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Abstract— 

The DNS or Domain Name System is a critical piece of the 

Internet infrastructure. In recent times there have been 

numerous attacks on DNS, the Kaminsky attack being one of the 

more insidious ones. Current solutions to the problem involve 

patching the DNS software (Bind) and/or using DNSSEC. 

Unfortunately, these are forklift upgrades of the DNS 

infrastructure and are not always feasible especially in sensitive 

and critical installations.  

We propose and develop the architecture for HARD-DNS - a 

turn-key bolt-on solution with no client-side change. We utilize a 

separate distributed network, HARD-DNS, which is architected 

for greater resilience to DDoS (Distributed Denial of Service) 

attacks. We employ quorum techniques to increase tolerance to 

cache poisoning and we protect the connection between the 

resolvers and HARD-DNS by a technique we call IP-cloaking. We 

present theoretical analysis and experimental evaluation to 

validate the feasibility of our approach.   

 
Index Terms— DNS (Domain Name System), Security, DoS 

(Denial of Service), Internet, Architecture, CDN (Content 

Delivery Network). 

I. MOTIVATION 

“Your browser wouldn't be able to go anywhere; you 

wouldn't be able to send e-mail. Nothing on the Internet 

would work”   

                                --Prof.  Tom Leighton, Founder & Chief 

Scientist of Akamai Technologies Inc., on what would happen 

if the Domain Name System (DNS) were to be targeted by a 

denial of service (DoS) attack. 
 

In July 2008, at the Black Hat Conference held in Las Vegas, 

the Kaminsky DNS vulnerability was announced. The Domain 

Name System or DNS [1] is a critical and integral part of the 

Internet. Kaminsky [2,3,4] showed that DNS caches 

throughout the world were susceptible to cache poisoning. 

This could lead to large-scale impersonation attacks by fake 

websites. Not only could it potentially lead to the personal and 

financial ruin of individuals but successful poisoning of this 
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system could also result in catastrophic consequences at a 

national level [4,5] were any infrastructural networks such as 

the military network domains to be targeted by an enemy.  

Currently, there is only one way to mitigate this vulnerability, 

patching the DNS server or patching the DNS protocol itself. 

Patching the DNS protocol, i.e. substituting DNSSEC [1] 

instead of DNS requires a forklift upgrade at both the client 

and resolving name-server ends and for now the world has 

settled for updating and patching the DNS server software 

(typically BIND [1]). The problem with the patch however, is 

that it requires upgrades to all client side resolving name-

servers, which is the more vulnerable and numerous end of 

things. It is also difficult to upgrade resolving name-servers 

that are in critical operational paths and need to be running 

24/7. While this patch reduces the risk of DNS poisoning by 

an attacker (by using randomization over a large port space), 

the patch by itself does not eliminate the threat from a 

formidable enemy who has the ability to bombard the 

resolving name-server with large quantities of spoofed 

responses.  

 

Hence it is clear that there is a need for a solution that does not 

require upgrading the software at the resolving name-server 

end. This will enable easy adoption of the solution. At the 

same time the solution must be robust enough to fend off 

large-scale attempts to poison the cache. 

II. OUR CONTRIBUTION 

 

We propose the use of a distributed network, HARD-DNS, to 

dramatically reduce the probability of suffering from a 

poisoned cache in the DNS. We propose to leverage HARD-

DNS machines as the public resolvers, by massively 

distributing the resolution functionality. In this fashion, the 

client's or ISP’s name server will never be exposed to the 

attacker. When a user types in a domain such as www.foo.com 

into their browser, their name server contacts a random 

HARD-DNS machine which then recursively resolves the 

name on their behalf and returns the answer to the customer's 

name server (or resolver software). 

 

The objective of the proposed Highly-Available Redundantly-

Distributed DNS (HARD-DNS) approach is to develop a 

robust protection technique that will minimize the chance of 

suffering from cache-poisoning attacks.  HARD-DNS 

achieves this by: 
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 using quorum techniques and performing a majority 

vote on responses from multiple individual DNS 

servers within the HARD-DNS network to obtain a 

reliable response 

 

 using IP-cloaking to hide the requests from the 

resolving (ISP) name servers to prevent cache 

poisoning through concerted spoof attacks 

 

 taking advantage of the global and robust placement 

of name servers in the HARD-DNS network 

 

HARD-DNS can be implemented as a standalone network or 

built on top of platforms such as Content Delivery Networks 

(CDNs), or Cloud Infrastructures. On the customer side the 

scheme involves nothing more than a configuration change to 

their resolving name-servers (resolvers). HARD-DNS can be 

built out gradually providing additional robustness with each 

new server. Existing CDNs (such as Akamai or Limelight 

Networks) or other Cloud Computing Infrastructure (such as 

Amazon’s EC2 or Microsoft’s Azure) can also be repurposed 

as HARD-DNS.  Our solution provides greater security in 

incremental fashion at low upgrade cost. Here are some of the 

primary benefits of HARD-DNS: 

 

 it requires no software upgrade or patch; with 

minimal configuration changes on the (client) side of 

the resolving name-server, it can easily be rolled out 

to the entire base of vulnerable DNS systems 

 

 it is a low-cost incremental approach that can be 

bootstrapped from an initial network of only a few 

machines. Of course, the more machines that are part 

of the HARD-DNS distributed network the more the 

robustness of the solution against DDoS attacks 

 

 it increases performance and reduces congestion on 

the Internet ultimately enhancing end-user experience 

 

 it provides security both against known attacks as 

well as zero-day attacks since the task of resolving is 

essentially outsourced to the HARD-DNS network. 

 

These benefits could come at the cost of a performance 

penalty since client side name-servers no longer cache 

resolutions. However, as we show in the experimental 

evaluation section (Section VI) of this paper, a well-

distributed HARD-DNS network incurs minimal overheads.  

The rest of the paper is organized as follows: in Section III we 

discuss related work. Section IV explains the basic working of 

DNS as well as the Kaminsky attack which is a prime 

representative of the class of attacks that achieves cache 

poisoning though clever use of a denial of service. Section V 

contains a detailed description of our HARD-DNS solution 

along with a theoretical analysis of its effectiveness. We 

present performance results for a PlanetLab [24] deployment 

of HARD-DNS and conclude in Section VII. 

III. RELATED WORK 

 

DNS [1] was not designed with security in mind.  To address 

this shortcoming, Domain Name System Security Extensions 

(DNSSEC) [1] was developed to provide security for certain 

kinds of DNS information, such as origin authentication and 

data integrity but, as mentioned before, its implementation 

requires a forklift upgrade. DNSSEC is currently being 

deployed by the US Federal Government with the aim of 

having all Federal .gov domains and sub-domains configured 

to use DNSSEC by December 2009 [5].  Other agencies of the 

US Government, such as the Department of Defense (DoD) 

are also in the process of deploying DNSSEC, but certain 

types of networks (e.g. tactical networks), do not have the 

required infrastructure in place and require alternative means 

of protection against DNS cache-poisoning in the interim. 

 

It is not clear whether DNSSEC will ever fully supplant DNS. 

In the meantime the Internet continues to be susceptible to a 

variety of DDoS and cache poisoning attacks [6]. The 

Kaminsky attack, a cache poisoning attack, has been detailed 

extensively [2,3,4].  Techniques for preventing DDoS [14] 

attacks using CDNs [6,8,9] and Cloud Infrastructures [10,11] 

have been studied but these are in the context of content 

delivery and not DNS. A few schemes have been proposed to 

improve resilience in DNS. CoDNS [21] masks delays in 

legacy DNS by diverting queries to other healthy resolvers. 

Schemes [19, 22, 23] built on top of peer-to-peer networks 

have also been proposed to enhance fault-tolerance and load-

balancing properties.  Game-theoretic approaches tailored for 

DNS-specific attacks also exist in the literature [7,15,16]. 

 

To the best of our knowledge, this work is the first to propose 

a solution to the cache poisoning problem by employing a 

separately hardened distributed network for name resolution in 

conjunction with the use of quorums and IP-cloaking. 

IV. BACKGROUND 

Since HARD-DNS protects against DDoS and cache-

poisoning attacks against DNS of which the Kaminsky attack 

is particularly well-known, we will give a brief background on 

DNS as well as the Kaminsky attack using illustrative 

examples. [1] is a definitive source on DNS and [2,3,4] are 

good descriptions of the Kaminsky attack. For purposes of 

illustrations we will work with .mil domains in our examples. 

 

A. The Domain Name System (DNS) 

 

The Domain Name System (DNS) is a distributed hierarchical 

naming system for computers, services, or any Internet 

resource. Most importantly, it translates domain names 

meaningful to humans into the numerical (binary) identifiers 

associated with networking equipment for the purpose of 

locating and addressing these devices world-wide. An often 

used analogy to explain the Domain Name System is that it 

serves as the "phone book" for the Internet by translating 

human-friendly computer hostnames into IP addresses. For 

example, www.example.com translates to 208.77.188.166. 
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Figure 1: Domain name resolution using DNS 

The resolution of a domain address can be seen pictured in 

Figure 1.  A client, attempts to visit a web page, for instance 

www.army.mil and needs to know the web pages IP address.  

If it does not already have it, the client (web browser) contacts 

the recursive DNS resolver belonging to its ISP.  This resolver 

will then contact one of the DNS root servers.  The root server 

does not contain the IP address, but it knows who the 

authoritative DNS name server for the .mil zone, or top-level 

domain (TLD), are and it will send the resolver this 

information.  The resolver will then contact of the .mil TLD 

name servers which will reply with the authoritative name 

servers for the army.mil domain.  The army.mil authoritative 

name server does know the IP address for www.army.mil and 

will send IP = 143.69.249.10 as the reply to the ISP name 

server.  Finally, the ISP name server will send IP = 

143.69.249.10 to the requesting client.  To prevent 

unnecessary queries from being sent, the ISP name server can 

cache previously received replies and use those during the 

resolution process if necessary.  For instance, if the client were 

to request the IP address for www2.army.mil, the resolver can 

now contact the army.mil authoritative DNS server directly. 

 

B. DNS Cache Poisoning – The Kaminsky Attack 

 

In summer of 2008, Dan Kaminsky [1] announced his 

discovery of a serious vulnerability in DNS aimed at recursive 

name servers [2][4].  It relies on a previous vulnerability 

called 'CNiping' by which a name server will update its 

records when it receives a record containing a CNAME (or 

alias) update even if that record is not expired.  In Figure 2, 

the information in the answer section will be overwritten by 

the new reply even if it was not expired.  Thus, a malicious 

user can spoof a DNS packet and update this information. 

 

 

 
 

 

 

Figure 2: Flow of the Kaminsky Attack 

The basic idea of the Kaminsky attack is to spoof answer 

packets from the authoritative name server to the requesting 

name server for a name in the authentic domain. The victim 

name server is provoked to go to a name server run by the 

attacker by either using it to recursively resolve a name in the 

attacker’s domain or by putting a dummy pixel on a webpage 

belonging to the attacker’s domain.  When the victim server 

queries the attacker’s name server the attacker learns the 

victim’s IP address as well as source port. The attacker then 

provokes the name server to request a fake name in a real 

domain. Now the attacker sends a flood of spoofed response 

packets to the victim name server in an attempt to get a packet 

in before the genuine answer from the authoritative name 

server. The reason a flood of packets has to be sent is that the 

attacker has to get the TXID, a randomly chosen two-byte 

field, correct. If the attacker can get its packet in before the 

real packet then it can not only change existing cache entries 

corresponding to genuine names (CNiping) it can even change 

the IP addresses for authoritative name servers for the 

domain! In this way all clients of the victim name server will 

end up going to the impostor web sites set up by the attacker. 

The Kaminsky attack can be used to hijack potentially even 

the root servers and therefore the entire root domain. To 

increase the chances of this attack succeeding, a bandwidth 

attack, or Denial-of-Service (DoS) attack can be performed in 

parallel against the authoritative name servers.  This will slow 

down the reply from the authoritative name servers to the 

victim name server by increasing the time window during 

which it can send the forged packets. Figure 2 shows a 

diagram of the Kaminski attack.  The attacker begins by 

requesting the IP address for a bogus host from the victim 

name server.  The name server will then ask the authoritative 

name server for the IP address (step 5a).  At the same time, 

however, the attacker floods the victim name server with 

forged packets that will answer its question to the army.mil 

name server, each with a guessed TXID.  If one of the forged 

packets contains the correct TXID (4406) of the victim's 

request to the army.mil name server (in red in 5b), the victim 

name server will accept it and update its records.  This forged 

packet not only contains the IP address for the bogus host, but 

1. IP for www.army.mil? 

2. IP for www.army.mil? 

Root DNS server 

ISP recursive 
DNS server 

 

.mil TLD DNS server 

army.mil authoritative 

 DNS server 

3. Ask .mil TLD  

4. IP for www.army.mil? 5. Ask army.mil TLD  

7. www.army.mil IP 
 = 143.69.249.10  

6. IP for www.army.mil? 

client 

8. www.army.mil IP 
 = 143.69.249.10  
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it will also contain information that points the army.mil name 

servers to a host controlled by the attacker, as shown in Figure 

3.  Finally, since the reply from the authoritative name server 

arrives too late, it will automatically be discarded. 

 

;; QUESTION SECTION: 

;kdf2j8g.army.mil.              IN      A 

 

;; ANSWER SECTION: 

kdf2j8g.army.mil.       274     IN      A       

A.B.C.D 

 

;; AUTHORITY SECTION: 

us.army.mil.            600     IN      NS      

ns.attacker.net. 

 

;; ADDITIONAL SECTION: 

ns.attacker.net.        69712   IN      A       

A.B.C.N 

Figure 3: Forged DNS reply of the Kaminsky attack 

V. THE HARD-DNS APPROACH 

A. Overview 

 

The basic idea is to solve the DDoS and cache-poisoning 

attacks by outsourcing the task of resolving name lookups to a 

fault-tolerant distributed network, HARD-DNS.  We propose 

to leverage HARD-DNS machines as the public resolvers, by 

massively distributing the resolution functionality. This will 

require no software or hardware change whatsoever on the 

side of the resolving name servers. Name servers are 

configured with a hint zone consisting of the names and IP 

addresses of the root servers. We propose to replace this with 

the names and IP addresses of HARD-DNS nodes. Thus the 

name server contacts these CDN nodes to get its resolutions 

(see 4). The HARD-DNS nodes are set up to query recursively 

and then combine their answers using majority to diffuse the 

effect of poisoning. Observe that the original name server is 

completely shielded from the Internet because it never directly 

queries any other name server. HARD-DNS nodes resolve 

their queries by contacting the appropriate authoritative name 

servers.  

 

If the attacker were to attack or attempt to cache-poison they 

would instead attack a particular HARD-DNS machine. This 

would, at most, poison the cache of that particular HARD-

DNS machine and since the customer picks a random HARD-

DNS machine each time, they would be safe the 

overwhelming majority of the time.  This will render the 

cache-poisoning attacks ineffective.  The HARD-DNS 

network uses overlay routing to distribute the answers 

amongst themselves and arrive at quorums and consensus. 

Overlay routing confers superior benefits of speed and 

reliability over native BGP routing. To compute its response 

HARD-DNS polls a subset of its name servers and then 

returns the majority vote. This would fail only if the attackers 

are able to poison the caches of all but a small fraction of the 

HARD-DNS machines, a virtual impossibility since HARD-

DNS can be architected to have tens of thousands of machines. 

HARD-DNS also utilizes load-balancing techniques to diffuse 

the effect of DDoS attacks and IP-Cloaking techniques to hide 

the requests from the resolving name-server to the HARD-

DNS network. IP-cloaking provides greater security than port 

randomization which is the prevalent technique for mitigating 

the Kaminsky attack. 

 

Figure 4: Robust DNS infrastructure using HARD-
DNS.  

B. BGP Anycast and Overlay Routing 

 

The requests from the (client) resolving name server are 

directed to the optimal HARD-DNS server using BGP anycast 

[17].  The entire HARD-DNS network also functions as an 

overlay network and content is moved through the network 

from one end to another via intermediate relays. Even though 

each hop between CDN nodes is dictated by BGP (Border 

Gateway Protocol) nevertheless overlay routing is often 

superior to the native BGP routing between the same 

endpoints. This is because BGP is not aware of the congestion 

in the network [18]. 

 

C. Load-balancing and Attack-diffusion 

 

Load balancing amiong the HARD-DNS servers can be 

achieved using one or more layer 4–7 switches to share traffic 

among a number of DNS servers. This has the advantages of 

balancing load, increasing total capacity, improving 

scalability, and providing increased reliability by 

redistributing the load of a failed DNS server and providing 

server health checks. 

 

The main advantage of a HARD-DNS network is that the 

entire process of resolution is offloaded from the (client) 

resolving name server) thus shielding the location, even the 

existence, of the resolving (client) name server from the public 

Internet. Users and attackers only see the HARD-DNS nodes. 

Attackers can choose to attack HARD-DNS nodes but a well-

provisioned network will diffuse the attack through load-

balancing. When one of the nodes comes under attack HARD-

1. IP for 
www.army.mil? 

ISP 
recursive  

DNS 
server 

HARD-DNS-
based 

distributed 
 DNS servers 

2. IP for 
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4. 
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l IP 
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0  
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servers 
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3. www.army.mil 
IP 

 = 143.69.249.10  
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DNS automatically does load balancing to move the load away 

to other servers. If the attacker chooses to move to the new 

servers then automatically the old servers spring back to life 

and start serving traffic. If the attackers stay with the original 

nodes then new traffic automatically gets served from other 

nodes. In this way, HARD-DNS protects the origin website 

against denial of service and degradation. The general 

mechanism of protection can be described by an analogy – just 

as important dignitaries are protected by big bodyguards that 

effectively act as bullet catchers so too does HARD-DNS 

protect the origin by absorbing the attack through its numerous 

and well-provisioned server clusters that distribute the load 

and diffuse the onslaught. 

 

D. IP-Cloaking 

 

The common approach to dealing with the Kaminsky 

approach is to mitigate the chance of a spoofed packet having 

the right TXID by increasing the space of possibilities using 

port randomization. The resolving name server uses a random 

port from a space of a few thousand ports and since the 

spoofed packet has to get both the port and the TXID right to 

be able to poison the cache, this greatly increases the level of 

security. We extend this idea significantly using the concept of 

IP-cloaking. The HARD-DNS nodes are IPed with a large IP 

space. The resolving name-servers are then set up to employ 

hashing with a shared secret key to determine the specific IP 

address at the given time to contact. The HARD-DNS servers 

will answer only to the specific key at the specific time. The 

hashing can be done using a simple scripting language to 

modify the configuration file and does not require any 

software or hardware upgrade. The hint zone of root servers is 

periodically updated with the list derived from this shared key 

and soft-uploaded to the name server (name servers are 

already set up to soft-upload new configuration files) so that 

the original name servers contact the appropriate IP addresses. 

This provides an additional layer of protection because even if 

the IP addresses of the origin name servers are exposed 

nevertheless the attacker must correctly guess the HARD-DNS 

IP addresses derived from the shared key to be able to spoof 

their response – an impossible task for a sufficiently large IP 

space with which the HARD-DNS nodes are IPed (e.g. a Class 

B address space with 64000 IP addresses). 

 

E. Quorum technique for fault-tolerance 

 

We use a quorum based approach to reduce the chance of 

cache poisoning. For each resolution request from a (client) 

resolving name server, HARD-DNS utilizes a number of its 

servers, each querying for the resolution and then takes the 

majority response from them. Suppose we say that 2 k HARD-

DNS nodes query for the requested resolution and the majority 

response is returned back to the original name server. This 

response can be poisoned only if at least k+1 of the HARD-

DNS nodes got poisoned. Studies of the Kaminsky attack 

show that it succeeds in about 10 seconds in the most 

optimistic case. If we assume that a server gets poisoned with 

probability 1/10 in a given second then the probability that at 

least k+1 of them get poisoned is at most  

 

2k-choose-(k + 1) * (1/10)
(k + 1)

 <= 10
-(0.8k)

 

 

Thus if we choose k =50 we get that the probability that the 

majority response is bad is at most  10
-40

, i.e. expected time for 

the attack to succeed is 10
40

 seconds which is in excess of the 

life of the universe.  

 

F. HARD-DNS and CDNs 

 

Observe that HARD-DNS can be easily built on existing 

distributed platforms such Content Delivery Networks (CDNs) 

or Cloud Infrastructures. CDNs have an edge over Cloud 

Infrastructures since they internally use DNS which can be 

easily modified to support HARD-DNS and they already 

posses a redundant and robust global footprint.  It must be 

noted that we only rely on the CDN's DNS infrastructure and 

not on the CDN's content caching infrastructure.  Furthermore, 

HARD-DNS truly requires only a large set of redundant DNS 

name servers; if this infrastructure can be provided by other 

means such as through a Cloud Infrastructure provider, a 

commercial CDN is not a necessary requirement. 

 

VI. EXPERIMENTAL EVALUATION 

 

We deployed HARD-DNS on PlanetLab [24] which is an open 

platform available to the academic community for designing, 

implementing and testing new large scale services. The 

advantage of using a platform such as PlanetLab as opposed to 

just testing in the lab is that we can evaluate HARD-DNS in 

the context of real world congestion and losses. We set up a 

HARD-DNS network of 6, 8 and 10 servers on geographically 

distributed nodes. We used BIND version 8 which is a legacy 

version with the vulnerability to the Kaminsky attack. We 

used 1 server by itself as the control case. For a network of 2k 

+ 1 servers we used a random subset of k+1 as the quorum, 

i.e., with 10 HARD-DNS servers the resolving name-server 

would contact 6 randomly chosen servers.  We were 

continuously bombarding all servers with the Kaminsky 

attack. Now of course the duration of a poisoning is a function 

of the TTLs (Time-To-Live). Since our goal is to see how 

quickly a given network (control server vs. HARD-DNS) gets 

poisoned but not how long it stays poisoned we would reset all 

machines every time we received a poisoned response from 

either the control server or the HARD-DNS network. We set 

long TTLs (10S) on all returned responses which means that 

when a server got poisoned it would normally stay poisoned 

for a long time (10 seconds) but then we would reset all 

machines every time we detected a poisoned response, as 

explained before. We ran requests every 1 second for a 

resolution from both the control server as well as from 

HARD-DNS network, for a total of 12 hours. We measured 

the latency of lookups as also the time to poisoning. Our 

results should be viewed in the context of our setup on 
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PlanetLab where we were averaging about 120ms RTTs 

(Round-Trip Times).  

We now present results on the performance and reliability of 

the HARD-DNS network vs the control server. Figure 5 shows 

the cumulative distribution of lookup latencies incurred by 

HARD-DNS vs. the control server while Figure 6 shows the 

cumulative distribution of the time to poisoning.  

 

 

 
 

 

Figure 5: CDF of Latency of Resolution.  

 

 

 
 

Figure 6: CDF of Time-to-Poisoning.  

 

The main takeaway from these results is that HARD-DNS 

provides reasonably low latencies while exhibiting great 

resilience  

VII. CONCLUSION 

 

We have developed the architecture for a solution to the 

problem of DDoS and cache poisoning attacks against DNS. 

Our HARD-DNS proposal has the merit that it is a low-cost 

incremental approach that does not require any software 

upgrade on the side of the clients, or existing authoritative 

name servers. We have obtained a provisional patent for our 

solution [20].  

One interesting direction that might be worth exploring is to 

consider a distributed network where the network is composed 

of different strategic agents with different utility function, 

some even potentially malicious. As our solution stands 

currently we do not consider that the HARD-DNS network 

may be subject to insider attacks.  

Another interesting direction would be to provide additional 

services through HARD-DNS such as privacy and anonymity 

or even transcoding services for mobile devices.  
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