
CS7800: Advanced Algorithms. Fall 2016
Homework 5

Instructor: Jonathan Ullman, TA: Mehraneh Liaee

Due Wed, Dec 7 at 11:59pm
(Email to m.liaee2050+CS7800@gmail.com)

• Note the unusual deadline. I am trying to strike a balance between giving more time due
to Thanksgiving break and giving us time to grade before the end of the semester.

• You must type your solutions using LATEX. Please submit both the source and PDF files
using the naming conventions lastname hw5.tex and lastname hw5.pdf.

• Please put your name somewhere on the first page of your submission.

• Strive for clarity and conciseness in your solutions, emphasizing the main ideas over
low-level details. I recommend looking at the introduction in Jeff Erickson’s textbook for
advice on writing up solutions to algorithms problems.

• Do not share written solutions, and remember to cite all collaborators and sources of ideas.
Sharing written solutions, and getting solutions from outside sources such as the Web or
students not enrolled in the class is strictly forbidden.

1

m.liaee2050+CS7800@gmail.com
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/00-intro.pdf


Problem 1 (Probability Practice, 25 points). .
You are filming an epic fight sequence on top of a train with n cars. The cars are numbered

1,2, . . . ,n, with car 1 in the front, and car n in the rear. In each shot, you move backwards one car
with probability 1/2 and forward one car with probability 1/2. The moves between each scene
are independent. If you go forward from car 1 you “fall off the front” and if you go backwards
from car n you “fall off the back.” The process continues until you fall off one end of the train.

(a) Suppose you start on car 1. Prove that the probability you fall off the front of the train is
exactly n

n+1 .

(b) Suppose you start on car k. Prove that the probability you fall off the front of the train is
exactly n−k+1

n+1 .

(c) Suppose you start on car 1. Prove that the expected number of shots before you fall off
one end of the train is exactly n.

(d) Suppose you start on car dn/2e. Prove that the expected number of shots before you fall
off one end of the train is cn2 for some constant c.

Problem 2 (The Game Show, 25 points). .
You have been selected to appear on the game show BigMoneySuitcaseThrow! There are

n suitcases, containing distinct enormous sums of money p1, . . . ,pn. The values p1, . . . ,pn are
different in every episode, and you have absolutely no idea what they are. The suitcases are then
violently thrown at you in a uniformly random order. You catch each suitcase, open it, and then
have to make a snap decision: either take the money in that suitcase and end the game, or throw
the suitcase into the GiantPitOfRegrets and keep going on the remaining suitcases.

You come up with the following type of strategy: Throw out the first t suitcases for some
1 ≤ t < n. Let m be the largest amount you saw in the first t suitcases. Among the remaining n− t
suitcases, take the first one you see whose value is larger than m. Let pmax = max{p1, . . . ,pn} be
the largest amount of money you could win.

(a) What is the probability that you select the suitcase with pmax as a function of t and n?1

(b) Find a choice of t such that you select the suitcase with pmax with probability at least 1/8.2

Problem 3 (Generalized Contention Resolution, 25 points). .
Consider the following variant of the contention resolution problem we studied in class:

There are n processes and 1 resource. Time proceeds in rounds t = 1,2, . . . , and in each round
each process can try to access the resource or not. We are given an unweighted, undirected,
conflict graph G = (V ,E) where (i, j) ∈ E denotes that if process i and process j try to access
the resource in the same round, they both fail. (The case we considered in class is where G
is the complete graph on n nodes.) Assume that every node in G has exactly d neighbors. Or,
equivalently, that every process i has exactly d conflicts.

1Note that the only random outcome is the order in which the suitcases are thrown at you. The numbers p1, . . . ,pn
are not random, and your strategy does not make any random decisions.

2You can actually do better than 1/8. For fun, try to find the highest possible probability.

2



(a) Suppose that in every round, every process tries to access the resource with probability p,
independent of all other processes and rounds. What is the probability that it succeeds
in a given round? Find the value of p that maximizes the probability that a processor
succeeds in terms of d and n.

(b) Using the optimal choice of p from part (a), what is the expected number of processes that
successfully access the resource in each round? What is the expected number of processes
that successfully access the resource after t rounds?

(c) Again, using the optimal choice of p from part (a), compute a number T such that with
probability at least 1− δ every process succeeds in accessing the resource after T rounds.

Problem 4 (Sampling in Data Streams, 25 points). :
Imagine you are Amazon and you would like to monitor your transactions to find items that

have suddenly become popular. Fortunately for you, you do millions of transactions every day.
Unfortunately, with that many transactions, even storing all your transactions in one place is
impossible.

A data stream is a long sequence of items x1,x2, . . . that you can only read once. A data stream
algorithm must process each item very quickly, and with too little memory to store the stream of
items, or even a significant fraction of the items. Streaming algorithms typically look like this:

ProcessStream(stream S):
Repeat:
xi = next item in the stream
[do something really simple and fast with xi]

Until the stream stops
Output [something interesting]

Figure 1: A caricature of a streaming algorithm.

(a) One interesting thing to do with a data stream is to sample a uniformly random item. If
you knew that the stream had length n, you could simply choose a number i randomly
from {1, . . . ,n} and then output the item xi when it arrives. Design an algorithm that
chooses a uniformly random sample from the stream without knowing the length of the
stream in advance. Your algorithm should use O(1) time and O(1) space to process each
item (assuming each stream element is O(1) size).3

(b) Assume that the items in the stream are numbers, and we want to find the median of the
items in the stream. Being the median is a very global property, so it is difficult to find the
median without storing a lot of the stream. Using the algorithm from (a), we can obtain a
set of m independent and uniformly random samples from the stream (with replacement).
Suppose we take the median x∗ of these m samples. Prove that there exists a constant m0
such that if m ≥m0, then with probability at least 99

100 , x∗ is an 1
100 -approximate median of

the items in the data stream. By 1
100 -approximate median, we mean that if the stream has

length n, then there are at least 49n
100 items in the stream smaller than x∗ and at least 49n

100
items in the stream larger than x∗. You may assume all items in the stream are distinct.

3Hint: store a single item that will be your sample, after each item arrives, decide whether to keep the same
sample or throw it out and replace it with the item that just arrived.

3


