
 1

Abstract—

The DNS or Domain Name System is a critical piece of the

Internet infrastructure. In recent times there have been

numerous attacks on DNS, the Kaminsky attack being one of the

more insidious ones. Current solutions to the problem involve

patching the DNS software (Bind) and/or using DNSSEC.

Unfortunately, these are forklift upgrades of the DNS

infrastructure and are not always feasible especially in sensitive

and critical installations.

We propose and develop the architecture for HARD-DNS - a

turn-key bolt-on solution with no client-side change. We utilize a

separate distributed network, HARD-DNS, which is architected

for greater resilience to DDoS (Distributed Denial of Service)

attacks. We employ quorum techniques to increase tolerance to

cache poisoning and we protect the connection between the

resolvers and HARD-DNS by a technique we call IP-cloaking. We

present theoretical analysis and experimental evaluation to

validate the feasibility of our approach.

Index Terms— DNS (Domain Name System), Security, DoS

(Denial of Service), Internet, Architecture, CDN (Content

Delivery Network).

I. MOTIVATION

“Your browser wouldn't be able to go anywhere; you

wouldn't be able to send e-mail. Nothing on the Internet

would work”

 --Prof. Tom Leighton, Founder & Chief

Scientist of Akamai Technologies Inc., on what would happen

if the Domain Name System (DNS) were to be targeted by a

denial of service (DoS) attack.

In July 2008, at the Black Hat Conference held in Las Vegas,

the Kaminsky DNS vulnerability was announced. The Domain

Name System or DNS [1] is a critical and integral part of the

Internet. Kaminsky [2,3,4] showed that DNS caches

throughout the world were susceptible to cache poisoning.

This could lead to large-scale impersonation attacks by fake

websites. Not only could it potentially lead to the personal and

financial ruin of individuals but successful poisoning of this

Carlos Gutierrez (carlos.gutierrez@ssci.com) and Rajesh Krishnan,

(rajesh.krishnan@ssci.com) are with Scientific Systems Company, Inc.,
Woburn, MA USA.

Fangfei Zhou (youyou@ccs.neu.edu) is a PhD student and corresponding

author Ravi Sundaram (koods@ccs.neu.edu, phone: 617-373-5876; fax: 617-
373-5121) is an Associate Professor in the College of Computer Science,

Northeastern University, Boston, MA USA.

system could also result in catastrophic consequences at a

national level [4,5] were any infrastructural networks such as

the military network domains to be targeted by an enemy.

Currently, there is only one way to mitigate this vulnerability,

patching the DNS server or patching the DNS protocol itself.

Patching the DNS protocol, i.e. substituting DNSSEC [1]

instead of DNS requires a forklift upgrade at both the client

and resolving name-server ends and for now the world has

settled for updating and patching the DNS server software

(typically BIND [1]). The problem with the patch however, is

that it requires upgrades to all client side resolving name-

servers, which is the more vulnerable and numerous end of

things. It is also difficult to upgrade resolving name-servers

that are in critical operational paths and need to be running

24/7. While this patch reduces the risk of DNS poisoning by

an attacker (by using randomization over a large port space),

the patch by itself does not eliminate the threat from a

formidable enemy who has the ability to bombard the

resolving name-server with large quantities of spoofed

responses.

Hence it is clear that there is a need for a solution that does not

require upgrading the software at the resolving name-server

end. This will enable easy adoption of the solution. At the

same time the solution must be robust enough to fend off

large-scale attempts to poison the cache.

II. OUR CONTRIBUTION

We propose the use of a distributed network, HARD-DNS, to

dramatically reduce the probability of suffering from a

poisoned cache in the DNS. We propose to leverage HARD-

DNS machines as the public resolvers, by massively

distributing the resolution functionality. In this fashion, the

client's or ISP’s name server will never be exposed to the

attacker. When a user types in a domain such as www.foo.com

into their browser, their name server contacts a random

HARD-DNS machine which then recursively resolves the

name on their behalf and returns the answer to the customer's

name server (or resolver software).

The objective of the proposed Highly-Available Redundantly-

Distributed DNS (HARD-DNS) approach is to develop a

robust protection technique that will minimize the chance of

suffering from cache-poisoning attacks. HARD-DNS

achieves this by:

HARD-DNS:

Highly-Available Redundantly-Distributed DNS

Carlos Gutierrez, Rajesh Krishnan, Ravi Sundaram and Fangfei Zhou

mailto:carlos.gutierrez@ssci.com
mailto:rajesh.krishnan@ssci.com
mailto:youyou@ccs.neu.edu
koods@ccs.neu.edu

 2

 using quorum techniques and performing a majority

vote on responses from multiple individual DNS

servers within the HARD-DNS network to obtain a

reliable response

 using IP-cloaking to hide the requests from the

resolving (ISP) name servers to prevent cache

poisoning through concerted spoof attacks

 taking advantage of the global and robust placement

of name servers in the HARD-DNS network

HARD-DNS can be implemented as a standalone network or

built on top of platforms such as Content Delivery Networks

(CDNs), or Cloud Infrastructures. On the customer side the

scheme involves nothing more than a configuration change to

their resolving name-servers (resolvers). HARD-DNS can be

built out gradually providing additional robustness with each

new server. Existing CDNs (such as Akamai or Limelight

Networks) or other Cloud Computing Infrastructure (such as

Amazon’s EC2 or Microsoft’s Azure) can also be repurposed

as HARD-DNS. Our solution provides greater security in

incremental fashion at low upgrade cost. Here are some of the

primary benefits of HARD-DNS:

 it requires no software upgrade or patch; with

minimal configuration changes on the (client) side of

the resolving name-server, it can easily be rolled out

to the entire base of vulnerable DNS systems

 it is a low-cost incremental approach that can be

bootstrapped from an initial network of only a few

machines. Of course, the more machines that are part

of the HARD-DNS distributed network the more the

robustness of the solution against DDoS attacks

 it increases performance and reduces congestion on

the Internet ultimately enhancing end-user experience

 it provides security both against known attacks as

well as zero-day attacks since the task of resolving is

essentially outsourced to the HARD-DNS network.

These benefits could come at the cost of a performance

penalty since client side name-servers no longer cache

resolutions. However, as we show in the experimental

evaluation section (Section VI) of this paper, a well-

distributed HARD-DNS network incurs minimal overheads.

The rest of the paper is organized as follows: in Section III we

discuss related work. Section IV explains the basic working of

DNS as well as the Kaminsky attack which is a prime

representative of the class of attacks that achieves cache

poisoning though clever use of a denial of service. Section V

contains a detailed description of our HARD-DNS solution

along with a theoretical analysis of its effectiveness. We

present performance results for a PlanetLab [24] deployment

of HARD-DNS and conclude in Section VII.

III. RELATED WORK

DNS [1] was not designed with security in mind. To address

this shortcoming, Domain Name System Security Extensions

(DNSSEC) [1] was developed to provide security for certain

kinds of DNS information, such as origin authentication and

data integrity but, as mentioned before, its implementation

requires a forklift upgrade. DNSSEC is currently being

deployed by the US Federal Government with the aim of

having all Federal .gov domains and sub-domains configured

to use DNSSEC by December 2009 [5]. Other agencies of the

US Government, such as the Department of Defense (DoD)

are also in the process of deploying DNSSEC, but certain

types of networks (e.g. tactical networks), do not have the

required infrastructure in place and require alternative means

of protection against DNS cache-poisoning in the interim.

It is not clear whether DNSSEC will ever fully supplant DNS.

In the meantime the Internet continues to be susceptible to a

variety of DDoS and cache poisoning attacks [6]. The

Kaminsky attack, a cache poisoning attack, has been detailed

extensively [2,3,4]. Techniques for preventing DDoS [14]

attacks using CDNs [6,8,9] and Cloud Infrastructures [10,11]

have been studied but these are in the context of content

delivery and not DNS. A few schemes have been proposed to

improve resilience in DNS. CoDNS [21] masks delays in

legacy DNS by diverting queries to other healthy resolvers.

Schemes [19, 22, 23] built on top of peer-to-peer networks

have also been proposed to enhance fault-tolerance and load-

balancing properties. Game-theoretic approaches tailored for

DNS-specific attacks also exist in the literature [7,15,16].

To the best of our knowledge, this work is the first to propose

a solution to the cache poisoning problem by employing a

separately hardened distributed network for name resolution in

conjunction with the use of quorums and IP-cloaking.

IV. BACKGROUND

Since HARD-DNS protects against DDoS and cache-

poisoning attacks against DNS of which the Kaminsky attack

is particularly well-known, we will give a brief background on

DNS as well as the Kaminsky attack using illustrative

examples. [1] is a definitive source on DNS and [2,3,4] are

good descriptions of the Kaminsky attack. For purposes of

illustrations we will work with .mil domains in our examples.

A. The Domain Name System (DNS)

The Domain Name System (DNS) is a distributed hierarchical

naming system for computers, services, or any Internet

resource. Most importantly, it translates domain names

meaningful to humans into the numerical (binary) identifiers

associated with networking equipment for the purpose of

locating and addressing these devices world-wide. An often

used analogy to explain the Domain Name System is that it

serves as the "phone book" for the Internet by translating

human-friendly computer hostnames into IP addresses. For

example, www.example.com translates to 208.77.188.166.

 3

Figure 1: Domain name resolution using DNS

The resolution of a domain address can be seen pictured in

Figure 1. A client, attempts to visit a web page, for instance

www.army.mil and needs to know the web pages IP address.

If it does not already have it, the client (web browser) contacts

the recursive DNS resolver belonging to its ISP. This resolver

will then contact one of the DNS root servers. The root server

does not contain the IP address, but it knows who the

authoritative DNS name server for the .mil zone, or top-level

domain (TLD), are and it will send the resolver this

information. The resolver will then contact of the .mil TLD

name servers which will reply with the authoritative name

servers for the army.mil domain. The army.mil authoritative

name server does know the IP address for www.army.mil and

will send IP = 143.69.249.10 as the reply to the ISP name

server. Finally, the ISP name server will send IP =

143.69.249.10 to the requesting client. To prevent

unnecessary queries from being sent, the ISP name server can

cache previously received replies and use those during the

resolution process if necessary. For instance, if the client were

to request the IP address for www2.army.mil, the resolver can

now contact the army.mil authoritative DNS server directly.

B. DNS Cache Poisoning – The Kaminsky Attack

In summer of 2008, Dan Kaminsky [1] announced his

discovery of a serious vulnerability in DNS aimed at recursive

name servers [2][4]. It relies on a previous vulnerability

called 'CNiping' by which a name server will update its

records when it receives a record containing a CNAME (or

alias) update even if that record is not expired. In Figure 2,

the information in the answer section will be overwritten by

the new reply even if it was not expired. Thus, a malicious

user can spoof a DNS packet and update this information.

Figure 2: Flow of the Kaminsky Attack

The basic idea of the Kaminsky attack is to spoof answer

packets from the authoritative name server to the requesting

name server for a name in the authentic domain. The victim

name server is provoked to go to a name server run by the

attacker by either using it to recursively resolve a name in the

attacker’s domain or by putting a dummy pixel on a webpage

belonging to the attacker’s domain. When the victim server

queries the attacker’s name server the attacker learns the

victim’s IP address as well as source port. The attacker then

provokes the name server to request a fake name in a real

domain. Now the attacker sends a flood of spoofed response

packets to the victim name server in an attempt to get a packet

in before the genuine answer from the authoritative name

server. The reason a flood of packets has to be sent is that the

attacker has to get the TXID, a randomly chosen two-byte

field, correct. If the attacker can get its packet in before the

real packet then it can not only change existing cache entries

corresponding to genuine names (CNiping) it can even change

the IP addresses for authoritative name servers for the

domain! In this way all clients of the victim name server will

end up going to the impostor web sites set up by the attacker.

The Kaminsky attack can be used to hijack potentially even

the root servers and therefore the entire root domain. To

increase the chances of this attack succeeding, a bandwidth

attack, or Denial-of-Service (DoS) attack can be performed in

parallel against the authoritative name servers. This will slow

down the reply from the authoritative name servers to the

victim name server by increasing the time window during

which it can send the forged packets. Figure 2 shows a

diagram of the Kaminski attack. The attacker begins by

requesting the IP address for a bogus host from the victim

name server. The name server will then ask the authoritative

name server for the IP address (step 5a). At the same time,

however, the attacker floods the victim name server with

forged packets that will answer its question to the army.mil

name server, each with a guessed TXID. If one of the forged

packets contains the correct TXID (4406) of the victim's

request to the army.mil name server (in red in 5b), the victim

name server will accept it and update its records. This forged

packet not only contains the IP address for the bogus host, but

1. IP for www.army.mil?

2. IP for www.army.mil?

Root DNS server

ISP recursive
DNS server

.mil TLD DNS server

army.mil authoritative

 DNS server

3. Ask .mil TLD

4. IP for www.army.mil? 5. Ask army.mil TLD

7. www.army.mil IP
 = 143.69.249.10

6. IP for www.army.mil?

client

8. www.army.mil IP
 = 143.69.249.10

 4

it will also contain information that points the army.mil name

servers to a host controlled by the attacker, as shown in Figure

3. Finally, since the reply from the authoritative name server

arrives too late, it will automatically be discarded.

;; QUESTION SECTION:

;kdf2j8g.army.mil. IN A

;; ANSWER SECTION:

kdf2j8g.army.mil. 274 IN A

A.B.C.D

;; AUTHORITY SECTION:

us.army.mil. 600 IN NS

ns.attacker.net.

;; ADDITIONAL SECTION:

ns.attacker.net. 69712 IN A

A.B.C.N

Figure 3: Forged DNS reply of the Kaminsky attack

V. THE HARD-DNS APPROACH

A. Overview

The basic idea is to solve the DDoS and cache-poisoning

attacks by outsourcing the task of resolving name lookups to a

fault-tolerant distributed network, HARD-DNS. We propose

to leverage HARD-DNS machines as the public resolvers, by

massively distributing the resolution functionality. This will

require no software or hardware change whatsoever on the

side of the resolving name servers. Name servers are

configured with a hint zone consisting of the names and IP

addresses of the root servers. We propose to replace this with

the names and IP addresses of HARD-DNS nodes. Thus the

name server contacts these CDN nodes to get its resolutions

(see 4). The HARD-DNS nodes are set up to query recursively

and then combine their answers using majority to diffuse the

effect of poisoning. Observe that the original name server is

completely shielded from the Internet because it never directly

queries any other name server. HARD-DNS nodes resolve

their queries by contacting the appropriate authoritative name

servers.

If the attacker were to attack or attempt to cache-poison they

would instead attack a particular HARD-DNS machine. This

would, at most, poison the cache of that particular HARD-

DNS machine and since the customer picks a random HARD-

DNS machine each time, they would be safe the

overwhelming majority of the time. This will render the

cache-poisoning attacks ineffective. The HARD-DNS

network uses overlay routing to distribute the answers

amongst themselves and arrive at quorums and consensus.

Overlay routing confers superior benefits of speed and

reliability over native BGP routing. To compute its response

HARD-DNS polls a subset of its name servers and then

returns the majority vote. This would fail only if the attackers

are able to poison the caches of all but a small fraction of the

HARD-DNS machines, a virtual impossibility since HARD-

DNS can be architected to have tens of thousands of machines.

HARD-DNS also utilizes load-balancing techniques to diffuse

the effect of DDoS attacks and IP-Cloaking techniques to hide

the requests from the resolving name-server to the HARD-

DNS network. IP-cloaking provides greater security than port

randomization which is the prevalent technique for mitigating

the Kaminsky attack.

Figure 4: Robust DNS infrastructure using HARD-
DNS.

B. BGP Anycast and Overlay Routing

The requests from the (client) resolving name server are

directed to the optimal HARD-DNS server using BGP anycast

[17]. The entire HARD-DNS network also functions as an

overlay network and content is moved through the network

from one end to another via intermediate relays. Even though

each hop between CDN nodes is dictated by BGP (Border

Gateway Protocol) nevertheless overlay routing is often

superior to the native BGP routing between the same

endpoints. This is because BGP is not aware of the congestion

in the network [18].

C. Load-balancing and Attack-diffusion

Load balancing amiong the HARD-DNS servers can be

achieved using one or more layer 4–7 switches to share traffic

among a number of DNS servers. This has the advantages of

balancing load, increasing total capacity, improving

scalability, and providing increased reliability by

redistributing the load of a failed DNS server and providing

server health checks.

The main advantage of a HARD-DNS network is that the

entire process of resolution is offloaded from the (client)

resolving name server) thus shielding the location, even the

existence, of the resolving (client) name server from the public

Internet. Users and attackers only see the HARD-DNS nodes.

Attackers can choose to attack HARD-DNS nodes but a well-

provisioned network will diffuse the attack through load-

balancing. When one of the nodes comes under attack HARD-

1. IP for
www.army.mil?

ISP
recursive

DNS
server

HARD-DNS-
based

distributed
 DNS servers

2. IP for
www.army.mil?

client

4.
www.army.mi

l IP
 =

143.69.249.1
0

- no
caching
- never

exposed
to
Internet

- randomly selected name
servers
- majority voting

3. www.army.mil
IP

 = 143.69.249.10

 5

DNS automatically does load balancing to move the load away

to other servers. If the attacker chooses to move to the new

servers then automatically the old servers spring back to life

and start serving traffic. If the attackers stay with the original

nodes then new traffic automatically gets served from other

nodes. In this way, HARD-DNS protects the origin website

against denial of service and degradation. The general

mechanism of protection can be described by an analogy – just

as important dignitaries are protected by big bodyguards that

effectively act as bullet catchers so too does HARD-DNS

protect the origin by absorbing the attack through its numerous

and well-provisioned server clusters that distribute the load

and diffuse the onslaught.

D. IP-Cloaking

The common approach to dealing with the Kaminsky

approach is to mitigate the chance of a spoofed packet having

the right TXID by increasing the space of possibilities using

port randomization. The resolving name server uses a random

port from a space of a few thousand ports and since the

spoofed packet has to get both the port and the TXID right to

be able to poison the cache, this greatly increases the level of

security. We extend this idea significantly using the concept of

IP-cloaking. The HARD-DNS nodes are IPed with a large IP

space. The resolving name-servers are then set up to employ

hashing with a shared secret key to determine the specific IP

address at the given time to contact. The HARD-DNS servers

will answer only to the specific key at the specific time. The

hashing can be done using a simple scripting language to

modify the configuration file and does not require any

software or hardware upgrade. The hint zone of root servers is

periodically updated with the list derived from this shared key

and soft-uploaded to the name server (name servers are

already set up to soft-upload new configuration files) so that

the original name servers contact the appropriate IP addresses.

This provides an additional layer of protection because even if

the IP addresses of the origin name servers are exposed

nevertheless the attacker must correctly guess the HARD-DNS

IP addresses derived from the shared key to be able to spoof

their response – an impossible task for a sufficiently large IP

space with which the HARD-DNS nodes are IPed (e.g. a Class

B address space with 64000 IP addresses).

E. Quorum technique for fault-tolerance

We use a quorum based approach to reduce the chance of

cache poisoning. For each resolution request from a (client)

resolving name server, HARD-DNS utilizes a number of its

servers, each querying for the resolution and then takes the

majority response from them. Suppose we say that 2 k HARD-

DNS nodes query for the requested resolution and the majority

response is returned back to the original name server. This

response can be poisoned only if at least k+1 of the HARD-

DNS nodes got poisoned. Studies of the Kaminsky attack

show that it succeeds in about 10 seconds in the most

optimistic case. If we assume that a server gets poisoned with

probability 1/10 in a given second then the probability that at

least k+1 of them get poisoned is at most

2k-choose-(k + 1) * (1/10)
(k + 1)

 <= 10
-(0.8k)

Thus if we choose k =50 we get that the probability that the

majority response is bad is at most 10
-40

, i.e. expected time for

the attack to succeed is 10
40

 seconds which is in excess of the

life of the universe.

F. HARD-DNS and CDNs

Observe that HARD-DNS can be easily built on existing

distributed platforms such Content Delivery Networks (CDNs)

or Cloud Infrastructures. CDNs have an edge over Cloud

Infrastructures since they internally use DNS which can be

easily modified to support HARD-DNS and they already

posses a redundant and robust global footprint. It must be

noted that we only rely on the CDN's DNS infrastructure and

not on the CDN's content caching infrastructure. Furthermore,

HARD-DNS truly requires only a large set of redundant DNS

name servers; if this infrastructure can be provided by other

means such as through a Cloud Infrastructure provider, a

commercial CDN is not a necessary requirement.

VI. EXPERIMENTAL EVALUATION

We deployed HARD-DNS on PlanetLab [24] which is an open

platform available to the academic community for designing,

implementing and testing new large scale services. The

advantage of using a platform such as PlanetLab as opposed to

just testing in the lab is that we can evaluate HARD-DNS in

the context of real world congestion and losses. We set up a

HARD-DNS network of 6, 8 and 10 servers on geographically

distributed nodes. We used BIND version 8 which is a legacy

version with the vulnerability to the Kaminsky attack. We

used 1 server by itself as the control case. For a network of 2k

+ 1 servers we used a random subset of k+1 as the quorum,

i.e., with 10 HARD-DNS servers the resolving name-server

would contact 6 randomly chosen servers. We were

continuously bombarding all servers with the Kaminsky

attack. Now of course the duration of a poisoning is a function

of the TTLs (Time-To-Live). Since our goal is to see how

quickly a given network (control server vs. HARD-DNS) gets

poisoned but not how long it stays poisoned we would reset all

machines every time we received a poisoned response from

either the control server or the HARD-DNS network. We set

long TTLs (10S) on all returned responses which means that

when a server got poisoned it would normally stay poisoned

for a long time (10 seconds) but then we would reset all

machines every time we detected a poisoned response, as

explained before. We ran requests every 1 second for a

resolution from both the control server as well as from

HARD-DNS network, for a total of 12 hours. We measured

the latency of lookups as also the time to poisoning. Our

results should be viewed in the context of our setup on

 6

PlanetLab where we were averaging about 120ms RTTs

(Round-Trip Times).

We now present results on the performance and reliability of

the HARD-DNS network vs the control server. Figure 5 shows

the cumulative distribution of lookup latencies incurred by

HARD-DNS vs. the control server while Figure 6 shows the

cumulative distribution of the time to poisoning.

Figure 5: CDF of Latency of Resolution.

Figure 6: CDF of Time-to-Poisoning.

The main takeaway from these results is that HARD-DNS

provides reasonably low latencies while exhibiting great

resilience

VII. CONCLUSION

We have developed the architecture for a solution to the

problem of DDoS and cache poisoning attacks against DNS.

Our HARD-DNS proposal has the merit that it is a low-cost

incremental approach that does not require any software

upgrade on the side of the clients, or existing authoritative

name servers. We have obtained a provisional patent for our

solution [20].

One interesting direction that might be worth exploring is to

consider a distributed network where the network is composed

of different strategic agents with different utility function,

some even potentially malicious. As our solution stands

currently we do not consider that the HARD-DNS network

may be subject to insider attacks.

Another interesting direction would be to provide additional

services through HARD-DNS such as privacy and anonymity

or even transcoding services for mobile devices.

REFERENCES

[1] Liu, C., Albitz, P., DNS and BIND, O’Reilly, 2006.
[2] Kaminsky, D. DoxPara Research, http://www.doxpara.com

[3] Olney, M., Mullen, P. and Miklavcic, K. Dan Kaminsky's 2008 DNS
Vulnerability, Sourcefire Vulnerability Report, July 25, 2008,

http://www.snort.org/vrt/docs/white_papers/DNS_Vulnerability.pdf.

[4] Friedl, S. An Illustrated Guide to the Kaminsky DNS Vulnerability,
August 07, 2008, http://unixwiz.net/techtips/iguide-kaminsky-dns-

vuln.html

[5] Securing the Federal Government's Domain Name System
Infrastructure, White House Memoranda, August 22, 2008.

http://www.whitehouse.gov/omb/memoranda/fy2008/m08-23.pdf

[6] F. T. Leighton Internet Security Insight, Akamai White Paper
http://www.akamai.com/html/perspectives/insight_tl_internet_security.h

tml
[7] R. Sundaram, M. Snyder and M. Thakur, Preprocessing DNS log data

for effective data mining. To appear in Proceedings of ICC, 2009.

[8] R. Sundaram, M. Afergan, A. Ellis and H. Rahul, Method and system for
protecting websites from public Internet threats," Patent #: 7,260,639.

Granted August 21, 2007.

[9] R. Sundaram, H. Rahul, Method and system for providing on-demand
content delivery for an origin server,” Patent #: 7,376,736. May 20,

2008.

[10] Amazon Elastic Compute Cloud (EC2) http://aws.amazon.com/ec2/
[11] Microsoft Windows Azure Platform,

http://www.microsoft.com/azure/default.mspx

[12] Botnet attack of 2004, http://news.zdnet.com/2100-1009_22-

136640.html

[13] Continuing attacks of 2009,

http://www.akamai.com/html/about/press/releases/2009/press_070909.ht
ml

[14] Christos Douligeris and Aikaterini Mitrokotsa. Ddos attacks and defense

mechanisms: classification and state-of-the-art. Comput. Networks,
44(5):643–666, 2004.

[15] Tzi-cker Chiueh Fanglu Guo, Jiawu Chen. Spoof detection for

preventing dos attacks against dns servers. In 26th IEEE International
Conf on Distributed Computing Systems (ICDCS’06), page 37, 2006.

[16] M. Snyder, R. Sundaram and M. Thakur, A Game-Theoretic Framework

for Bandwidth Attacks and Statistical Defenses, Proceedings of IEEE
LCN, 2007.

[17] Bornstein, C., Canfield, T., Miller, G., Rao, S., and Sundaram, R.,

Optimal route-selection in a content delivery network, Patent #:
7,274,658, September 2007.

[18] Beijnum, I., BGP, O’Reilly, 2002.

[19] Ramasubramanian, V., and Sirer, E., The design and implementation of
a next generation name service for the internet, SIGCOMM, 331-342,

2004.

[20] Sundaram, R., Krishnan, R., and Gutierrez, C., HARD-DNS: Highly-
Available Redundantly Distributed DNS, Provisional patent.

[21] Park, K., Wang, Z., Pai, V., and Peterson, L., CoDNS: Masking DNS

delays via Cooperative Lookups, Princeton University Computer
Science Technical Report TR-690-04, 2004.

[22] Cox, R., Muthitacharoen, A., and Morris, R., Serving DNS Using a

Peer-to-Peer Lookup Service. IPTPS 155-165, 2002
[23] Theimer, M., and Jones, M., Overlook: Scalable Name Service on an

Overlay Network. ICDCS 2002

[24] Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S.,
Peterson, L., Roscoe, T., Spalink, T., and Wawrzoniak, M., Operating

System Support for Planetary-Scale Network Services NSDI, May 2004

0

20

40

60

80

100

120

0 2 4 6

C
D

F
(%

)

Resolution Latency (log ms)

CONTROL

HARD-DNS-6

HARD-DNS-8

HARD-DNS-10

-20

0

20

40

60

80

100

120

0 2 4 6

C
D

F
(%

)

Time-to-poisoning (log ms)

CONTROL

HARD-DNS-6

HARD-DNS-8

HARD-DNS-10

http://www.doxpara.com/
http://www.whitehouse.gov/omb/memoranda/fy2008/m08-23.pdf
http://www.microsoft.com/azure/default.mspx
http://news.zdnet.com/2100-1009_22-136640.html
http://news.zdnet.com/2100-1009_22-136640.html
http://www.akamai.com/html/about/press/releases/2009/press_070909.html
http://www.akamai.com/html/about/press/releases/2009/press_070909.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sirer:Emin_G=uuml=n.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigcomm/sigcomm2004.html#RamasubramanianS04
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cox:Russ.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Muthitacharoen:Athicha.html
http://www.informatik.uni-trier.de/~ley/db/conf/iptps/iptps2002.html#CoxMM02
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jones:Michael_B=.html
http://www.informatik.uni-trier.de/~ley/db/conf/icdcs/icdcs2002.html#TheimerJ02

