Improving Spanning Trees by Upgrading Nodes

S. O. Krumke,! M. V. Marathe,? H. Noltemeier,!
R. Ravi,? S. S. Ravi,* R. Sundaram,® H. C. Wirth!

! Dept. of Computer Science, University of Wiirzburg, Am Hubland,
97074 Wirzburg, Germany.
Email: {krumke ,noltemei, wirth}@inf ormatik.uni-wuerzburg.de
2 Los Alamos National Laboratory, P.O. Box 1663, MS K990, Los Alamos, NM
87545, USA. Email: madhav@c3.lanl.gov’

3 GSIA, Carnegie Mellon University, Pittsburgh, PA 15213. Email: ravi+@cmu.eduf
* Dept. of Computer Science, University at Albany — SUNY, Albany, NY 12222,
USA. Email: ravi@cs.albany.edu
5 Delta Trading Co. Work done while at MIT, Cambridge MA 02139. Email:
koods@theory.lcs.mit.edu. I

Abstract. We study budget constrained optimal network upgrading prob-
lems. We are given an edge weighted graph G = (V, E) where node v € V
can be upgraded at a cost of ¢(v). This upgrade reduces the delay of each
link emanating from v. The goal is to find a minimum cost set of nodes
to be upgraded so that the resulting network has a good performance.
We consider two performance measures, namely, the weight of a mini-
mum spanning tree and the bottleneck weight of a minimum bottleneck
spanning tree, and present approximation algorithms.

1 Introduction, Motivation and Summary of Results

Several problems arising in areas such as communication networks and VLSI
design can be expressed in the following general form: Enhance the performance
of a given network by upgrading a suitable subset of nodes. In communica-
tion networks, upgrading a node corresponds to installing faster communication
equipment at that node. Such an upgrade reduces the communication delay along
each edge emanating from the node. In signal flow networks used in VLSI de-
sign, upgrading a node corresponds to replacing a circuit module at the node by
a functionally equivalent module containing suitable drivers. Such an upgrade
decreases the signal transmission delay along the wires connected to the module.
There is a cost associated with upgrading a node, and there is often a budget on
the total upgrading cost. Therefore, it is of interest to study the problem of up-
grading a network so that the total upgrading cost obeys the budget constraint
and the resulting network has the best possible performance among all upgrades
that satisfy the budget constraint.

§ Supported by the Department of Energy under Contract W-7405-ENG-36.
¥ Supported by NSF CAREER grant CCR-9625297.
I Supported by DARPA contract N0014-92-J-1799 and NSF CCR 92-12184.

The performance of the upgraded network can be quantified in a number
of ways. In this paper, we consider two such measures, namely, the weight of a
minimum spanning tree in the upgraded network and the bottleneck cost (i.e.,
the maximum weight of an edge) in a spanning tree of the upgraded network.
Under either measure, the upgrading problem can be shown to be NP-hard. So,
the focus of the paper is on the design of efficient approximation algorithms.

1.1 Background: Bicriteria Problems and Approximation

The problems considered in this paper involve two optimization objectives,
namely, the upgrading cost and the performance of the upgraded network. A
framework for such bicriteria problems has been developed in [7]. A generic bi-
criteria problem can be specified as a triple (A, B, I') where A and B are two
objectives and I" specifies a class of subgraphs. An instance specifies a budget on
the objective A and the goal is to find a subgraph in the class I' that minimizes
the objective B for the upgraded network. As an example, the problem of up-
grading a network so that the modified network has a spanning tree of weight at
most D while minimizing the node upgrading cost can be expressed as (ToTAL
WEeIGHT, NoDE UPGRADING CoOST, SPANNING TREE).

Definition1. A polynomial time algorithm for a bicriteria problem (A, B, I') is
said to have performance (a, §), if it has the following property: For any instance

of (A, B, I') the algorithm

1. either produces a solution from the subgraph class I'" for which the value of
objective A is at most « times the specified budget and the value of objective
B is at most § times the minimum value of a solution from I' that satisfies
the budget constraint, or

2. correctly provides the information that there is no subgraph from I' which
satisfies the budget constraint on A.

1.2 Problem Definitions

The node based upgrading model discussed in this paper can be formally described
as follows. Let G = (V, E) be a connected undirected graph. For each edge e € E,
we are given three integers do(e) > dy(e) > da(e) > 0. The value d;(€) represents
the length or delay of the edge e if exactly ¢ of its endpoints are upgraded.

Thus, the upgrade of a node v reduces the delay of each edge incident with v.
The (integral) value ¢(v) specifies how expensive it is to upgrade the node v. The
cost of upgrading all vertices in W C V, denoted by ¢(W), is equal to 3~ .y ().

For a set W C V of vertices, denote by dyy the edge weight function resulting
from the upgrade of the vertices in W that is, for an edge (u,v) € E

dw (u,v) :=d;(u, v) where i = |W N {u, v}|.

We denote the total length of a minimum spanning tree (MST) in G' with respect
to the weight function dw by MST(G, dw).

Definition 2. Given an edge and node weighted graph G = (V, E) as above
and a bound D, the upgrading minimum spanning tree problem, denoted by
(Torar WeigHT, NobE UpPGRADING CosT, SPANNING TREE), is to upgrade
a set W CV of nodes such that MST(G,dw) < D and ¢(W) is minimized.

We also consider the node based upgrading problem to obtain a spanning
tree with the bottleneck cost at most a given value. We denote the bottleneck
weight (i.e., the maximum weight of an edge) of a minimum bottleneck spanning
tree of G with respect to the weight function dw by MBOT(G, dw).

Definition 3. Given an edge and node weighted graph G' = (V, F) as above and
a bound D, the upgrading minimum bottleneck spanning tree problem, denoted
by (BorTLENECK WEIGHT, NODE UPGRADING COsT, SPANNING TREE), is
to upgrade a set W C V of nodes such that MBOT(G, dw) < D and ¢(W) is

minimized.

Dual Problems The problem (ToTAL WEIGHT, NODE UPGRADING CoOST,
SPANNING TREE) is formulated by specifying a budget on the weight of a tree
while the upgrading cost is to be minimized. It is also meaningful to consider
the corresponding dual problem, denoted by (Nobe UpGrapING CosT, TOTAL
WELIGHT, SPANNING TREE), where we are given a budget on the upgrading cost
and the goal is to minimize the weight of a spanning tree in the resulting graph.

Lemma4. If there exists an approzimation algorithm for (TOTAL WEIGHT,
NoDE UPGRADING CosT, SPANNING TREE) with a performance of («, 3), then
there is an approzimation algorithm for (NODE UPGRADING CosT, TOTAL
WEIGHT, SPANNING TREE) with performance of (3, «).

Proof. Let A be an («, 3)-approximation algorithm for (ToTarL WEIGHT, NODE
UPGRADING CosT, SPANNING TREE). We will show how to use A to construct
a (B, @)-approximation algorithm for the dual problem.

An instance of (NoDE UpPGRADING CosT, ToTAL WEIGHT, SPANNING
TREE) is specified by a graph G = (V, E), the node cost function ¢, the weight
functions d;, ¢ = 0,1, 2, on the edges and the bound B on the node upgrading
cost. We denote by OPT the optimum weight of an MST after upgrading a ver-
tex set of cost at most B. Observe that OPT is an integer such that (n—1)D; <
OPT < (n — 1)Do where D3 := mineer d2(e) and Dg := max.ecg do(e).

We use binary search to find the minimum integer D such that (n — 1)Dy <
D < (n—1)Dg and algorithm A applied to the instance of (NoDE UPGRADING
Cost, BorrLENECK WEIGHT, SPANNING TREE) given by the weighted graph G
as above and the bound D on the weight of an MST after the upgrade outputs an
upgrading set of cost at most aB. Tt is easy to see that this binary search indeed
works and terminates with a value D < OPT. The corresponding upgrading set
W then satisfies MST (G, dw) < D < OPT and ¢(W) < aB. O

A result similar to Lemma 4 can be shown for the bottleneck case. In view of
these results, we express our results for the problems (ToraL WEIGHT, NODE
UPGRADING CosT, SPANNING TREE) and (BoTTLENECK WEIGHT, NODE Up-
GRADING CosT, SPANNING TREE).

1.3 Summary of Results

For the total weight MST upgrading problem, we derive our approximation re-
sults under the following assumption:

Assumption5. There is a polynomial p such that Do — Dy < p(n), where
Do := max.cpdo(e) and Dz := ming.cgda(e) are the mazimum and minimum
edge weight, respectively, and n denotes the number of nodes in the graph.

Theorem 6. For any fized ¢ > 0, there is a polynomial time algorithm which, for
any instance of (ToTaL, WEIGHT, NoDE UPGRADING COST, SPANNING TREE)
satisfying Assumption 5, provides a performance of (1, (1+¢)20(logn)).

For the bottleneck case, we do not need any assumption about the edge weights.

Theorem 7. There is an approzimation algorithm for the (BOTTLENECK WEIGHT,
NoDE UPGRADING C0ST, SPANNING TREE) problem with performance (1, 2Inn).

Our approximation results are complemented by the following hardness results:

Theorem 8. Unless NP C DTlME(nO(l"gk’g”)), there can be no polynomial time
approxzimation algorithm for either (TOTAL WEIGHT, NODE UPGRADING COST,
SPANNING TREE) or (BOTTLENECK WEIGHT, NODE UPGRADING COST, SPAN-
NING TREE) with a performance of (f(n), «) for any o <Inn and any polyno-
mial time computable function f. This result continues to hold with f(n) = n*
being any polynomial, even if Assumption § holds.

Due to space limitations, the remainder of this paper discusses mainly the al-
gorithm mentioned in Theorem 6 above. Proofs of other results will appear in a
complete version of this paper.

1.4 Related Work

Some node upgrading problems have been investigated under a simpler model by
Paik and Sahni [9]. In their model, the delay of an edge is decreased by constant
factors of § or %, when one or two of its endpoints are upgraded, respectively.
Clearly, this model is a special case of the model treated in our paper.

Under their model, Paik and Sahni studied the upgrading problem for several
performance measures including the maximum delay on an edge and the diameter
of the network. They presented NP-hardness results for several problems. Their
focus was on the development of polynomial time algorithms for special classes
of networks (e.g. trees, series-parallel graphs) rather than on the development of
approximation algorithms. OQur constructions can be modified to show that all
the problems considered here remain NP-hard even under the Paik-Sahni model.

Edge-based network upgrading problems have also been considered in the
literature [1, 4, 5]. There, each edge has a current weight and a minimum weight
(below which the edge weight cannot be decreased). Upgrading an edge cor-
responds to decreasing the weight of that particular edge and there is a cost

associated with such an upgrade. The goal is to obtain an upgraded network
with the best performance. In [4] the authors consider the problem of edge-
based upgrading to obtain the best possible MST subject to a budget constraint
on the upgrading cost and present a (1 4 ¢, 1 4 1/¢)-approximation algorithm.
Generalized versions where there are other constraints (e.g. bound on maximum
node degree) and the goal is to obtain a good Steiner tree, are considered in [5].
Other references that address problems that can be interpreted as edge-based
improvement problems include [3, 8, 10].

2 Upgrading Under Total Weight Constraint

In this section we develop our approximation algorithm for the (ToTaL WEIGHT,
NobpE UrPGRADING CoST, SPANNING TREE) problem. Without loss of general-
ity we assume that for a given instance of (ToraL WEIGHT, NODE UPGRADING
CosT, SPANNING TREE) the bound D on the weight of the minimum spanning
tree after the upgrade satisfies D > MST(G, ds), i.e., the weight of an MST
with respect to ds, since node upgrading cannot reduce the weight of the min-
imum spanning tree below this value. Thus, there always exists a subset of the
nodes which, when upgraded, leads to an MST of weight at most D. We remind
the reader that our algorithm also uses Assumption 5 (stated in Section 1.3)
regarding the edge weights in the given instance.

2.1 Overview of the Algorithm

Our approximation algorithm can be thought of as a local improvement type
algorithm. To begin with, we compute an MST in the given graph with edge
weights given by do(e). Now, during each iteration, we select a node and a subset
of its neighbors and upgrade them. The policy used in the selection process is
that of finding a set which gives us the best ratio improvement, which is defined
as the ratio of the improvement in the total weight of the spanning tree to
the total cost spent on upgrading the nodes. Having selected such a set, we
recompute the MST and repeat our procedure. The procedure is halted when
the weight of the MST is at most the required threshold D. To find a subset of
node with the best ratio improvement in each iteration, we use an approximate
solution to the Two Cost Spanning Tree Problem defined below.

Definition9 Two Cost Spanning Tree Problem. Given a connected undirected
graph G = (V, F), two edge weight functions, ¢ and /, and a bound B, find a
spanning tree T of G such that the total cost ¢(7T) is at most B and the total cost
[(T) is a minimum among all spanning trees that obey the budget constraint.

The above problem can be expressed as the bicriteria problem (¢-TOTAL
WEIGHT, [-ToTAL WEIGHT, SPANNING TREE). This problem has been ad-
dressed by Ravi and Goemans [11] who obtained the following result.

Theorem 10. For allz > 0, there is a polynomial time approxzimation algorithm
for the Two Cost Spanning Tree problem with a performance of (1 +¢,1).

2.2 Algorithm and Performance Guarantee

The steps of our algorithm are shown in Figure 1. This algorithm uses Procedure
ComPUTE QC whose description appears in Figure 2.

ALGORITHM UPGRADE MST(2)

o Input: A graph G = (V, E), three edge weight functions do > di > ds, a node
weight function ¢, and a number), which is a bound on the weight of an MST in
the upgraded graph; a “guess value” {2 for the optimal upgrading cost.

1. Initialize the set of upgraded nodes: Wy := 0.
2. Let Tp := MST(G, dw,).
3. Initialize the iteration count: 1 := 1.
4. Repeat the following steps until for the current tree T;_; and the weight function
dw,_, we have: dw,_,(Ti-1) < D:
(a) Let Ti—y := MST(G,dw,_,) be an MST w.r.t. the weight function dw,_,.
(b) Call Procedure CoMPUTE QC to find a marked claw C' with “good” quotient
cost g(C'). Procedure CoMPUTE QC is called with the graph (G, the current
MST T;_1, the current weight function dw,_, and the bound 2.
(c¢) If Procedure COMPUTE QC reports failure, then report failure and stop.
(d) Upgrade the marked vertices M (C) in C: W; := W;_, U M(C).

(e) Increment the iteration count: i := 1+ 1.

o Quiput: A spanning tree with weight at most D, such that total cost of upgrading
the nodes is no more than (14¢)£2.O(log n), provided {2 > OPT. Here, OPT denotes
the optimal upgrading cost to reduce the weight of an MST to be at most 1.

Fig. 1. Approximation algorithm for node upgrading under total weight constraint.

Before we embark on a proof of Theorem 6, we give the overall idea behind
the proof. Recall that each basic step of the algorithm consists of finding a node
and a subset of neighbors to upgrade.

Definition11. A graph C = (V, E) is called a claw, if E is of the form F =
{(v,w) : w € V\{v}} for some node v € V. The node v is said to be the center
of the claw. A claw with at least two nodes is called a nontrivial claw.

Let W be a subset of the nodes upgraded so far and let T be an MST with
respect to dy; that is, T = MST(G, dyw). For a claw C with nodes M (C) C C
marked, we define its quotient cost ¢(C') to be

c(M(C))

9(C) = dw (T) = MST(T U C, dwum(c) if M(C) # 0,

and +o0o otherwise. In other words, ¢(C) is the cost of the vertices in M(C)
divided by the decrease in the weight of the MST when the vertices in M (C)
are also upgraded and edges in the current tree T can be exchanged for edges in

the claw C. Notice that this way the real profit of upgrading the vertices M (C)
is underestimated, since the weight of edges outside of C' might also decrease.

Our analysis essentially shows that in each iteration there exists a claw of
quotient cost at most ﬁ%%, where T'is the weight of an MST at the beginning

of the iteration and W are the nodes upgraded so far. We can then use a potential
function argument to show that this yields a logarithmic performance guarantee.

ProcEDURE COMPUTE QC({£2)
o Input: A graph G = (V, E), a spanning tree 1" and a weight function d on F;
W CV is the set of upgraded nodes; a “guess” 2 for the optimal upgrading cost.

1. Let s := [log, . 7.
2. For each node v ¢ W and all K € {1,(1+¢),(1+¢)%...,(14+¢)°} do
(a) Set up an instance I, x of the Two Cost Spanning Tree Problem as follows:
— The vertex set of the graph G, contains all the vertices in G and an
additional “dummy node” .
— There is an edge (v, =) joining v to the dummy node z of length (v, z) =
0 and cost ¢(v,z) = ¢(v) thus modeling the upgrading cost of v.
— For each edge (v,w) € E, (G, contains two parallel edges h and hyp.
The edge h models the situation where w is not upgraded:

o) = o= { i) e

Similarly, hyp models an upgrade of w:
e(hup) := S(w) gz ; % l(hup) := da(v, w).
— For each edge (u, w) € T, there is one edge (u, w) € £ which has length
l(u,w) = d(u,w) and cost ¢(u, w) = 0.
— The bound B on the c-cost of the tree is set to K.
(b) Using the algorithm mentioned in Theorem 10, find a tree of c-cost at most
(1 + 6)[(and l-cost no more than that of a minimum budget K bounded
spanning tree (if one exists). Let T, x be the tree produced by the algorithm.
3. If the algorithm fails for all instances I, x then report failure and stop.
4. Among all the trees T, x find a tree T,+» g+ which minimizes the ratio
o(Tor g+)[(d(T) = U(Tov K+)).
5. Construct a marked claw C from T,» g+ as follows:
— The center of C'is v* and v* is marked.
— The edge (U*7 w) is in the claw C'if T,» x+ contains an edge between v* and
w. The node w is marked if and only if the edge in T+ x+ between v* and
w has c-cost greater than zero.

o Output: A marked claw C' (with its center also marked) with quotient cost q(C)
satisfying g(C') < 2(1 + 6)2% and cost ¢(M(C)) < (14 ¢)12.

Fig. 2. Algorithm for computing a good claw.

2.3 Bounded Claw Decompositions

Definition12. Let G = (V, E) be a graph and W C V a subset of marked
vertices. Let k > 1 be an integer constant. A k-bounded claw decomposition of
G with respect to W is a collection C'4, ..., C, of nontrivial claws, which are all
subgraphs of G, with the following properties:

1. U::1 V(CZ) =V and ngl E(CZ) = F.

2. No node from W appears in more than & claws.

3. The claws are edge-disjoint.

4. If a claw Cj contains nodes from W, then its center belongs also to W.

Lemma13. Let F be a forest in G = (V, E) and let W C V be a set of marked
nodes. Then there is a 2-bounded claw decomposition of F with respect to W. 0O

Lemma14. Let T :=T;_1 be an MST at the beginning of iteration i with W :=
Wi_1 being the nodes upgraded so far. Let U C V be a set of nodes. Let T' =
MST(G, dwur) be a minimum spanning tree after the additional upgrade of the
vertices in U. Then, there is a bijection ¢ : T — T" with the following properties:
1. For all edges e € TNT' we have ¢(e) = e, 2. dwuv(p(e)) < dw(e) for all
e €T, 3. the “swaps” e = p(e) transform T into T', and 4. 3 cp(dw(e) —
dwuu (p(e))) = dw (T) = dwur (T'). O

Lemma15. Let T := T;_1 be an MST at the beginning of iteration i, i.e.,
T = MST(G,dw), where W := W;_1 is the upgrading set constructed so far.
Then there is a marked claw C' (where its center v is also marked and v ¢ W)
with quotient cost q(C) satisfying

20PT

q(C) < (T =D and c(M(C)) < OPT.

Proof. Let T' = MST(G, dwuopT) be an MST after the additional upgrade of
the vertices in OPT. Clearly, dwuopt(T") < D. Apply Lemma 13 to 7" with the
vertices in Z := OPT \ W marked. The lemma shows that there is a 2-bounded
claw decomposition of T' with respect to Z. Let the claws be Cq, ..., C,. In each

claw Cj, the corresponding nodes M (Cj;) := C; N Z from Z are marked. Since
the decomposition is 2-bounded with respect to Z, it follows that

zr:c(M(cj)) < 2-0PT. (1)

j=1

Moreover, the cost ¢(M(C;)) of the marked nodes in each single claw C; does
not exceed OPT, since we have marked only nodes from 7. By Lemma 14, there
exists a bijection ¢: T — T" such that

> (dW(e) - dWUoPT(SO(e))) = dw (T) — dwuort(T") > dw(T) — D. (2)
e€T

For each of the claws C; with M (C}) # @ in the 2-bounded decomposition of T”
its quotient cost ¢(C}) satisfies

SO < e(M(C)
7= Yoeec, (dw (€) — dwuopr(#(e)))’
since we can exchange the edges ¢(e) (e € C;) for the corresponding edges € in
the current tree T after the upgrade and thus decrease the weight of the tree by

at least Ew(e)ec‘] (dw(e) - dWUOPT(SO(e)))-
Let C be a claw among all the claws C; with minimum ¢(C'). Then,

q(C) - Z (dW(e) - dWUOPT(SO(fi))) <e(M(Cy)) forj=1,...,r. (4)

e€Cy

(3)

Notice that the above equation holds, regardless of whether M (C;) is empty or
not. Summing the inequalities in (4) over j = 1,...,r, and using Equations (1)
and (2), it can be seen that C'is a claw with the desired properties. O

2.4 Finding a good claw in each iteration

Lemma 15 implies the existence of a marked claw with the required properties.
We will now deal with the problem of finding such a claw.

Lemma 16. Suppose that the bound {2 given to Algorithm UPGRADE MST sat-
isfies £2 > OPT. Then, for each stage i of the algorithm, it chooses a marked
claw C' such that
OPT
N<2(l+e)—ri—— d M(C)) < (1+¢)R2
q(C)_ (+5) dw(T) — D an c((C))_(+5))
where T := T;_1 is an MST at the beginning of iteration i and W := W;_1 is
the set of nodes upgraded so far.

Proof. By Lemma 15, there is a marked claw C with quotient cost ¢(C') at most
2%. Let v be the center of this claw. By Lemma 15, v is marked. Let
¢(C) := ¢(M(C)) be the cost of the marked nodes in C' and L := MST(T U
C,dwum(c)) be the weight of the MST in T'U C resulting from the upgrade of
the marked vertices in C. Then, by definition of the quotient cost ¢(C') we have
o0y = 2D _ oy O 5)
w(T)— L dw(T) — D

Consider the iteration of PROCEDURE CoOMPUTE QC when it processes the
instance I, g of Two Cost Spanning Tree Problem with graph G, and ¢(C') <
K < (1+¢)-¢(C). The tree MST(T' U C,dwunm(c)) induces a spanning tree in
Gy of total c-cost at most ¢(C) (which is at most K) and of total I-length no
more than L. Thus, the algorithm from Theorem 10 will find a tree T, g such
that its total c-cost ¢(T,, k) is bounded from above by (1 +&)K < (1 + E)QC(C)

and of total I-length I(T; x) no more than L.
By construction, the marked claw C’' computed by PRocEDURE COMPUTE
QC from T, k has quotient cost at most (7T, x)/ (dw (T) —I(T,,x)), which is at

most (1 + E)QC(C)/(dW (T) = L). The lemma now follows from (5). O

2.5 Guessing an Upper Bound on the Improvement Cost

We run our Algorithm UPGRADE MST depicted in Figure 1 for all values of
Qe{l,(14+¢),(1+e)2...,(1 +)}, where t := [log;, . c(V)].

We then choose the best solution among all solutions produced. Our analysis
shows that when OPT < £2 < (1+¢) - OPT, the algorithm will indeed produce a
solution. In the sequel, we estimate the quality of this solution. Assume that the
algorithm uses f + 1 iterations and denote by C1,...,C¢, Cyy1 the claws chosen
in Step 4b of the algorithm. Let ¢; := ¢(M(C;)) denote the cost of the vertices
upgraded in iteration i. Then, by construction

i <(14e)2<(146)’0PT fori=1,...,f+1. (6)

2.6 Potential Function Argument

We are now ready to complete the proof of the performance stated in Theorem 6.
Let MST; denote the weight of the MST at the end of iteration i, i.e., MST; :=
dw,(T;)- Define ¢; := MST; — D. Since we have assumed that the algorlthm uses
f + 1 iterations, we have ¢; > 1 for ¢t = 0,..., f and ¢11 < 0. As before, let
¢i = c(M(C})) denote the cost of the vertices upgraded in iteration :. Then

bivi = i — (VST — MSTip) (1), 7)
i+1 = @7 — (i i+1, > .OPT 9 ()
where a := 2(1 + £)2. We now use an analysis technique due to Leighton and

Rao [6]. The recurrence (7) and the estimate In(1 — 7) < —7 give us

! 6
Zciga-OPT-ln—o. (8)
i=1 ¢f

Notice that the total cost of the nodes chosen by the algorithm is exactly the
sum Zf+11 ¢;. By (8) and (6) we have

f+1
Zcz_cf+1+zc1_ (1+¢) OPT—|—2(1-|—5_)20PT-1an— (9)
i=1 f

We will now show how to bound In z—? Notice that ¢; = MST; — D > 1, since
the algorithm uses f+ 1 iterations and does not stop after the fth iteration. We
have ¢g = MSTo—D < (n—1)(Dg—D3), where Dy and Dy denote the maximum
and the minimum edge weight in the graph. It now follows from Assumption 5

that In ¢g € O(log(np(n))) C O(logn). Using this result in (9) yields

f41
D e <(14€)%-OPT +2(1+4¢)°O(logn) - OPT € (1 +¢)?O(logn) - OPT. O

i=1

3 Concluding Remarks

Our algorithms produced solutions in which the budget constraints were strictly
satisfied. This is unlike many bicriteria network design problems where it is
necessary to violate the budget constraint to obtain a solution that is near-
optimal with respect to the objective function [7].

An open problem that arises immediately from our work is whether there is
a good approximation algorithm for the (ToTAL WEIGHT, NODE UPGRADING
CosT, SPANNING TREE) problem even when Assumption 5 is not satisfied. Tt
is also of interest to investigate whether our results for spanning trees can be
extended to Steiner trees. Other open problems under the node-based upgrading
model can be formulated using different performance measures for the upgraded
network. Some measures which are of interest in this context include bottleneck
weight, diameter and lengths of paths between specified pairs of vertices.

References

1. O. Berman, “Improving The Location of Minisum Facilities Through Network
Modification,” Annals of Operations Research, Vol. 40, 1992, pp. 1-16.

2. U. Feige, “A threshold of Inn for approximating set cover,” Proc. 28th Annual
ACM Symposium on the Theory of Computing, Philadelphia, PA, May 1996, pp.
314-318.

3. G. N. Frederickson and R. Solis-Oba, “Increasing the Weight of Minimum Spanning
Trees”, Proc. 6th Annual ACM-SIAM Symposium on Discrete Algorithms, January
1996, pp. 539-546.

4. S. O. Krumke, H. Noltemeier, M. V. Marathe, S. S. Ravi and K. U. Drangmeister,
“Modifying Networks to Obtain Low Cost Trees,” Proc. Workshop on Graph The-
oretic Concepts in Computer Science, Cadenabbia, Italy, June 1996, pp. 293-307.

5. S. O. Krumke, H. Noltemeier, M. V. Marathe, R. Ravi and S. S. Ravi, “Improving
Steiner Trees of a Network Under Multiple Constraints”, Technical Report, LA-UR
96-1374, Los Alamos National Laboratory, Los Alamos, NM, 1996.

6. F. T. Leighton and S. Rao, “An Approximate Max-Flow Min-Cut Theorem for
Uniform Multicommodity Flow Problems with Application to Approximation Al-
gorithms”, Proc. 29th Annual IEEFE Conference on Foundations of Computer Sci-
ence, Oct. 1988, pp. 422-431.

7. M. V. Marathe, R. Ravi, R. Sundaram, S.S.Ravi, D.J. Rosenkrantz and
H. B. Hunt 111, “Bicriteria Network Design Problems”, In Proc. 22nd Interna-
tional Colloquium on Automata, Languages and Programming, July 1995, Vol. 944
of Lecture Notes in Computer Science, pp. 487-498.

8. J. Plesnik, “The Complexity of Designing a Network with Minimum Diameter”,
Networks, Vol. 11, 1981, pp. 77-85.

9. D. Paik and S. Sahni, “Network Upgrading Problems,” Networks, Vol. 26, 1995,
pp. 45-58.

10. C. Phillips, “The Network Inhibition Problem,” Proc. 25th Annual ACM Sympo-
stumn on Theory of Computing, San Diego,CA, May 1993, pp. 288-293.

11. R. Ravi and M. X. Goemans, “The Constrained Minimum Spanning Tree Prob-
lem”, Proc. Scandinavian Workshop on Algorithmic Theory, Reykjavik, July 1996.

This article was processed using the ¥TEX macro package with LLNCS style

