : : : ; kg is a tree of depth l labeled as follows:{ An internal node v at level j is labeled by Ij .{ Every internal node v at level j has an edge rooted at v for every possible set of answers of Pj toquestions (q(j)(ri))i2Ij , and labeled by this tuple of answers.{ A leaf is labeled \CONCEDE DEFEAT", \GARBAGE" or by the answers to the questions�q(l)(ri); i 2 f1; : : : ;mg nS0�j<l Ij�.� Tk+1 (resp. Tk+2) is aK-tree of depth k+1, where K = f0; 2; : : :; k�1; kg (resp. K = f1; 3; : : : ; k�2g),labeled as follows:{ Nodes and edges at levels j 62 K are labeled as in the trees described above.{ The only edge of level j 2 K rooted at v is labeled by a tuple of answers (a(j)i)i2Ij .Assume now that T0; : : : ; Tk are in the proper format. De�ne the sequence of leaves vl 2 V (Tl),l 2 f0; : : : ; kg as follows: v0 is the only node of T0, if v0; : : : ; vl have been determined, and�a(j)i ; i 2 f1; : : : ;mgnS0�s<j Is� is the label of vj , then vl+1 is the leaf of tree Tl+1 with history[I0; (a(0)i)i2I0] : : : [Il; (a(l)i)i2Il]:De�ne for j 2 f0; : : : ; kg the following path:P(T0; : : : ; Tj) = [I0; (a(0)i)i2I0] : : : [Ij ; (a(j)i)i2Ij]:Note that there is only one leaf in Tk+1 and Tk+2 that have the same history. The history of both theseleaves determines a common path of Tk+1 and Tk+2 which we denote by,P0(T0; : : : ; Tj) = [I0; (a0(0)i)i2I0] : : : [Ij; (a0(j)i)i2Ij]:Acceptance CriteriaThe veri�er V checks thati. The responses of the provers have the proper format. If a prover does not comply with the formatof the responses its claim is immediately rejected (honest provers will always answer in the properformat). 10

ii. The following Consistency Test PASSES.V compares P = P(T0; : : : ; Tk) and P 0 = P 0(Tk+1; Tk+2). Two di�erent situations may arise:(a) P = P0, in this case we say that the consistency test PASSES.(b) P 6= P 0, in this case let l be the smallest j such that (a(j)i)i2Ij 6= (a0(j)i)i2Ij . V then rejectsPl's claim.V then accepts i� for more than a 1 � 1cN fraction of the rounds i 2 I nS0�j�k Ij the old veri�er bVon random string ri would accept if given answers a(0)i ; : : : ; a(k)i from provers bP0; : : : ; bPk respectively,(where c is a large constant whose value we will set later).Lemma 16 (k odd). For any constant �, 0 < � < 1=2. Every language L recognized by a (k + 1)-APPwith parameters ([9; 8; : : : ; 8; 9; 9]) and error (0; 1� 1N), where N is a large constant, has a (k+3)-APP withparameters ([9; 8; : : : ; 8; 8; 9; 9; 9]) and error �.Proof: [Sketch] Use the protocol described above. First we show how honest provers respond. Assume Plis honest, l � k, then Pl will generate a tree Tl of the proper format. We only have to show how the leaveson Tl are labeled. Let u0; : : : ; ul be a path in Tl from the root u0 to the leaf ul. In labeling ul, Pl considersthe strategies f0; : : : ; fl�1 that P0; : : : ; Pl�1 use in labeling the leaves (abusing notation) u0; : : : ; ul�1 ofT0; : : : ; Tl�1 with history HTlu0 ; : : : ;HTlul�1 respectively. For s 2 f0; : : : ; l � 1g, let js be the smallest good j,as de�ned by Lemma 13, for fs. Let ~Is � Is be the set of the �rst js indices of Is as determined by �s. Let~Qs = (q(s)(ri))i2~Is be the set of questions on rounds ~Is, and ~As = (~a(s)i)i2~Is be the set of answers in rounds~Is induced by the label of the leaf us.De�ne the following events:Event E1 : 8s 2 f0; : : : ; l � 1g, the answer sets ~As are live for the fs-challenge (~Is; ~Qs).Event E2 : 8s 2 f0; : : : ; l� 1g, more than a � fraction of the fs-challenges (~Is = fi1; : : : ; ijsg; (q(s)(ri))i2~Is)(over the choices of ~Is = fi1; : : : ; ijsg and (ri)i2~Is) are live.For an appropriate choice of parameters we can distinguish two cases,Events E1 and E2 occur: 8i 2 f1; : : : ;mg nS0�s<l Is, 8s 2 f0; : : : ; l � 1g, Pl determines (if possible) thefunctions Ffs;i; ~Qs; ~As (as in Lemma 13), and the optimal strategy for answering round i, say P uli , ofan (l + 1)-th prover of a k-APP of the form given in Corollary 11, where the �rst l provers are givenby Ff0;i; ~Q0; ~A0;; : : : ; Ffl�1;i; ~Ql�1 ; ~Al�1 . If Pl is unable to determine some Ffs;i; ~Qs; ~As he labels ul with\CONCEDE DEFEAT", that is, Pl recognizes that cheating provers have outsmarted him. Otherwise,Pl answers round i of ul according to Puli .Otherwise: Pl labels ul with \GARBAGE", that is, Pl expresses its con�dence that the cheating proverswill not PASS the consistency test.It follows that honest provers never fail the consistency test, since in each leaf of their respective responsetree honest provers answer each round functionally.Consider now the leaf v0 of T0 and the leaves v1; : : : ; vk of T1; : : : ; Tk with history P(T0);: : : ;P(T0; : : : ; Tk�1), �x above ui = vi, for i 2 f0; : : : ; kg, l = k + 1, and de�ne events E1 and E2 asbefore.If E1 does not occur: then, from Lemma 12, cheating provers will PASS the consistency test with prob-ability at most � + 2(k + 1)n� � 3� (assuming (k + 1)n� � �).If E2 does not occur: then from the preceding paragraph, we conclude that cheating provers will PASSthe consistency test with probability at most 4�.If E1 and E2 occur: then, Lemma 13 implies that with probability at most (k+2)2 � the honest provers areoutsmarted by the cheating provers; otherwise, with probability at least 1 � k+22 � at least (1 � (k +1) � (k+2)��)n of the rounds i 2 I nS0�j�k Ij are answered according to Ff0;i; ~Q0; ~A0 ; : : : ; Ffk;i; ~Qk; ~Ak .11

Let p = (k+2)2 (� + �) + 7�, and n0 = (1� (k+ 1))n. Now, choose = 12(k+1) , � = p� , � small enough so� � 1=(2cN (k+ 2))2 (hence � = (1� (k + 1) � (k+2)��) nn0 � 1� 1cN) and p = (k+2)2 (p� + �) + 7� � �=2, nlarge enough so n � 2N log(2=�) and n > 2��5=, � small enough so 8� < �5 and (k + 1)n� � �, M largeenough so if M = m�n, � � max(256 lnMM ; (8 lnMM)1=3). Remember that all the above mentioned parametersare constants.If ! 2 L, with probability at least 1 � p � 1 � �=2, the old veri�er will accept for a fraction of at least� � 1� 1cN of the rounds i 2 I nS0�j�k Ij, and thus V will accept.If ! 62 L, then the probability of V accepting is at most p + 2�n0=N � �, (where the bound on theprobability of acceptance follows by choosing c to be a constant large enough so that h(1� 2cN)� log eN (1� 2cN) ��1=N , where h(�) is the binary entropy function).Finally, note that the order of the provers might as well have been P0; : : : ; Pk�2; Pk+2; Pk�1; Pk; Pk+1.2 Note that the protocol used to prove Lemma 16, is more generous with the cheating provers than actuallyrequired. We can modify the protocol by requiring that prover Pl respond with a tree Tl which is also anSl-tree, where s 2 Sl if s < l and prover Ps is in Pl's team. The labels of the edges of Tl at level s,s 2 Sl, can now be required to be consistent with the labels that Ps assigns to the leaves of Ts. Combiningthis modi�ed protocol, the protocol that Feige and Kilian [FK94] use in their proof of Theorem 5, and theprotocol described in Remark 8, we can prove:Lemma 17. For any constant �, 0 < � < 1=2. Every language L recognized by a (k + 3)-APP system withparameters ([9; 8; : : : ; 8; 8; 9; 9; 9]) and error � for any constant �, can be recognized by a (k+1)-APP systemwith parameters ([9; 8; : : : ; 8; 9; 8]) and error �.Proof: Omitted. 2We can now prove our main theorem:Theorem 3. For any constant �, 0 < � < 1=2. A language L is in �Pk if and only if it has a (k + 1)-APPsystem with error �.Proof: If L has a (k + 1)-APP system with error � < 1=2, then a �Pk Turing machine can guess thestrategy of the �rst k provers, compute for each one of the polynomially many questions that the last provercan receive, the optimal constant-size response, and then calculate the acceptance probability of the veri�er.The other direction follows from Theorem 10, Lemmas 16 and 17. 2We observe that Theorem 3 is best possible in the sense that unless the polynomial-time hierarchycollapses, all �Pk languages do not have (k + 1)-APP systems with one-sided error:Remark 18. For any constant � > 0. If language L has a (k+1)-APP system with error (0; �) (resp. (�; 0))then L is in �Pk�1.Proof: Omitted, but not di�cult. 2We hope that the theorems presented in this paper can be used to prove non-approximability results fornon-arti�cially constructed problems.6. AcknowledgmentsThis paper owes its existence to Joan Feigenbaum; we give her a special thanks. We would like to thank UriFeige and Joe Kilian for explaining their early results to us and for providing us with an early draft of theirpaper. We would like to thank Mario Szegedy for suggesting that we generalize Corollary 6 and for atypicalcontributions. We would also like to thank Michel Goemans, Sha� Goldwasser and Mike Sipser for helpfuldiscussions. 12

References[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. \Proof veri�cation and intractabilityof approximation problems". Proc. of the 33rd IEEE FOCS, pages 14{23, 1992.[AS92] S. Arora, and S. Safra. \Probabilistic checking of proofs". In Proc. of the 33rd IEEE FOCS, pages2{13, 1992.[BFL91] L. Babai, L. Fortnow, and C. Lund. \Nondeterministic exponential time has two-prover interactiveprotocols". Computational Complexity, 1:3{40, 1991.[CFLS93a] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. \Probabilistically checkable debate systemsand approximation algorithms for PSPACE-hard functions". In Proc. of the 25th ACM STOC,pages 305{314, 1993.[CFLS93b] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. \Random debaters and the hardness ofapproximating stochastic functions". DIMACS TR 93-79, Rutgers University, Piscataway NJ,1993.[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. \Alternation". Journal of the ACM, 28:114{133, 1981.[FST88] U. Feige, A. Shamir, and M. Tennenholtz. \The Noisy Oracle Problem". Proc. Crypto 88, pages284-296, 1988".[FK94] U. Feige and J. Kilian, \Two prover protocols - Low error at a�ordable rates". Proc. of the 26thACM STOC, pages 284-296, 1988".[FKS93] J. Feigenbaum, D. Koller, and P. Shor. Private communication.[FL92] U. Feige, and L. Lov�asz. \Two-provers one-round proof systems: their power and their problems".Proc. of the 24th ACM STOC, pages 733{744, 1992.[FRS88] L. Fortnow, J. Rompel, and M. Sipser. \On the power of multi-prover interactive protocols". Proc.of the 3rd Annual Conference on Structure in Complexity Theory, pages 156{161, 1988.[LS91] D. Lapidot, and A. Shamir. \Fully parallelized multi prover protocols for NEXP-time". In Proc.of the 32nd IEEE FOCS, pages 13{18, 1991.[MS77] F. J. MacWilliams, and N. J. A. Sloane. The Theory of Error-Correcting Codes. North Holland,Amsterdam, 1977.[PR79] G. Peterson, and J. Reif. \Multiple-person alternation". In Proc. of the 20th IEEE FOCS, pages348-363, 1979.[Reif84] J. H. Reif. \The complexity of two-player games of incomplete information". J. Comput. SystemScience, 29, pages 274-301, 1984.[Sc86] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chicester, 1986.[St77] L.J. Stockmeyer. \The polynomial-time hierarchy". In Theoretical Computer Science 3, pages1{22, 1977. 13

