CS4800: Algorithms & Data Jonathan Ullman

Lecture 9:

- Dynamic Programming:
 - Tug of War / Subset Sum / Knapsacks
 - Edit Distance / Alignments

Feb 6, 2018

Tug of War Subset-Sum Knapsack

Goal: Lighter team should have ut as > T=148 **Tug-of-War** integer weight dose to Eas possible blogang • We have n students with weights $w_1, \ldots, w_n \in \mathbb{N}$, \mathcal{W} . need to split as evenly as possible into two teams • e.g. {21,42,33,52} $T = \sum_{i=1}^{n} U_i$ A1= {42,333 75 A = { 21,423 63 the lighter team has A2= {21,52} 73 A. = {33,52} 85 ut at most I $\Delta = 2$ $\Delta = 22$

Tug-of-War

- Input: weights $w_1, \ldots, w_n \in \mathbb{N}$ for n students
 - Define $T = \sum_i w_i$
- Output: a subset of students S with weight as large as possible but not more than T/2

•
$$S \subseteq \{1, \dots, n\}, W_S = \sum_{i \in S} w_i$$

Subset Sum (generalization of ToW) $M T_{\circ} \cup T_{2} \stackrel{!}{\downarrow} \stackrel{?}{\searrow} \cup;$ • Input: weights $w_{1}, ..., w_{n} \in \mathbb{N}$ for n items, and a

- maximum weight T > 0
- Output: a subset of students S with weight as large as possible but not more than T

•
$$S \subseteq \{1, \dots, n\}, W_S = \sum_{i \in S} w_i$$

Tug-of-War (Bottom-Up)

ToW(
$$w_1, ..., w_n, T$$
):
Let $M[0: n, 0: T]$ be an array to store the solutions
 $M[0, t] \leftarrow 0$ for all $0 \le t \le T$ $M[i, 0] = 0$ $1 \le i \le n$
For $i = 1, ..., n$:
For $t = @1..., T$:
if $w_i \le t$ $M[i, t] \leftarrow max \{M[i-1, t], w_i + M[i+1, t-v_i]\}$
if $w_i \ge t$ $M[i, t] \leftarrow M[i-1, t]$
Return $M[n, T]$
After running ToU, need another alg to trace through M
finding the optimal set.

Knapsack ToU $_{13}$ [$\omega_i = v_i$]

- Input: weights and values $(w_1, v_1), ..., (w_n, v_n)$ for *n* items, and a maximum weight T > 0
- Output: a subset of students S with value as large as possible but weight at most T

• $S \subseteq \{1, ..., n\}$, $W_S = \sum_{i \in S} w_i$, $V_S = \sum_{i \in S} v_i$ $\leq T$ thing you're trying to optimize OPT(n,T) is the value of the opt solo $OPT(n,T) = max \{ OPT(n-1,T), v_n + OPT(n-1,T-w_n) \}$

Ask the Audience

- Let OPT(i, t) be the optimal solution for items 1, ..., *i* with weight at most *t*.
- OPT(i, t) = ???

Summary Jable has size (n+1) (T+1) Can also solve subset sum and knapsack problems

- in $\Theta(nT)$ time where T is the maximum weight
 - Note, dependence on T is rather undesirable, what if $M = 2^{168}$?

Edit Distance Alignments

Distance Between Strings

Autocorrect is (usually) pretty good

ocurrance 🌷 🕻								
AII	Shopping	Maps	News	Images	More	Settings Tools		
About	t 36,400 results	(0.62 seco	nds)					
Did	you mean:	occurre	nce					

 ocurrance and occurrence seem similar, but only if we define similarity carefully

> ocurrance oc urrance occurrence 7 apart

occurrence 2 apart

Edit Distance / Alignments > for today Z'= {a, ..., 2}

W.M.M.M

- Given two strings $x \in \Sigma^n$, $y \in \Sigma^m$, the edit distance is the number of insertions, deletions, and swaps required to turn x into y. replace a u/b.
- Given an alignment, the cost is the number of positions where the two strings don't agree

Ask the Audience

 What is the minimum cost alignment of the strings moon and money

Edit Distance / Alignments O(i) time to check the $\chi_i = y_j$ • Input: Two strings $x \in \Sigma^n, y \in \Sigma^m$

• Output: The minimum cost alignment of x and yedit distance

Dynamic Programming

Do not consider (-,-)

- As always, consider the **optimal** alignment...
- Three choices for the final column
 - Case I: only use x (x_n ,)
 - Case II: only use $y (-, y_m)$
 - Case III: use one symbol from each (x_n, y_m) case \underline{T} case \underline{T} case \underline{T}

$$\frac{\text{Recurrence}:}{\text{Let OPT}(i,j) \text{ be the edst dist/cost of opt. alignment}} \\ of the prefixes $X_{1,5}..., X_i$
 $y_{4}..., y_j$
 $\text{OPT}(i,j) = \begin{cases} \min \{ \text{OPT}(i-1,j)+1, \text{OPT}(i,j-1)+1, \text{OPT}(i+j-1) \} \\ if x_i = y_j \end{cases}$
 $if x_i = y_j$
 $if x_i = y_j$
 $if x_i \neq y_j$
 $afleast$
 $\text{OPT}(i,j) = i \\ \text{OPT}(o,j) = j \\ \text{OPT}(o,o) = 0 \end{cases}$$$

Dynamic Programming

- As always, consider the **optimal** alignment...
- Three choices for the final column
 - Case I: only use x (x_n ,)
 - Case II: only use $y(-, y_m)$
 - Case III: use one symbol from each (x_n , y_m)

Example		0	a	S	
x = peas	F	e		S	
y = east		C	00	l	1

Ask the Audience

• Suppose adding a space costs $\delta > 0$ and aligning a, b costs $c_{a,b} > 0$. Write a recurrence for the minimum cost alignment.

Summary

- Can compute the edit distance, or minimum cost alignment between two strings in time O(nm)
 - Works for any alphabet, assuming we can decide if two symbols are equal in O(1) time
- There was nothing special about our notion of alignment cost
 - In general: $\cot \delta$ for using a space (cases I/II) and $\cot costs c_{a,b}$ for aligning $a, b \in \Sigma$ (case III)
 - Can still solve in O(nm) time
- Uses O(nm) space, more prohibitive in practice