CS7880: Rigorous Approaches to Data Privacy, Spring 2017 POTW #1

Instructor: Jonathan Ullman

Due Sun, Jan 22th, 11:59pm

(Email to jullman+PrivacyS17@gmail.com)

- You may work on this homework in pairs if you like. If you do, you must write your own solution and state who you worked with.
- Solutions must be typed in LATEX.
- Aim for clarity and brevity over low-level details.

Problem 1 (Random Subsampling). Given a dataset $x \in \mathcal{X}^n$, and $m \in \{0, 1, ..., n\}$, a random *m*-subsample of x is a new (random) dataset $x' \in \mathcal{X}^m$ formed by keeping a random subset of m rows from x and throwing out the remaining n - m rows.

- (a) Show that for every $n \in \mathbb{N}$, $|\mathcal{X}| \ge 2$, $m \in \{1, ..., n\}$, $\varepsilon > 0$, and $\delta < m/n$, the algorithm A(x) that outputs a random m-subsample of $x \in \mathcal{X}^n$ is not (ε, δ) -differentially private.
- (b) Although random subsamples do not ensure differential privacy on their own, a random subsample does have the effect of "amplifying" differential privacy. Let $A: \mathcal{X}^m \to \mathcal{R}$ be any algorithm. We define the algorithm $A'(x): \mathcal{X}^n \to \mathcal{R}$ as follows: choose x' to be a random m-subsample of x, then output A(x').

Prove that if A is (ε, δ) -differentially private, then A' is $(\frac{(e^{\varepsilon}-1)m}{n}, \frac{\delta m}{n})$ -differentially private. Thus, if we have an algorithm with the relatively weak guarantee of 1-differential privacy, we can get an algorithm with ε -differential privacy by using a random subsample of a dataset that is larger by a factor of $1/(e^{\varepsilon}-1)=O(1/\varepsilon)$.

(c) (**Optional.**) We can also show that some sort of converse is true—for many tasks achieving (ε, δ) -differential privacy *requires* $\Omega(1/\varepsilon)$ more samples than achieving $(1, \delta)$ -differential privacy. Let $\mathbf{q}(x) = (q_1(x), \dots, q_k(x))$ be a collection of statistical queries.¹ Assume that there is $no(1, \delta)$ -differentially private algorithm $A : \mathcal{X}^n \to \mathbb{R}^k$, such that

$$\forall x \in \mathcal{X}^n$$
 $\mathbb{E}[||A(x) - \mathbf{q}(x)||_{\infty}] \le 1/100.$

Show that for some $n' = \Omega(n/\varepsilon)$, there is *no* $(\varepsilon, \varepsilon \delta/100)$ -differentially private algorithm $A: \mathcal{X}^{n'} \to \mathbb{R}^k$ such that

$$\forall x' \in \mathcal{X}^{n'}$$
 $\mathbb{E}\left[\|A(x') - \mathbf{q}(x')\|_{\infty}\right] \le 1/100.$

¹Recall that a statistical query q(x) takes a dataset $x = (x_1, x_2, ...) \in \mathcal{X}^*$ of arbitrary size, and outputs $\mathbb{E}_{x_i \sim x}[\phi(x_i)]$ for some function $\phi : \mathcal{X} \to [0,1]$.