
CS4800:	Algorithms	&	Data
Jonathan	Ullman

Lecture	9:	
• Dynamic	Programming:	

• Tug	of	War	/	Subset	Sum	/	Knapsacks
• Edit	Distance	/	Alignments

Feb	6,	2018

 



Tug	of	War	
Subset-Sum
Knapsack



Tug-of-War

• We	have	! students	with	weights	"#,… ,"& ∈ ℕ,	
need	to	split	as	evenly	as	possible	into	two	teams
• e.g.	 21,42,33,52



Tug-of-War

• Input:	weights	"#,… ,"& ∈ ℕ for	! students
• Define	. = ∑ "1�

1
• Output: a	subset	of	students	3 with	weight	as	large	
as	possible	but	not	more	than	./2
• 3 ⊆ 1,… , ! ,	67 = ∑ "1�

1∈7



Subset	Sum (generalization	of	ToW)

• Input:	weights	"#,… ,"& ∈ ℕ for	! items,	and	a	
maximum	weight	8 > 0
• Output: a	subset	of	students	3 with	weight	as	large	
as	possible	but	not	more	than	8
• 3 ⊆ 1,… , ! ,	67 = ∑ "1�

1∈7



Tug-of-War

• Let	; be	the	optimal subset



Ask	the	Audience

• Input:	. = 7,	"# = 1,"= = 3,"> = 5
• Fill	the	dynamic	programming	table

3

2

1

0

- 0 1 2 3 4 5 6 7

weights

items



Tug-of-War	(Bottom-Up)

ToW "#,… ,"&,8 :
Let	8 0: !, 0:8 be	an	array	to	store	the	solutions
8[0, D] ← 0 for	all 0 ≤ D ≤ .
For	H = 1,… , !:

For	D = 0,… , .:	

Return	8[!, .]



Knapsack

• Input:	weights and	values ("#, K#)	, … , ("&, K&) for	
! items,	and	a	maximum	weight	8 > 0
• Output: a	subset	of	students	3 with	value as	large	
as	possible	but	weight at	most	8
• 3 ⊆ 1,… , ! ,	67 = ∑ "1�

1∈7 ,	M7 = ∑ K1�
1∈7



Ask	the	Audience

• Let	;N.(H, D) be	the	optimal	solution	for	items	
1,… , H with	weight	at	most	D.		

• ;N. H, D =	? ? ?



Summary

• Can	also	solve	subset	sum	and	knapsack	problems	
in	;(!8) time	where	8 is	the	total	weight
• Note,	dependence	on	8 is	rather	undesirable,	what	if	
8 = 2#PQ?



Edit	Distance
Alignments



Distance	Between	Strings

• Autocorrect	is	(usually)	pretty	good

• ocurrance and	occurrence seem	similar,	but	
only	if	we	define	similarity	carefully

ocurrance
occurrence

oc urrance
occurrence



Edit	Distance	/	Alignments

• Given	two	strings	R ∈ Σ&, T ∈ ΣU,	the	edit	distance	
is	the	number	of	insertions,	deletions,	and	swaps
required	to	turn	R into	T.

• Given	an	alignment,	the	cost	is	the	number	of	
positions	where	the	two	strings	don’t	agree

o c u r r a n c e
o c c u r r e n c e



Ask	the	Audience

• What	is	the	minimum	cost	alignment	of	the	strings	
moon and	money



Edit	Distance	/	Alignments

• Input: Two	strings	R ∈ Σ&, T ∈ ΣU
• Output: The	minimum	cost	alignment	of	R and	T



Dynamic	Programming

• As	always,	consider	the	optimal alignment…
• Three	choices	for	the	final	column
• Case	I:	only	use	R (	R&,− )
• Case	II:	only	use	T (	−, TU )
• Case	III:	use	one	symbol	from	each	(	R&, TU )





Dynamic	Programming

• As	always,	consider	the	optimal alignment…
• Three	choices	for	the	final	column
• Case	I:	only	use	R (	R&,− )
• Case	II:	only	use	T (	−, TU )
• Case	III:	use	one	symbol	from	each	(	R&, TU )



Example
x = peas
y = east

- e a s t
-
p
e
a
s



Ask	the	Audience

• Suppose	adding	a	space	costs	W > 0 and	aligning	
X, Y costs	Z[,\ > 0.		Write	a	recurrence	for	the	
minimum	cost	alignment.



Summary

• Can	compute	the	edit	distance,	or	minimum	cost	
alignment between	two	strings	in	time	; !]
• Works	for	any	alphabet,	assuming	we	can	decide	if	two	
symbols	are	equal	in	; 1 time

• There	was	nothing	special	about	our	notion	of	
alignment	cost
• In	general: cost	W for	using	a	space	(cases	I/II) and								
costs	Z[,\ for	aligning	X, Y ∈ Σ (case	III)

• Can	still	solve	in	; !] time

• Uses	; !] space,	more	prohibitive	in	practice


