# CS4800: Algorithms & Data Jonathan Ullman

Lecture 4:

- HWI Due @ 4:59 HUZ Out shortly after dass **Recurrences: Master Theorem**
- Divide and Conquer: Median

Jan 19, 2018

#### Recurrences

- and use O(n) work to combine
- Mergesort:
  - T(n) = 2T(n/2) + Cn
  - $T(n) = \Theta(n \log n)$
- Karatsuba's Algorithm: and use O(n) work to combine.
  - T(n) = 3T(n/2) + Cn
  - $T(n) = \Theta(n^{\log_2 3})$
- How would we arrive at these answers?



Recursion Tree  

$$\frac{|evel}{0}$$

$$\frac{|veel}{0}$$

$$\frac{|veel}{1}$$

### **Geometric Series**

• Series 
$$S = \sum_{i=0}^{\ell} r^i$$

$$S = 1 + r + r^2 + \dots + r^{\ell}$$
  
$$rS = r + r^2 + \dots + r^{\ell} + r^{\ell+1}$$

• Solution 
$$S = \frac{1 - r^{\ell + 1}}{1 - r} + \frac{r^{\ell + 1}}{r - \ell}$$

Case(): 
$$r < 1$$
  
 $S \leq \frac{1}{1-r} = O(1)$   
Case(2):  $r = 1$   
 $S = (l+1) \cdot r = O(l)$   
Case (3):  $r > 1$   
 $S > r^{l}$   
 $S \leq \frac{r^{l+1}}{1-r}$   
 $S = \Theta(r^{l})$ 

### Ask the Audience!

- Solve using the recursion tree method:
- $T(n) = 8 \cdot T\left(\frac{n}{4}\right) + Cn$  Ans •  $T(n) = \Theta(\dots)?$ =  $\Theta(n^{3/2})$ 
  - $= \Theta\left(n^{\log_{4}(8)}\right) \Theta\left(n^{\log_{2}(a)}\right)$

svers 
$$2^{n} \times C$$
  
 $\left[ \frac{n^{3/2}}{n^{3/2}} \right]$   
 $\left[ \frac{n^{3/2}}{n^{2}} \right]$   
 $\left[ \frac{n^{3/2}}{n^{2}} \right]$   
 $\left[ \frac{n^{3/2}}{n^{2}} \right]$ 



#### Recurrences

- Mergesort:
  - T(n) = 2T(n/2) + Cn
  - $T(n) = \Theta(n \log n)$
- Karatsuba's Algorithm:
  - T(n) = 3T(n/2) + Cn
  - $T(n) = \Theta(n^{\log_2 3})$
- Just Now:
  - T(n) = 8T(n/4) + Cn
  - $T(n) = \Theta(n^{1.5})$

- Let's solve all recurrences of the form
  - $T(n) = a \cdot T(n/b) + n^c$

Split into a press of size is and use O(n°) work to combine.

-> Important: a,b,c are constants

e.g.  $T(n) = \sqrt{n} \cdot T(\sqrt{n})$ 



• Let's solve all recurrences of the form

• 
$$T(n) = a \cdot T(n/b) + n^{c}$$

$$n = n^{c}$$

$$\int \frac{1}{n/b} \frac{1}{n/b} - \frac{1}{n/b} \frac{1}{a} \times (\frac{n}{b})^{c}$$

$$= \frac{a}{bc} \times n^{c}$$



• Let's solve all recurrences of the form

• 
$$T(n) = a \cdot T(n/b) + n^c$$

• Three cases: -> e.g. Karatsuba

• 
$$\left(\frac{a}{b^{c}}\right) > 1$$
:  $T(n) = \Theta(n^{\log_{b} a})$   
•  $\left(\frac{a}{b^{c}}\right) = 1$ :  $T(n) = \Theta(n^{c} \log n)$   
•  $\left(\frac{a}{b^{c}}\right) < 1$ :  $T(n) = \Theta(n^{c})$ 

$$T(n) = 3 \times T(\frac{n}{2}) + n \log n$$

- Even More General: All recurrences of the form  $T(n) = a \cdot T(n/b) + f(n)$  $f(n) = n \log n$
- Three cases:
  - $f(n) = O(n^{(\log_b a)} \varepsilon)$   $T(n) = O(n^{\log_b a})$   $T(n) = O(n^{\log_b a})$

• 
$$T(n) = \Theta(n^{\log_b a})$$

- $f(n) = \Theta(n^{\log_b a})$ 
  - $T(n) = \Theta(n^{\log_b a} \log n)$
- $f(n) = \Omega(n^{(\log_b a) + \varepsilon}) \& af\left(\frac{n}{b}\right) < Cf(n) \text{ for } C < 1$ 
  - $T(n) = \Theta(f(n))$

# Ask the Audience!

$$T(n) = a T(\frac{h}{5}) + n^{c}$$

• Use the Master Theorem to Solve:

• 
$$T(n) = 16 \cdot T\left(\frac{n}{4}\right) + n^2$$
  
•  $T(n) = 16 \cdot T\left(\frac{n}{4}\right) + n^2$   
•  $T(n) = 21 \cdot T\left(\frac{n}{5}\right) + n^2$   
•  $T(n) = 21 \cdot T\left(\frac{n}{5}\right) + n^2$   
•  $T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 1$   
•  $T(n) = 2 \cdot T\left(\frac{n}{2}\right) + 1$   
•  $T(n) = 5 \cdot T\left(\frac{n}{3}\right) + n \log_2 n$   
•  $T(n) = 5 \cdot T\left(\frac{n}{3}\right) + n \log_2 n$   
•  $T(n) = \Theta(n^{\log_3 5}) - 0$   
•  $O(n^{\log_3 5}) - 0$   
•  $O(n^{\log_3 5}) - 0$   
•  $O(n^{\log_3 5}) - 0$ 

# Switching Gears: Selection (Median)

# Selection

- Given an array of numbers A[1, ..., n], how quickly can I find the:
  - Smallest number? = ⊖(n)
  - Second smallest?  $= \Theta(n)$
  - Eighth smallest?  $= \Theta(n)$
  - k-th smallest? =  $O(kn) \longrightarrow O(nlogn)$

### Selection

• Selecting the k-th smallest number is no harder than sorting. Takes  $\Theta(n \log n)$  time.



# Finding the Median

• The **median** is the  $\left[\frac{n}{2}\right]$ -th smallest number



• Today: finding the **median** in O(n) time.

#### Warmup

- You have 25 horses and want to find the 3 fastest.
- You do not know how fast they are, but you have a racetrack where you can race 5 horses at a time.
  - In:  $\{1, 5, 6, 18, 22\}$  Out: (6 > 5 > 18 > 22 > 1)
- Problem: find the 3 fastest using the fewest races.

facted is a factor comer factor is a factor comer is a factor is a factor for the top 3 is a factor is

# Median Algorithm: Take I

Select(A[1, ..., n], k): If n = 1: return A[1]→ Choose a pivot element p = A[1]→ Partition around the pivot p, let A[r] be the pivot If k < r: return Select(A[1, ..., r - 1], k)Elif k > r: return Select(A[r + 1, ..., n], k - r)Else: return A[r]

# Median Algorithm: Take I



# Median Algorithm: Take I <sup>k=5</sup>



# Median Algorithm: Take II

- Need to find a pivot element p that is in the middle of the sorted list in O(n) time.
- Idea 1: Use the median of this list!
- Idea 2: Use the "median-of-medians" (m-o-m)!

Finish on tuesday