CS4800: Algorithms \& Data Jonathan Ullman

Lecture 6:

- Divide-and-Conquer: Inversions, Closest Pair
- Dynamic Programming Warmup (?)

Jan 26, 2018

Counting Inversions

Approximate Sortedness

- Which of these is "more sorted"?

11	3	8	17	28	42

- only one elem out of place
- $5 / 6$ of elers are sorted

Counting Inversions
$2|1 / 3 / 4|$ we. $14 / 1 / 2 / 3$

- A Measure of Sortedness: Number of Inversions
- Inversion: a pair $i<j$ such that $A[i]>A[j] \quad\binom{$ a sorted hat hat }{ no mentions }
- "Kendall tau distance" / "Bubble sort distance"

8	3	28	11	17	42
1	2	3	4	5	6

11	3	8	17	28	42
1	2	3	4	5	6

$\frac{\text { Inversion: }}{(1,2)}$	
$(3,4)$	
$(3,5)$	

$\frac{\text { Inversions: }}{(1,2)}$
$(1,3)$

$$
2
$$

Counting Inversions

- A Measure of Sortedness: Number of Inversions
- Inversion: a pair $i<j$ such that $A[i]>A[j]$
- "Kendall tau distance"

| 8 | 3 | 28 | 11 | 17 | 42 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| 11 | 3 | 8 | 17 | 28 | 42 |
| :--- | :--- | :--- | :--- | :--- | :--- |

- Many Applications
- Collaborative filtering / recommender systems
- Social choice theory / voting theory

Counting Inversions: Basic Algorithm

8	3	28	17	11	42	2	35

For all i, j st. $i<j$:
check if $\left.A[j]>A E_{i}\right]$
\#of possible pars

$$
\frac{n(n+1)}{2}=\Theta\left(n^{2}\right)
$$

Cowpat \#of mesons

Idea: Sort and Count at
Counting Inversions: D\&C the some time!
$R, C_{R}=3$

$L, C_{L}=2$					$R, C_{R}=3$		
8	3	28	17	11	42	2	

Step 1: Cut list in half
Step 2: $C_{L} \leftarrow$ Countinverions $(L) \quad e_{R} \leftarrow \operatorname{Cant} l_{\text {aversions }}(R)$
Three types of muverons:
$T(n)=\Omega\left(n^{2}\right)$
(i) $1 \leq i<j \leq \frac{n}{2} \quad($ "on the left' $) \quad C_{L}$ compare $\frac{n}{2} \cdot \frac{n}{2}$
(2) $\frac{n}{2}+1 \leq i<j \leq n$ ("on the night") e_{R}
items $\frac{n^{2}}{4}=\Omega\left(n^{e}\right)$
(3) $1 \leq i \leq \frac{n}{2} \quad \frac{n}{2}+1 \leq j \leq n$ ("in the middle") $\quad C_{M}$

Step 3. Try all inversions of type (3) and count then
Step 4: return $C_{l}+C_{R}+C_{m}$

Counting Inversions: D\&C

$L, c_{L}=2$					$R, c_{R}=3$		
8	3	28	17	11	42	2	35

Goal: Count inversions
i, j st. if, $j \in R$.
 right
\Uparrow
$L_{\text {sorted }}$
*of times an elem of R is smaller than an
$R_{\text {sorted }}$ elem of L.

$$
\begin{array}{lllllllll}
\text { (4) } & \text { (5) } & \text { (2) } & \text { (3) } & \text { (0) } & C_{M}=6 \\
\hline 2 & 3 & 8 & 11 & 17 & 28 & 35 & 42 \\
\hline
\end{array}
$$

When we moved 2 into place, A was smaller than all elens Note: Be careful with ties. in L that had not been placed.

Counting Inversions: D\&C

8	3	28	17	11	42	2	35

Claim: Given two sorted lists (L, R) w/ \#of inversions
$\left(C_{1}, C_{R}\right)$, we can produce one sorted list A and compute C_{M} in $O(n)$ time.

3	8	17	28

$$
\begin{array}{llll}
\hline 2 & 11 & 35 & 42 \\
\hline
\end{array}
$$

\square

Note: Be careful with ties. Make sure to add L if there is a tie.

Counting Inversions: D\&C

MergeAndCount $(L[1 \ldots \ell], R[1, \ldots, r])$:
Let $i, j, k \leftarrow 1, c \leftarrow 0$
S For $k=1, \ldots, \ell+r \quad / /$ Loop over elts If $i>\ell: \quad / / L$ is empty $A[k]=R[j], j \leftarrow j+1$
Elif $j>r$:
$/ / R$ is empty

$$
A[k]=L[i], i \leftarrow i+1
$$

$$
\text { Elif } L[i]<R[j]:
$$

// L is smaller

$$
A[k]=L[i], i \leftarrow i+1
$$

Else:

$$
\begin{aligned}
& A[k]=R[j], j \leftarrow j+1, \\
& c \leftarrow c+(\ell-i+1)
\end{aligned}
$$

$/ / R$ is smaller

Return (A, c)

Counting Inversions: D\&C

Counting Inversions: D\&C

SortAndCount $(A[1, \ldots, n])$:
If $n=1$, return $(A, 0) \quad / /$ Base case
$\left[\ell \leftarrow\left[\frac{n}{2}\right\rceil \quad / /\right.$ Split into two lists
$L \leftarrow A[1, \ldots, \ell], R \leftarrow A[\ell+1, n]$
$\left(L, c_{L}\right) \leftarrow \operatorname{SortAndCount}(L) \rightarrow T\left(\frac{n}{2}\right) \quad / /$ Recurs
$\left(R, c_{R}\right) \leftarrow \operatorname{SortAndCount}(R) \rightarrow T\left(\frac{n}{2}\right) \quad / /$ Recuse
$\left(A, c_{M}\right) \leftarrow \operatorname{MergeAndCount}(L, R)$ y $/ /$ Merge $O(n)$
return $\left(A, c_{L}+c_{R}+c_{M}\right)$
$T(n)=2 \times T\left(\frac{n}{2}\right)+O(n) \quad T(n)=\theta(n \log n)$

Ask the Audience!

- Suppose I wanted to output a list of all inversions (ie. all pairs $i<j$ such that $A[i]>A[j]$), can our D\&C algorithm be modified to output a list of all inversions in $O(n \log n)$ time?

No. There may actually be $\Omega\left(n^{2}\right)$ mevelions so we cannot possibly write then down.

Counting Inversions: Fun Fact

- Improved to $O(n \sqrt{\log n})$ in 2010
- It is "not possible" to sort in less than $n \log n$ time
- Counting inversions is easier than sorting

Closest Pair

Closest Pair

- General Problem: Given points p_{1}, \ldots, p_{n}, find the pair p_{i}, p_{j} minimizing $d\left(p_{i}, p_{j}\right)$
- Foundational problem in computational geometry
- Closely related to nearest-neighbor search, classification, and clustering problems

Closest Pair in 2D

Naive Algorithm: $\theta\left(n^{2}\right)$ time

- Special (try all pars)
- Special Case: Closest Pair in 2 D
- Given $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$ find the pair p_{i}, p_{j} minimizing the Euclidean distance
Assume $\mathrm{Y}_{\text {our ar ard }}^{\text {ar }} d$
obtain
in 0
Lances

Assumption: all the x and y coordinates distinct

Ask the Audience!

- Even More Special Case: Closest Pair in 1D
- Given $x_{1}, \ldots, x_{n} \in \mathbb{R}$ find the pair x_{i}, x_{j} minimizing the distance $\left|x_{i}-x_{j}\right|$
- Find an $O(n \log n)$ time algorithm

Ask the Audience!

- Even More Special Case: Closest Pair in 1D
- Given $x_{1}, \ldots, x_{n} \in \mathbb{R}$ find the pair x_{i}, x_{j} minimizing the distance $\left|x_{i}-x_{j}\right|$

Let $\delta=\min \left\{\delta_{L}, \delta_{R}\right\}$

- Find an $O(n \log n)$ time algorithm

Alg II: - Split into L,R
 I only need to consider in, jam

- Consider nghtmost i_{n} in L, leftmost port j_{m} in \mathbb{R} at distance $\leq \delta$ from
- Choose the bert of $\delta_{L}, \delta_{\Omega}$ midline.

Closest Pair in 2D

$$
\delta=\min \left\{\delta_{L}, \delta_{R}\right.
$$

- Given $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$ find the pair p_{i}, p_{j} minimizing the Euclidean distance

The only candidates consider for closest pair are in the band around the midline.

Closest Pair in 2D

- Given $p_{1}=\left(x_{1}, y_{1}\right), \ldots, p_{n}=\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$ find the pair p_{i}, p_{j} minimizing the Euclidean distance

- Key Idea: Only need to consider a band of width δ on each side around the midline

Closest Pair in 2D

Ask the Audience! the wrong
in the

- Suppose I look at the points in the mohawk and sort by the y-coord.

- True False: The closest pair in the mohawk is adjacent in the sorted list?

Closest Pair in 2D
Very cool, key claim

- Claim: Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ be the points in the mohawk, sorted by y-coordinate and let p_{k}, p_{ℓ} be the closest pair, then $|k-\ell| \leq 15$

There are $\leq 15 \mathrm{~m}$ such pairs where $m \leq n$ is the number of points m the mohawk.

Closest Pair in 2D

Let q be the middle-element of $S X$
Divide P into Left, Right according to q. Scan to get LY, RY.]
Split by x-coord
delta ,r,j $=$ MIN(Closest(Left, LX, LY) Closest(Right, RX, RY))
$\delta=m, n\left\{\delta_{L}, \delta_{R}\right\} \quad i_{j} j_{L}, \delta_{L}$
Mohawk $=\{$ Scan SY, add pts that are delta from q.x $\}\}$ Shave the mohawk
For each point x in Mohawk (in order): Sortediby y coord
[Compute distance to its next 15 neighbors] only check \leq IS other points
Update delta,r,j if any pair (x, y) is < delta
Return (delta,r,j)

$$
\Gamma_{\text {Best among }}\left(i_{L, j}, j^{j}\right),\left(i_{R}, j_{R}\right) \text {, Mohawk, }
$$

Closest Pair in 2D

- Claim: Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ be the points in the mohawk, sorted by y coordinate and let p_{k}, p_{ℓ} be the closest pair, then $|k-\ell| \leq 15$

Closest Pair in 2D

- Claim: Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ be the points in the mohawk, sorted by y coordinate and let p_{k}, p_{ℓ} be the closest pair, then $|k-\ell| \leq 15$

Fact (1): At most one point in each cubby hole

- Because no pair on the same side of the midline have distance $<\delta$.

Closest Pair in 2D

- Claim: Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ be the points in the mohawk, sorted by y coordinate and let p_{k}, p_{ℓ} be the closest pair, then $|k-\ell| \leq 15$

Fact (2):
Any pair closer than δ can only be separated by 2 nous of cubbies

Fact (3): If A, B are closest, then only the 15 points in cubbres in the yous btu car be btu

A, B are at least $\frac{3 \delta}{2}$ apart because each row of cubbes is $8 / 2$

