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ABSTRACT

This paper introduces a methodology for estimating interaio
Web traffic flows between all clients worldwide and the ses\eg-
longing to over one thousand content providers. The ideais¢
the server logs from a large Content Delivery Network (CD) t
identify client downloads of content provider (i.e., puhier) Web
pages. For each of these Web pages, a client typically dasslo
some objects from the content provider, some from the CDH, an
perhaps some from third parties such as banner advertisegen
cies. The sizes and sources of the non-CDN downloads atstcia
with each CDN download are estimated separately by examinin
Web accesses in packet traces collected at several utiesrsi

The methodology produces a (time-varying) interdomain RTT
traffic demand matrix pairing several hundred thousandkislad
client IP addresses with over ten thousand individual Webess.
When combined with geographical databases and routingsabl
the matrix can be used to provide (partial) answers to questi
such as “How do Web access patterns vary by country?”, “Which
autonomous systems host the most Web content?”, and “Halesta
are Web traffic flows over time?”.
Categories and Subject DescriptorsC.2.3 [Computer Commu-
nication Networks]: Network monitoring
General Terms: Measurement, Management, Analysis, Algo-
rithm
Keywords: Traffic matrix, Web, Traffic demand, Interdomain, Es-
timation

1. INTRODUCTION

The reliable estimation and prediction of network traffiodads
has tremendous utility. Internet Service Providers (ISBslinely
employ traffic demand matrices for network capacity plagrand
traffic engineering [1]; demand matrices enable the ideatifdn of
bottleneck links and the evaluation of failure scenariogtwork
security analysts rely on models of normative traffic densatod
detect new threats; worms and distributed denial of se(DE0S)
attacks often generate pathological traffic patterns.ficrdémand
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matrices are also a critical input into simulators for theige and
development of new protocols and services.

1.1 Our Contributions

Interdomain traffic estimation is the focus of this paper. An un-
derstanding of the complexity of this problem is best gaimgdon-
trasting with the case ohtradomain traffic estimation which can
be done in several ways. In theory an ISP can read these demand
directly from its routers using tools such as Netflow (in picecthe
volume of data introduces complications). An alternaterepgh
is to use SNMP to collect link-level load measurements, &ed t
to generate a “reasonable” traffic demand matrix compatilitie
these measurements [2]. These approaches have provetiveffec
and are used in practice today. Modelinterdomain traffic de-
mands on the other hand, is problematic because no single organi-
zation has the authority or the ability to measure all nekviraffic.

An ISP can measure the demands of its clients, and the “ttansi
traffic that it carries on behalf of other ISPs, but even thigdat
Tier-1 ISP has been estimated (folklore) to carry less th#nof
the Internet’s traffic.

This paper presents a methodology for estimating a significa
part of the interdomain traffic demand: HTTP traffic betweearo
one thousand (mostly) United-States-based content prsviand
all clients worldwide. Our approach is based on four obdama.

1. Content delivery networks (CDNs) deliver a significaacfr
tion of the bytes downloaded by university Web users. In
particular, Saroiu et al. [3] observed that about 4.3% of the
Web traffic received by clients at the University of Washing-
ton between May 28th and June 6th, 2002, was delivered by
Akamai.

2. Foreach HTTP request recorded in a CDN’s Web server logs,
the same client typically makes several additional reguest
directly to the content provider's Web servers.

3. Foreach object served by a CDN, the objects typicallyezbrv
directly by the content provider can be identified by examin-
ing traces of Web usage from large groups of users, or by
examination of the content provider’s Web site.

4. The locations of the content provider's Web servers can be
determined with the help of the DNS system and information
available from the interdomain routing system.

In this paper, we combine server logs from Akamai’s CDN net-
work with HTTP traces extracted from packet traces gatheted



several universities to build detailed traffic demand noesi We
provide two types of matricesPublisher demandnatrices pair
hundreds of thousands of client IP blocks with over one tands
publishers. Web traffic demandnatrices pair these client blocks
with tens of thousands of IP addresses belonging to pulplest
CDN Web servers. For each pair, in either type of matrix, we es
mate the rate at which data is transferred to the clientsaifbkbck.

1.2 Related Work

The book by Balachander and Rexford [4] contains an exdellen

survey of Web usage studies. Some studies have focused on un-

derstanding user behavior [5, 6, 7, 8], while others havéddo
at various aspects of changes in content [9] including tfectf

of these changes on the traffic demands [10]. The effectsabf su
changes especially as imposed on a Tier-1 ISP have beerdtudi
by [11, 12, 13, 14]. The impact on end-to-end performance-exp
rienced by the users has been explored using both passivarjd5
active measurements [16].

As mentioned earlier, there are a variety of approachessfor e
mating intradomain traffic matrices. This topic has beentdipéc
of intense research over the past three years [17, 2, 1821391
20, 11].

A literature survey reveals that intradomain traffic engiireg
algorithms [21, 1] have been a principal research focuss iBhiot
mere coincidence because a primary input to nragfic engineer-
ing algorithms is araffic demandmatrix.

Very recently a number of schemes for Interdomain traffic en-
gineering have been proposed [22, 23, 24, 25, 26, 27, 28].-How
ever, to the best of our knowledge, there is no good methggolo
for estimating interdomain traffic demands. It is our untierding
that even the question of whether interdomain traffic mesriand
intradomain traffic matrices have similar dynamics remainan-
swered.

1.3 Outline

The remainder of this paper is organized as follows: in $aQi
we provide background information concerning contentveeyi
networks, and establish terminology for the paper. Se@&iuonro-

duces the notions of publisher demand and Web traffic demand.

Section 4 discusses how to estimate publisher demands asing
CDN. Section 5 explains how we combine logs from a CDN with
packet traces to estimate publisher demands, and how weubrn
lisher demands into Web traffic demands (the details of our im
plementation are provided in an appendix). A descriptionhef
individual data sets we use is given in Section 6 while Sacfio
presents initial results obtained by analyzing the spatia tem-
poral properties of the traffic demands. Finally, in Sectowe
summarize our experience and suggest future researcthiolirec

2. BACKGROUND: CDN S AND
TERMINOLOGY

This section presents a brief overview of the process ofertnt
delivery with and without content delivery networks (CDN¥Ye
also present a brief dictionary of the terms and abbreviatissed
in the remainder of the paper.

2.1 Terminology

The following definitions, taken in part taken from the Weka€h
acterization Terminology & Definitions Sheet [29], will serto
clarify the subsequent discussions.

Legend router

( =
|

! =

} Web server client
|

|

|

\

R
. CDN server (\#’

cIyien»t setA

\
|
1
1
1
1
1

Web traffic |

demand ./

adserver.ex

Figure 1. Example of CDN deployment and traffic flows (Web
traffic demands).

http://home.ex/index.htm

URL: cdn.ex/ex1.gif
Referrer: home.ex/index.htm

This is only
an example

URL: home.ex/ex2.gif
Referrer: home.ex/index.htm

URL: adserver.ex/ex3.gif
Referrer: home.ex/index.htm

URL: cdn.ex/ex4.jpg
Referrer: home.ex/index.htm

Figure 2: Example Web page with some CDN content.

Web site: A collection of interlinked Web objects hosted at the
same network location by a setarfigin Web servers

Supersite: A single, logical Web site that extends over multiple
network locations, but is intended to be viewed as a single
Web site.

Web site publisher, or justpublisher: A person or corporate body
that is the primary claimant to the rewards or benefits result
ing from usage of the content of a Web site. A publisher may
distribute his content across multiple Web sites. Pubtishe
are also referred to as content providers.

Content delivery network: An alternative infrastructure operated
by an independent service provider on which some parts of a
Web site can be hosted.

2.2 Content delivery

The Internet is most commonly used to exchange or access info
mation. This information is typically hosted on origin Wedrgers.



Content Delivery Networks (CDNs) (see, e.g., [30, 31, 32,308
35, 3]) are designed to reduce the load on origin servers e a

same time improve performance for the user. Most CDNs have

a large set of servers deployed throughout the Internet aokec
the content of the original publisher at these servers. &fbe
another view of CDNs is that they provide reverse proxy sewi
for content providers, the publishers. In order to take athge of
their distributed infrastructure, requests for data acéreeted to
the “closest” cache server. Intelligent redirection caguce net-
work latency and load (and therefore network congestiompyav:
ing response time. CDNs differ in their approach to redingct
traffic. Some (such as Akamai [36]), use DNS to translate ts¢-h
name of a page request into the IP address of an appropriagr.se
This translation may consider the location of the cliers,Itication
of the server, the connectivity of the client to the serves,lbad on
the server, and other performance and cost based criteria.

An example that shows how the CDN infrastructure is embed-
ded in the Internet architecture is shown in Figure 1. Therhret
is divided into a collection of autonomous systems (ASs)chEa
AS is managed by an Internet Service Provider (ISP), who-oper
ates a backbone network that provides connectivity to tdiand

to other ISPs. Figure 1 shows four ASs, humbered 1-4, two Web

site publishershome.ex andadserver.ex , and two sets of clients.
The publishethome.ex is connected to AS 3 while the publisher
adserver.ex is connected to AS 2. A set of clients is connected to

3. INTERDOMAIN WEB TRAFFIC

DEMANDS

In this section we motivate and introduce abstractions fdr-p
lisher demands and Web traffic demands and discuss somélpossi
applications based on these abstractions.

The interplay between content hosting, intra- and inter@iom
routing, and the Internet architecture affects the setaffitrde-
mands we choose to estimate. In contrast to previous wotklpA1
13, 39, 14, 40], we are not focusing on a single ISP. Rathegahé
of this study is interdomain traffic imposed by any clientessing
content provided by many publishers.

The situation naturally lends itself to two abstractions:

1. apublisher demand matrithat captures traffic behavior at
the aggregate level of a publisher or content provider;irspa
each client IP block with various publishers and

2. aWeb traffic demand matrithat captures the traffic at the
granularity of a Web server with a specific IP address; itpair
each client IP block with various Web server IP addresses.

Motivation: Traffic demands usually specify the amount of traffic
flowing between two end-points, from the source to the dastin,
which is sufficient as long as both end-points are of the saareg
larity. In the context of Web traffic, treating end-pointgla same
granularity is problematic, as there are many more clieiés t
servers or publishers. Distinguishing between individilignts is

AS 1, another to AS 4. Traffic is routed between the ASs by means 50t due to the sheer size of the resulting matrix.

of Exterior Gateway Protocols [37]; BGP [38] is the de-fastan-
dard. Traffic within an AS is routed by means of Interior Gaagw
Protocols [37].

The location of the CDN'’s servers differ from CDN to CDN and

Just as the interplay between intra- and interdomain rgutin-
tivated a point-to-multipoint demand model [11], it motiea us to
define Web demands in terms of network prefixes that are consis
tent with BGP. This enables us to address questions arisitttgi

depends on contractual agreements between the CDN and-the incontext of inter- and intra-domain routing as well as questire-

dividual ISPs. In some instances, the CDN servers are degloy
within the data centers of the ISP and therefore belong tedhee
AS, like AS1,2,4 in Figure 1. Clients of the ISP (end userd) wi
typically be served by these servers in the same AS. Withrothe
ISPs, the CDN may have a private peering agreement thatsllow
the CDN to serve requests from the ISPs clients via a diratt co

nection between the CDN and the AS. The CDN may also co-locate

servers with the ISP’s clients, e.g., on university campud#ith
other ISPs there may be no relationship with the CDN, andrétfe t
fic to the ISP’s clients is routed via another AS.

Let us consider the steps that are necessary to downloadehe W

page shown in Figure 2. This page consists of one main page

located athome.ex/index.htm and four embedded objects. The
publisher responsible fdiome.ex has decided to use the services
of a CDN,cdn.ex . One object §x2.gif ) of the sample page is
located on the same server as the page itseléx.htm ); another
object €x3.gif ) is served by a company providing dynamic ad-
vertisementsadserver.ex ; and objectexl.gif andex4.jpg are
hosted by the CDN.

If a specific client from client set A in Figure 1 accesses thebW
page, publishellome.ex will serve the bytes for the main page and
one embedded object, publisteiserver.ex  will serve the bytes
for the object located on its servers, and the “nearest” CB/Nes
will serve the two CDN-located objects—in this case, thely g
served from AS 1. In contrast, if a specific client from clieet B
accesses the page, the two CDN objects will be delivered rom
different CDN server, namely the one in AS 4. Keep in mind that
is the objective of the CDN to direct the client to a CDN sertbat
is close to the client.

garding how to multi-home sites and how to balance traffizben
ISPs.

Summarizing clients according to network prefixes appepss a
propriate. Network prefixes provide a way of aggregatingrdli
traffic that preserves locality in terms of the Internet #edture.
Such an aggregation is necessary in order to avoid the ssvake
ability problems of representing each client at the levehoflP
address. In addition, it reduces the statistical signifiegoroblem
caused by too little traffic per individual IP address.

Yet, summarizing publishers via network prefixes is hazasdo
A publisher that serves tens to hundreds of megabits/setmnd
clients is likely to use a distributed infrastructure tdgget with
some load distribution mechanism, such as DNS round-robin o
proximity-aware routing. In general these mechanisms aerg v
similar to those employed by CDNs. This usually means that th
content is available via multiple IPs in different netwontefixes.
Furthermore, it is sometimes impossible to deduce the Web si
publisher from its IP address: A server may host multiplessit
of several publishers. Even the URL of an object does not di-
rectly allow us to infer the identity of the publisher for tbentent,
e.g., that Vivendi Universal Interactive Publishing ispessible
for www.lordoftherings.com . Some publishers split their con-
tent into various sites, each with its own responsible dggdion
and its own independent infrastructure. This implies theg may
want to capture the traffic matrix at two levels of abstratioat
the publisher level or at the level of each individual Welveer
lllustrative Examples: Having motivated the need for the two
kinds of matrices—publisher demand and Web traffic demand—
we now present some illustrative examples. Figure 3 shows tw
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Figure 3: Publisher demands.

different publishers that are identified by id numbers 42 ahd
and the domain names of the sites that they publisime.ex for
42 andnews.ex/weather.ex for 21. Their content is accessed by
two different client sets: A and B. Each client set accesseses
of the content provided bliome.ex and news.ex/weather.ex .
This results in traffic flowing from the Web sites loedme.ex and
news.ex/weather.ex to the client sets A and B. These traffic
flows are what we refer to gaiblisher demands

If we want to improve, say, our routing decisions, then pub-
lisher demands are not of much use: They do not take into atcou
the server locations. In the distributed infrastructuretfe pub-
lisher with ID 42 shown in Figure 1, some of 42's content (nbme
home.ex ) is hosted at servers connected directly to AS 3, some of
42's content has been offloaded to a CDN; furthermore these ma
be third-party content such as banner ads hosteatigrver.ex
on some of 42’s pages. In Figure 1, the resulting tiiéedb traffic
demanddgo client set A are indicated by the smooth arrows; the
Web traffic demands to client set B are depicted by the dotted a
rows.

Applications: These notions of demands enable experimentation
with changes to content hosting, to routing, to the AS leopbt-
ogy, as well as to the location of the content and/or the tdieA
publisher that needs to upgrade its infrastructure has riamiges:
upgrade the existing servers, add more servers, add moce ban
width to existing network connections, add alternativeuoek con-
nections, change the way requests are allocated to indiMiguvers,

or outsource more of its content delivery. In order to decid¢he
best option, the publisher may use the publisher demandeteo e
uate possible scenarios: the traffic volume imposed by refiffie
client sets may influence his decisions. For such “what i€rsa-

ios he needs to understand the dynamics of both the publigher
mands as well as the Web traffic demands as well as the diffesen
in the dynamics between them.

An ISP may also need to predict the effects that adding or mov-
ing a link or peering session may have. This requires a maddel o
interdomain traffic. An important difference between t@afftatis-
tics collected within an AS and the Web traffic demands diseds
here is that they describe traffic flows, not just through tesvork
of the ISP, but throughout the Internet. Therefore, giveruan

derstanding of the dynamics of Web traffic demands, it iseedsi
estimate the effects that decisions (such as adding pesvimec-
tions) may have. Furthermore it is possible to explore wifatts
policy changes will have. For the first time this is now fessitot

just for policy changes by the ISP itself but also for polit\anges

by other ISPs.

By combining Web traffic demands with topology and BGP rout-
ing information one can explore the impact of routing ingits
on actual traffic flows and vice versa. Furthermore by conmigini
the Web traffic demands with performance measurements ane ca
explore how user feedback should be factored into futuresiters.
Furthermore both demands, the Web traffic demand as welleas th
publisher demand, are ideal inputs for driving interdonraatwork
simulations.

4. USING CDNS TO ESTIMATE
PUBLISHER DEMANDS

Computing the publisher demands is possible given eittier-in
mation from each publisher regarding which clients acdesson-
tent served by that publisher from which prefixes, or givéarima-
tion from each client set about which Web sites they are r&tinge
One way of deriving this information would be to collect figeain
traffic measurements at all publisher sites or all cliergssitThis
may enable us to identify the traffic as it reaches the Welpsile
lisher or the clients. However, this approach is virtuathpbssible
since the huge number of publishers/client sets imposeskahat
is unmanageable. Furthermore it would still be necessagdto
dress the question of how to distinguish publishers cotéatat a
server. Just analyzing a large proxy log does not help eshere it
does not allow us to gather information about any signifisabet
of all possible clients.

Instead, we focus on publishers, because there are far fewer
lishers than clients. Yet, instead of considering all paheirs, we
take advantage of the fact that CDNSs provide (Section 2\@rse
proxy services for the content providers (the publishefbey are
acting as “subcontractors” to the publishers. Using datiected
within CDNs has several advantages:

e CDNs serve the content on behalf of their customers (the
publishers). This implies that the CDN has a way of relat-
ing content to publishers.

Due to the requirements imposed by volume-based billing,
CDNs collect data on behalf of the publishers regarding how
much traffic is served. This implies that the CDN has a way
of deducing the amount of traffic it serves on behalf of each
individual publisher.

In addition, most publishers do not want to lose access to the
information they can collect when they serve content diyect
to clients. For example, information about which clients ar
accessing what content is derivable from Web server logs.
Accordingly the CDN has to collect this “Web server’-like
log information. As a consequence, it has a way of relating
traffic to clients.

Moreover the number of CDN service providers is significantl
smaller than the number of publishers. A list of CDN types and
their products is maintained by Teeuw [41] and Davison [4&].
further reduce the candidate set, we observe that the mardein-
inated by only a small number of CDNs such as Akamai, Speedera
Cable & Wireless and Mirror Image.



Focusing on CDNs limits us in terms of the number and kind of
publisher demands that can be estimated: If a publisher dvasn
sociation with a CDN, it will not be possible to derive his figber
demands. This raises the question of which publisher desnard
are interested in, and if those are likely to be associated wi
CDN. Like a lot of other quantities in networking [43, 44, Hijd
elsewhere [45], we expect publisher demands to be consigitim
a Zipf-like distribution. A Zipf-like distribution is one there the
contribution of thek-th most popular item varies agk®, for some
a. Since the heavy hitters account for a significant part otrtée
fic, we are mainly interested in them. Luckily those are theson
that are more likely to use the services of a CDN. Therefor®N€D
can provide us with a way of estimating the publisher deméamds
those content providers that are most popular and thus atému
a large part of the traffic.

Still one problem remains: as discussed in Section 2.2 and as
shown in Figure 1, CDNSs try to take advantage of their disted
infrastructure by serving traffic locally. Thus, how can weect to
derive estimates for interdomain Web traffic demands fraaffitr
to CDNs? Here it turns out that most publishers will not sehesr
whole content via the CDN. Rather they will use some mixtwe a
shown in Figure 2. Note that not all content has to be servad vi
the Web site of the publisher or the CDN; rather some embedded
objects may be located on yet another server, e.g., banner-ad
tisements.

Together this provides us with the opportunity that we ndéd.
we know the ratio of a customer’s traffic serviced via a CDNwa.
the servers of the publisher vs. via external sites, seer€&ig(a),
and if we know the traffic serviced by the CDN, see Figure 4(b),
we can estimate the other amounts, see Figure 4(c). Thetse fac
allow us to estimate publisher and Web traffic demandalfalient
prefixes world-wide anall publishers that are customers of the
CDN. Our methodology significantly improves the availailbf
interdomain traffic estimation—so far at best a scarce dyant

5. ESTIMATING INTERDOMAIN TRAFFIC
DEMANDS: REALIZATION IDEAS

With access to the logs of a CDN, determining the traffic sgtrve
by a CDN on behalf of a specific publisher is possible. Acauyhi
we now discuss how we approach the remaining problems: how to
estimate traffic ratios between publisher and CDN trafficval
as how to map publisher demands to Web traffic demands. Furthe
details are provided in the Appendix.

Estimating traffic ratios: One way to proceed is to explore the
content provided by the Web site of the publisher offline. €aiv
a set of Web pages one can easily calculate the fractionstaf da
served by the CDN vs. the fraction of data served by the algin
Web site. The problem with this approach is that it ignoresfitt
that certain Web pages are more popular than others.

Hence, we really need access to information about user seses
There are many ways of doing this [46]: from users running mod
ified browsers [5], from the logs of the publishers themszg,
from proxies logging information about which data is reqaddy
the users of the proxy [47, 48] or from the wire via packet moni
toring [49, 50, 51]. Each of these methods has its advantaiges
most have severe limitations regarding the detail of infation that
they log. Distributing modified Web browsers suffers froncess
to the browser software and from users not accepting thefiaddi
browsers. While a few publishers might cooperate by remgali

their logs, most will not. In addition, this approach sufférom a
scalability problem. Using proxy logs or logs derived vialst
monitoring is more scalable with regards to ISPs. But withards
to the size of the user population that can be monitored,nitdse
limited.

To choose the appropriate solution let us consider the taetyu
at which we need the information. The purpose of estimatieg t
publisher demands is mainly to understand their medium-tinzde
fluctuations and their impact on traffic engineering, rogitietc.
We are not as interested in small time-scale events (andjinase
it is hard to understand their causes). Therefore some&ggesn
estimation is sufficient for our purposes. Hence we propbse t
following two-fold approach:

e to obtain from the publisher their estimate of the fraction
of traffic that is served by the CDN and other third party
providers; admittedly, we utilize the provider-customer r
lationship between the CDN and the publisher to acquire this
information, which is provided by only a subset of the pub-
lishers.

to use packet-level traces or proxy logs to derive the frac-
tions for some users and therefore for some sample client
sets. (While proxy logs suffice, since detailed timing infor
mation is not required, the analysis in this paper is based on
packet-level traces.)

Figure 2 shows an example of a Web page. A log file, derived
from a proxy log or the packet traces, should show six enfrégs
access to this page, i.e., one for each object (unless itciseca
in the user’'s cache). Each entry includesobject _id (i.e., the
URL), the start and end time of the download of the object, the
transferred bytes, and ti TP_REFERERield (if specified by the
user agent). Note that the referrer field, which lets a usentag
include the URL of the resource from which the requestedabbje
was reached, is optional and not necessary. Neverthelestpo
ular Web clients, such as Internet Explorer and Netscapéyde
them regularly. They prove to be extremely helpful. In ounpte
page, all embedded objects have the same value for theiraefe
field independent of where the object actually resides. dddae
value is the same as the URL of the base page. Thus the referrer
field provides us with the means to associate the objectsremd-t
fore provide us with the means of estimating the ratios betibe
traffic flows.

One way of estimating the ratios would be to try to compute the
exact temporal and causal relationship between the pagethein
embedded objects. But past work, e.g., in the context ofmesti
ing the benefits of prefetching [48] or piggybacked cachédgal
tion [46], has shown that this is a nontrivial task, espégial the
presence of proxies and strange users. For our purposectitbda
thereis a relationship is sufficient. See Appendix B for details.

From publisher demands to Web traffic demands: In order to
derive the Web traffic demands from the publisher demands, we
first need to map the Web sites of the publishers to IP addsesse
This mapping may not be a one-to-one mapping. Recall thaeésom
publishers use a distributed infrastructure and therefpply DNS
mechanisms for “load balancing”, “proximity-aware”, oretser-
feedback dependent” name resolution, in a manner similakée
mai's mechanism for distributing load, or even entrustirigai
to provide these mechanisms.

Again, we propose to take advantage of information avaglabl
to the CDN. It knows the set of hostnames that is associatgd wi
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Figure 4: Web publisher demand estimation.

each publisher. Therefore the problem is reduced to assuria
each hostname with its set of IP addresses.

This can be done using DNS queries. To account for “proximity
aware” or “server-feedback dependent” policies used byptite
lisher, it is not sufficient to issue DNS queries from a singbint
in the Internet—rather we need to use a set of DNS serversitbat
distributed throughout the Internet. Since we have to iseuaar-
sive querie$ to these servers in order to discover their view of the
server IP addresses, they have to allow recursive DNS querie

We captured logs for three two-hour time periods: 9-11:001CU
on Mon Apr. 26th, 2004 (CDN1) and 8:30-10:30h UTC on Wed
Apr. 28th, 2004 (CDN2) and 17-19 h UTC on Wed May 5th, 2004
(CDN3) from more than 90/ 85 / 65% of all the operational sesve
of the CDNZ2. There are two reasons why we did not capture logs
from all servers: Logs for certain time periods arrive indtgrim-
posing a huge instantaneous burst overloading our limésdarch
collection infrastructure. Other logs can be delayed duetaote
network outages, and even arrive after we stopped our ddég€co

In a second step, we determine which server is used by which tion process. In addition the online collection is augmerig an

client. This problem can either be extremely simple or erely
hard. If the site uses a single IP address or simple DNS roolvid r
across a number of different IP addresses, this step ialtr8ince
DNS round robin is supposed to partition the requests abhaute
across all of the servers, this is what we will do in estingiie-
mand. If the site uses a more sophisticated mechanism, wefare
with a fairly difficult problem. Here we have two possible \gap
approximate the decision of the physical Web site: We cdreeit
use the result of the DNS server “closest” to the client saiecan
assume that the client set is directed to the “closest” sektere
we propose to capture the meaning of “close” in terms of AS dis
tance. This seems reasonable, since other measures ofedssee
even harder to define, and since it is known that some diséabu
infrastructures are using this information [52].

More details concerning our implementation are providefipn
pendix C.

6. DATA SETS

The computation of the demands draws on several differ¢at da
sets, as summarized in Figure 5 and 6. This section desaibbes
approach for harvesting and preparing these various latgesats,
each collected at a different location at a different grarity.

From the CDN: Using logs that feed into the CDN billing system
of a major CDN provider, Akamai, we extract for each cliertt se
how much content from which publisher is accessed (aftercapp
priate anonymization). Each individual log file recordsamitesses
to some part of the CDN infrastructure during some time pkaiad

is available for processing some time after the last recbadeess.

1in aniterative query, the contacted name server tells theasting
name server which name server to ask next, while in a re@ursiv

offline retrieval of some subset of the logs via an archivakemy.
We initially aggregated this data using the methodologydesd

in Figure 19 using a time aggregation of half an hour. Thisetim
aggregation was chosen to examine the spatial rather teaprn
poral variability of the data.

From three user sets:Three sets of client access information were
extracted from packet-level traces at the 1 Gbit/s upstréairof

the Munchner WissenschaftsneMWN) in Germany. TheMWN
provides external Internet connectivity to two major unsites
(Ludwig-Maximilians-Universitat Miinchen, Techniscbaiversi-

tat Miinchen) and a number of smaller universities, gavemt or-
ganizations, and research institutes. Overall the networitains
about 50,000 individual hosts and 65,000 registered usersa
typical day theMWN exchanges 1-2 TB of data with its upstream
provider. On the 13th of May during the day (8—-20h), 295.5 GB
used the HTTP port, which corresponds to 26.5% of the traffic.
During the night 112.2 GB (18%) of the traffic was HTTP. This
indicates that the Web is still a major traffic contributor.

Monitoring is realized via a monitoring port on a Gigabit Eth
ernet switch just before the traffic passes the last routéredn-
ternet. We captured the raw packet stream ugipdump on disk
and then extracted the HTTP connections offline using the HTT
analyzer of the intrusion detection systérm [53]. The resulting
trace contains all relevant HTTP header information and ushm
more compact than the raw packet data.

Since extracting HTTP data at Gigabit speed is almost iniposs
ble using standard PC hardware [49] we split our client bage i
three groups: one for each universityufM, LMU) and one that
covers the other organizationgi&C). To ensure a reasonable cov-
erage of all client groups, we monitored each client groupafo

query the contacted name server proceeds by sending a query t 2The relatively bad coverage for the May dataset is due tonigavi

the next name server on behalf of the original user.

to use a compute server for retrieving and storing the logs.



[ Dataset | Obtained from [ Key Fields
CDN sites CDN List of Web sites and Web site publishers that use the CDN
CDN servers CDN List of hostnames of Web sites
CDN logs CDN billing system Per accessed object: client IP address, resource, stagnartiine, transferred bytes
HTTP logs external network connection Per accessed object: user IP address, url, start and endramsfered bytes, referrer, hostname
DNS lookups set of name servers Per hostname and DNS server: set of IP addresses
BGP table peering points Per network: set of possible routes (AS-path)

Figure 5: Datasets and key fields used in computing and validang the publisher and content traffic demands.

| Dataset | Date [ Duration | Size |
CDN logs {04/26,04/28,05/0504 | 3x2hrs| 617.4GB.gz
HTTP logs 01/30/04-05/11/04| 102 days| 28.5GB.gz
DNS lookups 5/12/04-5/13/04 1lday| 5.4M queries
BGP tables 4/28/04 — 270 tables

Figure 6: Per data set summary information.

2-hour period, rotating through the groups. Accordinglgtetrace
captures all downloads of all clients in the group from ablgh-

ers as well as the CDN. In total, we collected 1,017 traced) e&
which covers a 2-hour period. This approach ensures rebsona
packet loss rates. Of the 1,017 measurement intervals utinder

of intervals with more than 0.1% / 1% / 10% packet drops (as re-
ported bytcpdump ) was 124 / 22 / 1. The maximum packet loss
rate was 10.18%, the average is 0.23%, and the median is834002

From the DNS system:We identified roughly 7,000 DNS servers
using a different packet level trace, while ensuring thaheserver
supports recursive queries. But the process does not patiatt
to the distribution of the DNS servers within the Interndtastruc-
ture. Therefore in the next step we identified a subset of 346 D
servers that return different results when resolving theenaf the

roughly 41 Terabytes of data via the CDN network. Thus on-aver
age, each client set accessed about 36 MBytes over the thoee t
periods.

The Internet has obviously many client sets and a sizabldorum
of publishers. But who is contributing the majority of thaffc—
is it a small set of client sets, or a small subset of the phblis?
Even by just studying the amount of traffic serviced by the CDN
we can get a first impression of these relationships. In Eiguwe
rank client sets by total traffic received from the CDN fromrglest
to smallest, and plot the percentage of the total traffichattable
to each for each 30 minute time interval of the CDN2 tracesThi
corresponds to plotting the (empirical) complementary alative
distribution function (CCDF) of the traffic volume per clieset. In
order to not obscure the details in the curves we use linésads
of marking each point for ranks greater than five. To bettstirgi
guish the curves we add some supporting markers. As predicte
we find a “linear” relationship on the log-log scale, an iradion
that the distribution is consistent with the charactersstf a Zipf-
like distribution [45, 43]. The client sets are sorted byitthetivity
in terms of downloaded bytes; the first client set is the mosve
one. This implies that one has to look for the linear relatiop in
the left part of the plot, while artifacts can be expectedatright

main CDN Web server. The 516 DNS servers are located in 437 gjde.

ASs in over 60 countries. We restrict ourself to using thisset in
order to reduce the load on the overall DNS system while a€hie
ing a good coverage of the Internet infrastructure. To kesahich
publishers are using a distributed infrastructure, wecsetea sub-
set of 12,901 hostnames used by the publishers. The resolfi
these hostnames resulted in more than 5.4 million queriedimh
98.2% received a valid response.

From the Routing system: We constructed a joined BGP routing
table from the individual BGP tables on the 4/28/04 from Reut
View [54] and RIPE’s RIS project [55]. This table contains}991
routable entries. Furthermore we extracted an approximati the
contractual relationships between the AS using a methggiaion-
ilar to that proposed by Gao [56].

7. EXPERIMENTAL RESULTS

In this section, we present our initial results of applyingr o
methodology to the various data sets discussed in Section 6.

7.1 Estimating CDN publisher demands

The first step is estimating how much traffic is sent by the CDN
on behalf of each publisher to each client set. For the Irataly-
sis in this paper, we decided to use static groups of /24 gefix
define client sets. We observe 1,130,353 different clieistwihin

But do client sets exhibit the same sort of activity disttibn
even if we focus on individual publishers rather than on abp
lishers taken together? In Figure 8, we explore the chaiatits
of the top 10 publishers, selected by the total number ofdiytat
they serve to all client sets (using the same plotting tegkaias
before). The fact that we still observe a “linear” relatibipson the
log-log scale indicates that even single publisher demareldom-
inated by the behavior of a few client sets. One aspect thgttraa
contributing to these effects is that client sets are |atatéifferent
time zones. About 40.4% of the client sets in CDN1 and CDN2
are located in the US, 9.4% in Japan, 6.0% in Korea, 4.2% in the
UK, 4.2% in China, 3.9% in Germany. (The mapping of network
to country is done via Akamai's EdgeScape tool.) One reason f
reduced demands is that for some client groups most areirsieep
while users of other client sets are at work, etc. While theaot of
time zones has to be further explored, we start by subsetpesiri-
ous subsets of client sets. Each of these client sets catlees ene
(Japan), two (UK, France, Germany), or four time zones (U&).
still observe activity drops that are consistent with Zigé distri-
butions (plots not shown) if we split the demands per clierear
time. The bends for Publishers 6 and 10 in Figure 8 are dueeto th
superpositions of access by client sets in the US and abiaa.
ones in the US have a higher demand than those outside the US.

Even though the client sets in Figure 8 are ranked separately

the datasets CDN1 and CDN2. This corresponds to a 23.6%-cover according to their activity for each publisher, it also skoihat

age of the overall IPv4 address space and 52% coverage ofgwefi
within the routable IPv4 address space. 1.3% of the obsefiat
space is not publicly routable, perhaps due to placementdf C
servers within private networks. In total the client seteessed

a client set that receives the most bytes from one publisbes d
not do so from another publisher. Rather, there are signifidid-
ferences. This indicates that each publisher in the Intdras to
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Figure 7: CCDF of client set traffic volume (% bytes served
from all publishers each 30 min).
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Figure 8: CCDF of client set traffic volume (% bytes served)
per top-10 publisher during the two hour period of CDN2.

determine for itself who the heavy hitters (contributonsiomg the
clients are—extrapolating from one client set to anotharmmis-
leading.

But what is the behavior if we consider the data from the view-
point of the client sets? In Figure 9 we explore the populasft
content served by the CDN on behalf the publishers (usingahee
plotting technique as before). Again we observe a curveittoit
cates a Zipf-like distribution in the range of 1-1,000. Thepbff
in the curve for less popular publishers indicates thatthea large
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Figure 9: CCDF of publisher traffic volume (% bytes served to
all client sets each 30 min).

number of publishers that do not serve a lot of data via the CDN
This does not disprove that, for the popular publishers dib&i-
bution is consistent with a Zipf-like distribution.

Generally, we observe the same kind of curves for all dat set
and for each subset of the datasets. For example, in Figuhe 9,
curves for the publisher popularity in terms of traffic voleirne-
tween consecutive 30-minute time periods fall on top of eshkr.
The same observations hold if we look at the individual pibli
ers or the client sets over consecutive 30-minute inter&us this
does not imply that its always the same publisher or the sdis ¢
set that dominates the distribution. Accordingly Figurepldis the
bytes contributed by each country during one 30-minute e
riod vs. another 30-minute time period. The left plot doesmo
consecutive time periods. The nice concentration arouadiitg-
onal indicates that the volume changes are not rapid withyno®
the three datasets. In contrast, the right plot shows the dama
of plot comparing corresponding 30-minute time periodsrfithe
26th of April to those of the 5th of May. (A 30-minute time padi
starting at offsek in one trace corresponds to the 30-minute time
period starting at offset within the other trace.) Note that, due to
the time shift, one should expect a larger spread. This msdddhe
case, indicating that the popularity changes have to beidenesl
not being just time-of-day variations.

7.2 Estimating relationships between CDN
and publisher flows

Once we know how much Web traffic is flowing from the CDN
to each client set, we need the ratios to extrapolate fronpéne
tial CDN publisher demands to the Web publisher demands. Ac-
cordingly we apply the our methodology to the client access.
(Further details are provided in Figure 20 in the AppendMdte
that we are not necessarily capturing all of the traffic frowa pub-
lisher since our methodology is based on the referrer figldhe
requests for CDN-delivered objects, i.e., there might mewore
CDN customer data being delivered than we are estimating.

We start with presenting some basic characteristics of éta d
sets from the three client populations covering all moeitiosub-
nets, see Figure 11. Overall, in them, LMU, andmiISc data sets,
we observed roughly 522 million different requests for Whejeots
for more than 5.15 TBytes of data. This implies that the mdan o
ject size in our data sets is about 9.5 KBytes. The mean siaa of
object served by the CDN to the clientstatm, LMU, andMISC is
a bit smaller at about 8 KBytes. This accounts for the difiessbe-
tween the % requests directed towards the CDN vs. the % ofbyte
While 4.2—4.9% of all HTTP requests are served by the CDN, thi
corresponds to only 3.14-4.31% of the HTTP bytes.

From Figure 11, we see that the clients only retrieve 1.8462.2
of the HTTP bytes from the CDN customers themselves. This ind
cates that the ratio of bytes served by the CDN vs. the bytesde
by the publishers can vary from 1.4 to 2.5: The relative paiamge
of requests directed to the CDN customers is larger thanediae r
tive percentage of bytes retrieved from the CDN. This ingisghat
CDN customers delegate their larger content to the CDN, kvisic
to be expected. Yet while publishers delegate a large amtheyt
do not delegate all of their traffic. Therefore our approamhefs-
timating publisher traffic can be expected to yield estirmatkin-
teresting interdomain traffic flows for a significant fractiof the
overall traffic volume.

The fraction of bytes in the categorglated to non-CDN-cust-
omersgives us another possible avenue for estimating interdomai
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Users Description Requests (in K) Bytes (in Gbytes)
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TUM CDN 15,065 4.21% 119.00 3.14% £ <3 il
LMU CDN 4,449 4.88% 26.75 3.71% <
MISC CDN 3,043 4.91% 27.40 4.31% § )
TUM CDN customer 10,650 2.98% 83.95 2.21% o P
LMU CDN customer 2,549 2.87% 13.75 1.91% k] é )
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Figure 11: Basic statistics of the user access characteriss. publisher

traffic flows. There are two reasons why requests/traffis falio Figure 12: CCDF of requests per publisher.

this category: publishers offload some of the content toratbe

vice providers (e.g., those providing targeted advertesgin and 16 ey
some of the publisher’s content is served in connection wiitier o | %2 000000
sites (e.g., advertisements on someone else’s Web pagdg Wk 3 2
indicates some additional potential, in this initial exliion phase £ o |
we focus on the ratio of traffic served by the CDN on behalf of a £ 5]
publisher vs. the traffic to the publisher itself. H v ]
For this purpose we need to associate the bytes served by the § =l
CDN and the bytes served by CDN customers’ own servers wéth th ;:‘3 o |
appropriate publisher. Using Akamai-internal informataources, g 7 Tum o
we were able to identify 23 million requests from tMaVN to w | LMU o
Akamai-hosted URLs (Figure 5). While 23 million requests ar é L MISC : : : : ‘
a sizable number, the individual number of requests for abje 1 5 10 50 100 500
served by the CDN over smaller time period (2 hrs) are siganitiy publisher
smaller. Averaged over the whole duration of the trace ctithe
this implies that one can expect to see only 2,000-20,000estg Figure 13: CCDF of bytes per publisher.
in each data set for each two hour time period. Of course ygst a
aging is unfair since there will be many more requests dusimy percentage of the bytes these curves are “linear” on a logdale.
hours than during off-hours, e.g., in the middle of the nidhtad- Again this characteristic is consistent with a Zipf-likestibution.
dition some subnets, e.g., those with Web proxies, gerterasay Together these two observations imply that we can expechtb fi
more requests than others. Nevertheless it points out thegm of time periods with a reasonable number of observations foreso
observing enough samples for deriving a reasonable rdinate. significant subset of the publishers in our user access deta\&e

Here we receive help from a trend that has been observed innow focus on thosétime periodpublishep pairs with enough ob-
many other contexts: some publishers have much more popularservations.
content than others. We rank the number of requests (Figdire 1 Here we define “enough” as observing at least 50,000 requests
and bytes (Figure 13) by provider from the largest to smaftas satisfied by the CDN on behalf of a publisher and 500 requests
both data sets, and plot the percentage of total requests/lay- served by each publisher itself per aggregation period.ndJsi
tributed to each. For those publishers that contribute wifgignt value of 500 is fairly arbitrary; further investigation igeded to
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tomers requested fromTum and LMu . Each ratio is calculated

via ( #requests or bytes Akamai servers )
#requests or bytes publisher-owned servers /-

provide a sound basis for a good cutoff value. Using thesegeh
criteria, we compute the ratios of bytes for each publishereach
aggregation period. Not too surprisingly we found that thios

span quite a wide range of values: from 0.01 to 100. Comparing

ratios is awkward, e.g., is the “difference” between 0.08 ar06

to a fairly small sample size and partially due to the valighbof
different content that is offered by that publisher. Furthggre-
gation and combining the information from different useissean
sometimes be helpful—Figure 15 also shows the boxplotshier t
samples from the combined data sets. While some estimatfons
the ratios stabilize, as indicated by the smaller range eftibx,
others expand due to the differences in the user behavior.

Generally, we can estimate the ratio of publisher demand ser
viced by the CDN vs. that serviced by the publisher. But tlaeee
drawbacks to this approach: A large number of requests riedus
monitored in order to derive reliable estimations. Theneations
can vary across time and some attention has to be paid tod#rds
ferent subject/interest areas by different user setshEurtore not
all user sets will access sufficiently many objects from ablsh-
ers that are customers of the CDN. Therefore this approamiich
be combined with other approaches for estimating the ratias,
static exploration of the Web site and information from thép
lisher itself.

7.3 Mapping of publisher demand to
Web traffic demands

The next step is to apply our methodology for mapping the pub-

the same as between 16 and 327 In this context the answer is yedisher demands to Web traffic demands. (Further details are p

since both “differ” by a factor of 2. Therefore, to ease corgzns
of ratios we, in all further discussion, use the binary litan of
the ratios. Accordingly 0.03 is transformed b, 0.06 to—4,

vided in Figure 21 in the Appendix.) The open question is: how
well does the proposed methodology of mapping each client se
and each hostname to a single server IP address work? This is a

16 to 4, and 32 to 5. Now the differences in both cases are 1. two-step process. First, we need to identify the set of IRexids

Figure 14 plots the density of the transformed ratios forithe

for each hostname. Then we need to identify which subseteof th

andLmu data sets for both bytes as well as requests. We observe forlP addresses to choose for each client set.

all data sets that the ratios span a significant range of sdtoen
—10 to 10 both for requests as well as for bytes. This indicduats
different providers use different policies with regardsiadegating
their information to the CDN. Furthermore we see, as exjgethat
the CDN usually provides more bytes than the original phielisor
most but not all publishers. In addition with regards to exja the
distribution is more balanced. This indicates that somdigturs
use the CDN for big objects, such as software distribution.
While the overall distribution of the ratios is interestingore
relevant for the purpose of estimating the publisher demanthe

question: How stable are the ratios across time and usetgopu

tions? Overall it is well known that traffic volume [6] and flaw-
rival streams [57] are self-similar and exhibit significhntstiness.
Therefore we can expect some fluctuations with regards taitire
ber of requests over time. In addition, not every user witkesss the
same pages from the publisher, and different subsets ofpaifje
lead to different ratios in terms of bytes from the published the
CDN. But what are the impacts of all these causes of instgBili
Our estimation methodology allows us to explore the sizdese
instabilities since it will yield multiple samples of estated ratio
values for various publishers. Figure 15 shows boxplothefra-
tios for the 15 most popular publishers for the samples oftiree

data setsyum, LMU, andmisc. Boxplots can be used to display

the location, the spread and the skewness of several datia sete
plot: the box shows the limits of the middle half of the datae t
line inside the box represents the median; the box widthpiere
portional to the square root of the number of samples for the b
whiskers are drawn to the nearest value not beyond a staspgand
from the quantiles; points beyond (outliers) are drawnviiaitially.

Most of the boxes have a reasonably small spread (less tiedn tw

But others have quite a spread, e.g., index 4. This is pigrtiake

If a hostname is hosted by the CDN itself or if the infrastonet
is using DNS round robin by itself, the latter step is simptethe
first case we know which IP address serves the traffic and in the
second case all returned IP addresses are used. Using ¢héedat
scribed in Section 6 we observe that of the 12,901 hostna2yH3%
(16.3%) are hosted by the CDN itself, 1,242 (9.6%) are usimges
form of proximity-aware load balancing, while 10,906 (8%)5are
consistently returning the same set of IP addresses. Od tiest-
names, 9,124 (83.8%) are returning a single IP address W0k
(8.4%) are utilizing only DNS round robin. Most of these (830
are using two IP addresses, while 79 are using more than five IP
addresses. Therefore we have solved the problem for 90.4Be of
considered hostnames. If most publishers are servingehatent
out of a small number of servers, then most clients must beray
from those servers, which indicates that a significant ivaatf the
traffic that we capture will be interdomain traffic.

This leaves us the with 1,239 hostnames hosted on a distdbut
infrastructure and using proximity-aware load balancifgbetter
understand this infrastructure, we show a histogram of tieber
of IP addresses (Figure 16) and the number of ASs (FigureV¥é).
observe that most of these hostnames (83.5%) are only mapped
a small number of IP addresses §). Indeed more than 34.7%
are using only two distinct IP addresses. Next we examineeif t
infrastructure crosses domains, see Figure 17. 377 (3004%)
hostnames using proximity routing are in a single AS. Thisnse
that from the view point of interdomain routing, we will noe b
able to distinguish these demands. We observe that 44% of the
hostnames are located in at least two but at most five diff&x8s.

To explore how the infrastructure of the remaining 862 host-
names is embedded in the Internet we studied the minimal A4S di
tances of the ASs of the IP addresses of the distributedsimnfre:
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Figure 16: Distributed infrastructures: IP addresses per tost-
name.
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Figure 17: Distributed infrastructures: ASs per hostname.

ture to the ASs of 500 randomly selected IP client sets. lermial
compute the distances we consider the contractual retdtips as
derived from the routing tables [56]. Each AS path may onbssr

a single peering/sibling edge, and may never follow a custeio+
provider edge once it has followed a provider-to-peer edyey
edge unclassified by the heuristic is treated as a “siblagg/dink.
We observe, Figure 18, that providers that use more servets a
distribute them in various AS indeed gain some benefits. Téam
distance and the standard deviation to other ASs is reduced.

8. SUMMARY AND OPEN QUESTIONS

In this paper, we propose two models for interdomain traffic d
mands, publisher demands and Web traffic demands, thatreaptu

mean - std
mean
mean + std

o

AS distance

15 12

hostname index (sorted by # ASs)

Figure 18: Distributed infrastructures: AS distance between
client sets and publisher hostnames.

the origin, the volume, and the destination of the data, hns pro-
vide an interdomain traffic matrix for Web traffic. We believmt
this simple abstraction can facilitate a wide range of eegjiing
applications, ranging from traffic engineering, to plamnof con-
tent delivery, to network simulation. We further present etimod-
ology for populating parts of the demand model using logmfro
CDN networks, observations from user sets, the DNS, andbtlte r
ing system.

The experimental results obtained by applying our methagiol
to logs from a major CDN and two large user sets are promising.
Our approach seems to allow us to capture a significant dracti
of all Web traffic. Viewed on any scale, but particularly imrtes
of the number of pairs, our matrices are some of the largest ev
generated. We have demonstrated that it is indeed possibten-
bine server log data from a CDN with packet level traces frarge
user sets to estimate a good chunk of all interdomain Wefictieesf
proven by the diversity and coverage of the demands. Neslegh
our results (especially the numerical estimates) shoutcdaged as
preliminary and viewed mainly as an indication of the patdrdf
the methodology.

We present a collection of directions for further research:

1. We have captured only one class of traffic, namely HTTP.
While several studies have shown that HTTP traffic is among
the most common, its dominance has recently been chal-
lenged by new classes of traffic such as peer-to-peer file shar
ing data and streaming media. How well does HTTP traffic
demand effectively represent overall traffic demand? How
can traffic demand for other classes be estimated?



2. In this work we assume that the number of bytes served by
the content provider for each Akamai-served object can be
estimated by examining traces from a small number of Iarge[14]

client sets. Is the observed ratio of bytes served by the cus
tomer to bytes served by the CDN (reasonably) invariantsscro

[15]

diverse user sets? At this point we have examined only two.[1]

It is possible that content providers might tailor their web

pages for different client sets; e.g., a U.S.-based sitdimig [17]
choose to serve more compact (fewer bytes) web pages to

overseas clients.

3. Now that we have a means of estimating interdomain traffic 18]
demands, we are beginning to explore aspects such as tem-

poral (time-of-day) and spatial distributions and anadyst

publisher/user dynamics. But we expect it to be even more[19]

fruitful to combine this data with routing information, syl

ically BGP tables. How does BGP respond to network bot-
tlenecks? How do the demands shift in response to routin

changes?
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the record collectors, granularity of the data sources, atel since
most applications making use of publisher demands are agerla
time scale, we compute the demands on time scales of musltyble
minutes rather than seconds. Time is partitioned in binsicdtibn
APPENDIX bin_length , according to the considered resolution. If a record
In this section we present more details on how we estimate pub spans multiple bins, we subdivide the traffic in proportiorthie
lisher demands and web traffic demands using logs from a CDN fraction of time spent in each time period.

provider, packet-level measurements at ingress linkstlza®NS To derive the final publisher demands we draw on another map,
system. customerid_to_demand . It specifies for each customerid the rela-
tionship between the CDN-hosted traffic flows and the setftdd
A. CDN LOG EVALUATION traffic and is the result of the computation detailed in SecH.
The algorithm for computing the publisher demands in sunmadr

To compute publisher demands using CDNs, fine-grain access
records from all servers of the CDN have to be collected. Usu-

ally servers generate a record summarizing each transadtiese B. ESTIMATING FLOW RATIOS

are exported on a regular basis for billing purposes andudecl

in Figure 19.

sufficient information for computing the publisher demarttie BETWEEN CDN AND PUBLISHER
accessed_object , theclient IP address, thatart andend In Section 5 we suggest using proxy and/or packet level srace
times of the transfer, and the numbetrafisferred_hytes . (Any to estimate the relationships between the various flows shiow
additional information can be used to further refine thearotf Figure 4(b). Here we present a three pass approach which auto
publisher demands.) matically ensures that Web pages referring to other Webspage
Computing the traffic demands requires information aboat th handled appropriately.
CDN customer (i.e., publisher) associated with each rec®tds The first two passes serve preparative purposes. In the disst p
aggregation process draws on a naigect_to_customerid , such we separate the set of accessed objects according to usads IP
that everyobject can be associated with a uniqoestomerid . dresses. In the second pass (Fig. 20) we determine the sbt of o
Furthermore, it uses another matientip  _to _clientprefix , jects served by the CDN under consideraticin_set , and some
of network addresses such that every source IP addriess, , additional information that we specify below. For this posp we
can be associated with a network prefient_prefix . The first check each object against the appropriate CDN customeribvase
map can be derived from the customer information of the CDN formation determine_customer_id() and, if appropriate, com-

while the second can be derived with longest prefix match faom  pute the CDNcustomerid — and add it to thedn_set .
joined BGP routing tabléoined_bgp_table from multiple dif- In the third pass we compute for each CDN objeirt id  within



Pass 1:
Sort the accessed objects according to user IP addresses
Pass 2:

For each user IP and objeict (url, start, end, tranbytes, referrer, hostname)
if (determinecustomerid(objectid) evaluates to CDN object) then
customerid[objectd] = determinecustomerid(objectid);

cdn.setU= objectid;

basecandidateset[url] U= objectid,;
embeddedcandidateset[url]] U= objectid;
Pass 3:
For each objectd from cdnset
with (url, start, end, tranbytes, referrer, hostname)
if (done[objectid]) then next;
done[objectid] = true;
endbin_cdn =|end/binlength * bin_length;
cdn.customerid = customerid[objectd];
volume[cdncustomerid, endbin_cdn] U= transbytes;
For each candidate in (basandidateset[referrer]
or embeddedandidateset[referrer]){
if (3 customerid[candidate] or done[candidate]) then next;
done[candidate] = true;
associatedhosts[cdncustomerid] U= hostname[candidate]
endbin_candidate 5 end[candidate]/bidength] * bin_length;
volumerelated[cdncustomerid, hostname[candidate],
endbin_candidate]= transbytes;

Output for each customerid and host from the associatets the ratios:
(customerid, hostname, tint@n, volume[customerid, timéin],
volumerelated[host, timebin]/volume[customerid, timdin])

Figure 20: Computing flow ratios: CDN vs. Publisher from
user access logs.

this set the possible base pagese_candidate_set  and the pos-
sible other embedded objeambedded_candidate_set . For an
object to fall into these sets either its URL or its referras o be
equal to the referrer value of the CDN object. For this puepoes
stored some additional information in the second pass: ebjett
with URL url and referrereferrer  is added to the set of possible
home pages for this URhase_set(url) . Furthermore, we add
the object to the set of possible embedded objects for thermur
referrerembedded_set(referrer) . Once we have retrieved the
candidate sets, we can determine the hostnames for each alhth
jects within the candidate sets and add the bytes in the syuons-
ing object to the appropriate traffic flow. The appropriatfic
flow is either determined by thain_customer_id  for CDN ob-
jects or the hostname for non-CDN objects. If the hostnametis
used in the users request, we propose to use the server I€saddr
instead. In order to keep the relationship information, ae now
establish the linlassociated_hosts betweercdn_customer_id

and the hostname of the objects in the candidate sets. Im trde
avoid double counting, e.g., if the exact same page is aedesal-
tiple times, one needs to mark every object that has already b
accounted for.

Again it is the case that no content transfer is instantas\emut
rather than spreading the contribution of each transfersaamulti-
ple time periods of duratiobin_length , we propose to just add it
to the last bin. It is known [58] from aggregating Netflow d#tat
this can lead to artifacts. But if the aggregation periodslang
enough, size and impact of these artifacts decrease saymtific

C. MAPPING PUBLISHER DEMANDS TO
WEB TRAFFIC DEMANDS

In order to map the publisher demands to Web traffic demands
we need to find out which IP addresses are actually in use by the
publisher’s infrastructure. As an initial step, we deribe set of

For each customsd:
hostnameset = customerido_hostname(customed);
For each host in (hostnanset){
For each dnserver in (dnsserverset){
ip_set[customerd] U= dns.query(dnsserver, host);
ip_setdns[customerd, dnsserver]
U= dnsquery(dnsserver, host);

dnspolicy[customerid] = classify.dnspolicy(ip_set)

For each clienprefix:
closestdns server[clientprefix] = closest(clienprefix, dnsserverset);
For each customdd and clientprefix:
if (dns_policy[customerid] == “round robin”)
split traffic evenly among iset[customeid]
if (dns_policy[customerid] != “round robin”)
split traffic evenly among
ip-setdns[customeid, closestdns server[clientprefix]]

Figure 21: Mapping site publishers to Web traffic demands.

hostnames associated with each site publistustomer_id ) (via
the mappingustomerid_to_hostname ), utilizing the knowledge
of the CDN provider. Therefore the problem is reduced to @sso
ating each hostnamédst ) with its set of IP addressei (set ).

To account for the distributed infrastructure of the sitehaee to
issue recursive DNS queries from a set of DNS servers digéib
throughout the Internet. We propose identifying a set ofdean
date DNS servers from traffic measurements, such as Netflow or
packet level traces, or by checking Akamai's DNS server.lbabs
ing packet traces has the advantage that its easy to chéekDINS
servers support recursive DNS queries. Otherwise one sae &
recursive query to the DNS server and see if it is willing tspend
to the query and second if it supports recursive queries.eGre
have derived a candidate set of DNS servers, we can eithedluse
of them or a subset. We propose to concentrate on a subsetsitich
each DNS server in the subset will return a different IP askifer
at least one Web site publisher that utilizes a distributé@struc-
ture. Since the CDN runs a highly distributed infrastruetwe use
the main Web server of the CDMww.cdn.ex , for this purpose.

The next step involves identifying what kind of access distr
tion mechanismadps_policy ) is used by the physical Web site.
We propose to concentrate on the popular mechanisms and look
for indications of their use. If all queried DNS servers ratal-
most the same set of IP addresses then we can assume that DNS
round robin (found robin ") is used. We use “almost” instead
of “exactly” since one cannot query all DNS servers at theesam
time. This lack of synchrony can cause anomalies. If diffeBBNS
servers return different IP addresses in a consistentdfaght least
two times) then we can assume that some form of proximityrawa
load balancing is usedgfoximity  "). In the first case we propose
to split the load evenly between all IP addresses used taeimght
the physical infrastructure. Otherwise we propose to Huditraffic
only between the IP addresses resolved by the closest DNé&rser
queried to the users in question. All other cases are clyresit
solved via manual inspection.



