Jamming Steganography using Steganography:
prevention of data exfiltration using steganographic techniques
Keith Bertolino

Ravi Sundaram
CE Department

CS Department
Northeastern University

Northeastern University
Boston, MA, U.S.A

Boston, MA, U.S.A
E-mail: kbertolino@ciphertech.us

E-mail: koods@ccs.neu.edu

Executive Summary
The “inside job” is one of the worst nightmares of security experts and consultants world-wide. Chief Security Officers of corporations spend sleepless nights figuring out how to prevent the exfiltration of sensitive data by their employees using steganographic techniques.

In a modern twist on the proverb “set a thief to catch a thief” we study the viability of jamming steganographic communications using a variety of different steganographic methods. To the best of our knowledge this is the first time such an approach has been studied. Though there exists a multitude of covert channels (including esoteric side channels and timing channels) we focused our research on email, specifically, the use of popular steganographic tools (both commercial and open source) to embed information in image file attachments. This is the common case and affords the most bandwidth to the malicious insider. The goal of our research was not to detect or decipher steganographic information embedded in image files but to jam it effectively while having little impact on benign files.

Our research was conducted with the idea that it could be directly applied to military, government, and other sensitive environments. Deploying the knowledge explored in this paper in a server-side application, would certainly constitute a proactive approach to counter-intelligence operations and undesirable and otherwise undetectable data exfiltration attempts. As part of our study we developed a proof-of-concept application utilizing the aforementioned research, which ultimately affirmed the definite viability of this end goal.

Keywords – Steganography, security awareness, information security, data exfiltration.

1. Introduction
Steganography is a method of secret communication that conceals the very existence of the message. Yet, while cryptographic techniques aim at “scrambling” messages so if intercepted, the messages cannot be understood; steganography aims at concealing the fact that a message is being sent altogether. Steganographic communications utilize covert channels to transfer information in violation of the system’s security policy [3].
Organizations wishing to protect material from being exported from their networks usually start by securing their mail servers. System administrators and organizations will enact rules to prevent users from being able to attach certain documents, or imbed specific types of data into their outgoing emails. The void that is left unaddressed is covert communication - users can use steganographic principles to transmit data unbeknownst to both monitoring programs and visual inspection.
The objective of this research was to determine the most effective way to use known steganographic tools to automatically introduce noise at the file level into outgoing emails to drastically reduce the amount of data that can be transmitted through steganographic methods. Popular open source steganography tools were integrated to automatically steg a variety of random noise into file attachments. We believe that our research constitutes a novel contribution from a conceptual standpoint – the use of steganography to defeat steganography. The key advantage of our technique is that every new steganographic tool is also an antidote to the threat it poses.

2. Methodology
 It is well known that the most popular file carriers of steganography today are image and audio files [2]. Knowing the popular carrier file types as well as the popular steganographic programs, a large test set of data was created. This data was then used to verify effectiveness of a proposed jamming technique. Several different types of very small images were created. They contained irrelevant data (i.e., random patterns of black, white, and grey dots), we will call these files “noise” files. These noise files will be impacted into questionable data through the use of a variety of different steganography programs. As the noise files are stegged into the potential carriers, they overwrite critical bits of any hidden files previously stegged into the carrier. Because the original file is only slightly modified by steganographic techniques, the original file remains basically fully intact while the jamming effectively destroys any hidden messages. The key aspect is that every outgoing attachment or email can be processed with this method. Any files which do not carry hidden data will not be affected by the jam, while only the benign (standard visible) image or data survives the jam from files that are in fact carriers.

The focus of this particular research project has been isolated to the most popular image file types: GIF (.GIF), JPEG (.JPG), and BitMap (.BMP). Because there are three different common encodings for BitMap files, each of the three individual types of BitMaps were also tested. These types include BMP 24-Bit, BMP 16-Bit, and BMP 256-Color. The conclusive list of chosen applications is as follows: Steganography v1.8, Camouflage v1.2.1, BlindSide v0.9b, S-Tools v4.0, Invisible Secrets v4.6.1, jpegX v1.00.6, stegHide v0.5.1, GifSuff v2.0, and JPHide v0.5.

3. Findings
Most of the effective jams seem to be through data collision of some “Valid Bit” or series of bits. The majority of the applications use some form of a signature placed at a specific location in all output files to verify that the file is a carrier and it was created with a specific program. If this signature is destroyed, the creating program simply does not even try to extract data, it just tells the user that there is nothing hidden or falsely reports an incorrect password. This “Valid Bit” could also be an indicator as to whether the user-typed extraction password was correctly entered. Other jams actually overwrite such a large amount of the hidden data that the resulting file, when analyzed by the original program, is simply unintelligible. In this case, files can sometimes be recognized as a carrier, and occasionally the hidden file’s name can be extracted but upon export attempt, the file is so corrupt that the steg program crashes or throws an error. For the purposes of this research, these cases are still considered as successful jams as long as no hidden file fragments were feasibly recoverable aside from the file name itself.

Each of the nine applications was used to create test files of a variety of different file types with a variety of different carriers. These files were then jammed with all of the nine applications. The following is a summary of all tests completed:

Key:
	Abbreviation
	Full Application Name

	STEG
	Steganography v1.8

	CAMO
	Camouflage v1.2.1

	BLND
	BlindSide v0.9b

	TOOL
	S-Tools v4.0

	INVS
	Invisible Secrets v4.6.1

	JPGX
	JPEGX v1.00.6

	SHID
	StegHIDE v0.5.1

	SHUF
	GifShuffel v2.0

	JHID
	JP Hide v0.5

	Creating

App.
	Jamming
App.
	Tested
Extensions
	Success?

	STEG
	STEG
	Many
	SUCCESS

	STEG
	CAMO
	Many
	SUCCESS

	STEG
	BLND
	BMP
	All except
BMP24-bit

	STEG
	TOOL
	BMP, GIF
	WITH BMP ONLY

	STEG
	INVS
	BMP, JPG
	WITH BMP ONLY

	STEG
	JPGX
	JPG
	SUCCESS

	STEG
	SHID
	BMP, JPG
	WITH JPG ONLY

	STEG
	SHUF
	GIF
	SUCCESS

	STEG
	JHID
	JPG
	SUCCESS

	CAMO
	STEG
	Many
	SUCCESS

	CAMO
	CAMO
	Many
	SUCCESS

	CAMO
	BLND
	BMP
	All except
BMP24-bit

	CAMO
	TOOL
	BMP, GIF
	SUCCESS

	CAMO
	INVS
	BMP, JPG
	SUCCESS

	CAMO
	JPGX
	JPG
	SUCCESS

	CAMO
	SHID
	BMP, JPG
	Only JPG files

	CAMO
	SHUF
	GIF
	SUCCESS

	CAMO
	JHID
	JPG
	SUCCESS

	BLND
	STEG
	BMP
	FAILED

	BLND
	CAMO
	BMP
	FAILED

	BLND
	BLND
	BMP
	FAILED

	BLND
	TOOL
	BMP
	SUCCEEDED

	BLND
	INVS
	BMP
	SUCCEEDED

	BLND
	JPGX
	N/A
	N/A

	BLND
	SHID
	BMP
	All except
BMP16-bit

	BLND
	SHUF
	N/A
	N/A

	BLND
	JHID
	N/A
	N/A

	TOOL
	STEG
	BMP. GIF
	FAILED

	TOOL
	CAMO
	BMP. GIF
	FAILED

	TOOL
	BLND
	BMP
	SUCCESS

	TOOL
	TOOL
	BMP. GIF
	SUCCESS

	TOOL
	INVS
	BMP
	SUCCESS

	TOOL
	JPGX
	N/A
	N/A

	TOOL
	SHID
	BMP
	SUCCESS

	TOOL
	SHUF
	GIF
	FAILED

	TOOL
	JHID
	N/A
	N/A

	INVS
	STEG
	BMP, JPG
	FAILED

	INVS
	CAMO
	BMP, JPG
	FAILED

	INVS
	BLND
	BMP
	SUCCESS

	INVS
	TOOL
	BMP
	SUCCESS

	INVS
	INVS
	BMP, JPG
	SUCCESS

	INVS
	JPGX
	JPG
	FAILED

	INVS
	SHID
	BMP, JPG
	BMP16 & JPG
ONLY

	INVS
	SHUF
	N/A
	N/A

	INVS
	JHID
	JPG
	SUCCESS

	JPGX
	STEG
	JPG
	FAILED

	JPGX
	CAMO
	JPG
	FAILED

	JPGX
	BLND
	N/A
	N/A

	JPGX
	TOOL
	N/A
	N/A

	JPGX
	INVS
	JPG
	FAILED

	JPGX
	JPGX
	JPG
	SUCCESS

	JPGX
	SHID
	JPG
	SUCCESS

	JPGX
	SHUF
	N/A
	N/A

	JPGX
	JHID
	JPG
	SUCCESS

	SHID
	STEG
	BMP, JPG
	FAILED

	SHID
	CAMO
	BMP, JPG
	FAILED

	SHID
	BLND
	BMP
	SUCCESS

	SHID
	TOOL
	BMP
	SUCCESS

	SHID
	INVS
	BMP, JPG
	BMP ONLY

	SHID
	JPGX
	JPG
	FAILED

	SHID
	SHID
	BMP, JPG
	All except
BMP256

	SHID
	SHUF
	N/A
	N/A

	SHID
	JHID
	JPG
	SUCCESS

	SHUF
	STEG
	GIF
	FAILED

	SHUF
	CAMO
	GIF
	FAILED

	SHUF
	BLND
	N/A
	N/A

	SHUF
	TOOL
	GIF
	SUCCESS

	SHUF
	INVS
	N/A
	N/A

	SHUF
	JPGX
	N/A
	N/A

	SHUF
	SHID
	N/A
	N/A

	SHUF
	SHUF
	GIF
	SUCCESS

	SHUF
	JHID
	N/A
	N/A

	JHID
	STEG
	JPG
	FAILED

	JHID
	CAMO
	JPG
	FAILED

	JHID
	BLND
	N/A
	N/A

	JHID
	TOOL
	N/A
	N/A

	JHID
	INVS
	JPG
	FAILED

	JHID
	JPGX
	JPG
	FAILED

	JHID
	SHID
	JPG
	SUCCESS

	JHID
	SHUF
	N/A
	N/A

	JHID
	JHID
	JPG
	SUCCESS

Figure 1: Detailed Initial Test Results
An extremely concise summary of our findings, derived from the information found in the above table, is that one of the most effective jamming techniques is to perform all three of the following actions:

1. Jam with Steganography v1.8

2. Jam with StegHide v0.5.1

3. Jam with Camouflage V1.2.1

 (Note: no specific order required)

The above recipe was found to jam all file types from all applications. Because most of the steganography applications are not command line based applications, the proof of concept jamming software employs some unconventional coding techniques. While some of the applications (e.g., StegHide) could be automated through batch scripts others had to be automated using “Auto-IT Hotkey” software, an open source tool for creating GUI macros, mouse movement tracking, key-stroke injection, as well as other input control simulation.
After some effort, a working proof of concept demo was produced called StegJam. The install files, code, and readme documents are publicly available.

Final testing of the software proved its effectiveness based on the completed study and clearly demonstrated the powerful applied uses of this research. The final table below demonstrates the tested effectiveness of the final proof of concept software:

	Program
	Carrier Ext
	Hidden Ext
	Success?

	Steganography
	Gif
	Gif
	YES

	Steganography
	Jpg
	Jpg
	YES

	Steganography
	Bmp 16
	Bmp 16
	YES

	Steganography
	Bmp 256
	Bmp 256
	YES

	Steganography
	Bmp 32
	Bmp 32
	YES

	Camoflague
	Gif
	Gif
	YES

	Camoflague
	Jpg
	Jpg
	YES

	Camoflague
	Bmp 16
	Bmp 16
	YES

	Camoflague
	Bmp 256
	Bmp 256
	YES

	Camoflague
	Bmp 32
	Bmp 32
	YES

	BLND
	Bmp 16
	Bmp 16
	YES

	BLND
	Bmp 256
	Bmp 256
	YES

	BLND
	Bmp 32
	Bmp 32
	YES

	S-Tools
	Gif
	Gif
	NO

	S-Tools
	Bmp 16
	Bmp 16
	YES

	S-Tools
	Bmp 256
	Bmp 256
	YES

	S-Tools
	Bmp 32
	Bmp 32
	YES

	Invisible Secrets
	Jpg
	Jpg
	Untested

	Invisible Secrets
	Bmp 16
	Bmp 16
	Untested

	Invisible Secrets
	Bmp 256
	Bmp 256
	Untested

	Invisible Secrets
	Bmp 32
	Bmp 32
	Untested

	jpegX
	Jpg
	Jpg
	YES

	stegHide
	Jpg
	Jpg
	YES

	stegHide
	Bmp 16
	Bmp 16
	YES

	stegHide
	Bmp 256
	Bmp 256
	YES

	stegHide
	Bmp 32
	Bmp 32
	YES

	GifShuffel
	Gif
	Gif
	NO

	jphide
	Jpg
	Jpg
	YES

Figure 2: Detailed Final Results

· The “untested” fields are present because the associated trial software versions expired before I was able to use them for final testing.

 4. Limitations and Conclusions
 From the detailed tabulation of the aforementioned results, it is evident that the steganographic tools wielded by our adversaries can be turned against them to good effect. However our scheme has certain limitations. Chief among them is that it relies on knowledge of the particular covert channel as well as the associated tools. This is not a major issue for the common case, as adversaries with limited resources (terrorists or even corporate spies) will use off the shelf tools. However, espionage at the national level could involve the use of newer and more sophisticated channels as well as techniques that may bypass our attempts to jam them. A mathematical model and analysis of our technique is also in preliminary stages [1].

 Threats of industry espionage and double-agents working in both classified and unclassified environments pose very real and potentially devastating security threats. The development and deployment of a steganography jamming application adds an additional layer of protection against unwanted data exfiltration. The completion of this research and demonstration of its applied functions is the first step towards full threat mitigation of these previously unaddressed real world critical security vulnerabilities.

References
[1] R. C. Chakinala, A. Kumarasubramanian, R. Manokaran, G. Noubir, C. Pandu Rangan and R. Sundaram, “Steganographic communication in ordered channels,” Information Hiding 2006, pp. 42-57.

[2] FBI Research
(http://www.fbi.gov/hq/lab/fsc/backissu/july2004/research/2004_03_research01.htm)
[3] F. A. P. Petitcolas, R. J. Anderson and M. G. Kuhn, “Information hiding – a survey,” Proceedings of the IEEE, vol. 87, no. 7, pp. 1079-11107.

