CS4800: Algorithms \& Data Jonathan Ullman

Lecture 4:

- Recurrences: Master Theorem
- Divide and Conquer: Median

Jan 19, 2018

$$
\begin{aligned}
& \begin{array}{c}
\text { of shortly after dis } \\
\text { 4.5m! }
\end{array}
\end{aligned}
$$

Recap
Example of a divide-and-conquer algorithm: Mergesort
Analyzed its running time:
(1) guess and check by induction
(2) recursion tree

Today:

- Review tree method
-"Master Theorem" $\binom{$ recipe for solung most recurrences }{ that come up in D-and-C alganthms }
- Another Example: Finding the median of a lint of numbers

Tuesday: Wrap up D-and -C w/ more examples

Recurrences
split mput moo two pieces of size $\frac{n}{2}$

- Mergesort: and use $\mathcal{O}(n)$ work to combine
- $T(n)=2 T(n / 2)+C n$
- $T(n)=\Theta(n \log n)$
split input into three pieces of sire $\frac{n}{2}$ and use $O(n)$ work to combine.
- Karatsuba's Algorithm:
- $T(n)=3 T(n / 2)+C n$
- $T(n)=\Theta\left(n^{\log _{2} 3}\right)$
- How would we arrive at these answers?

Recursion Tree

Level

i
$\ell=\log _{2} n$

Total Work: $\sum_{i=0}^{\ell} C_{n}=(l+1) \cdot C_{n}=\theta(n \log n)$

$$
\begin{aligned}
& 2 \cdot\left(\frac{C n}{2}\right)=C n \\
& 4 \cdot\left(\frac{C n}{4}\right)=C n
\end{aligned}
$$

$$
\left[2^{i} \cdot\binom{C n}{2^{i}}=C n\right.
$$

Recursion Tree
level
0
1
2
0
$i \quad 3^{i}$ recosive calls of size $\frac{n}{2 i}$

work

$$
\begin{gathered}
C_{\cdot n}=O(n) \\
3 \times\left(\frac{C_{n}}{2}\right)=\left(\frac{3}{2}\right) \cdot C_{n} \\
9 \times\left(\frac{C_{n}}{4}\right)=\left(\frac{3}{2}\right)^{2} C_{n}
\end{gathered}
$$

$$
3^{i} \times\left(\frac{C_{n}}{2^{i}}\right)=\left(\frac{3}{2}\right)^{i} \cdot C_{n}
$$

$$
\begin{aligned}
& T(n)=\sum_{i=0}^{l}\left(\frac{3}{2}\right)^{i} \times C_{n}=C_{n} \times \sum_{i=0}^{e}\left(\frac{3}{2}\right)^{i}=C_{n} \times O\left(\left(\frac{3}{2}\right)^{l}\right) \\
&=C_{n} \times O\left(\left(\frac{3}{2}\right)^{\log _{2}(n)}\right) \\
& 3^{\log _{2} n} \text { recursive calls otsize } \quad 3^{\log _{2} n} \times C=\Omega\left(n^{\log _{2} 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } T(n)=3 T(n / 2)+C n \\
& \text { - } T(1)=C
\end{aligned}
$$

Geometric Series

- Series $S=\sum_{i=0}^{\ell} r^{i}$

$$
\begin{aligned}
& S=1+r+r^{2}+\cdots+r^{\ell} \\
& r S=\quad r+r^{2}+\cdots+r^{\ell}+r^{\ell+1}
\end{aligned}
$$

- Solution $S=\frac{1-r^{\ell+1}}{1-r}=\frac{r^{l+1}-1}{r-1}$

Case (1): $r<1$

$$
S \leq \frac{1}{1-r}=O(1)
$$

Case (2): $r=1$

$$
S=(l+1) \cdot r=O(l)
$$

Case (3): $r>1$

$$
\begin{aligned}
& S \geqslant r^{l} \\
& S \leqslant \frac{r^{l+1}}{1-r} \quad S=\theta\left(r^{l}\right)
\end{aligned}
$$

Ask the Audience!

- Solve using the recursion tree method:

$$
\begin{array}{rlrl}
\cdot T(n) & =8^{6^{2}} \cdot T\left(\frac{n}{4}\right)+n & \underline{n_{n s w e r}} & \cdot 2^{n \times c} \\
\cdot T(n) & =\Theta(\ldots) ?_{b} & \cdot n^{3 / 2} \\
& =\theta\left(n^{3 / 2}\right) & & 2^{\log _{8}(n)}=n^{1 / 3} \\
& =\theta\left(n^{\log _{4}(8)}\right)=\Theta\left(n^{\log _{2}(a)}\right) & & n^{2}
\end{array}
$$

Recursion Tree
level

$$
\begin{aligned}
& \text { - } T(n)=8 T(n / 4)+C n \\
& -T(1)=C
\end{aligned}
$$

work
8^{i}

$$
8^{i} \times\left(\frac{C_{n}}{4 i}\right)=\left(\frac{8}{4}\right)^{i} \times C_{n}
$$

bottomlerel $=\log _{4}(n)$

$$
\begin{aligned}
& T(n)=\sum_{i=0}^{\log _{4}(n)}\left(\frac{8}{4}\right)^{i} \cdot C_{n}=C_{n} \times \theta\left(\left(\frac{8}{4}\right)^{\log _{4}(n)}\right) \\
&=C\left\langle^{\times} \theta\left(\frac{8^{\log _{4}(n)}}{y \log (t)}\right)\right. \\
&=\theta\left(8^{\log _{4}(n)}\right) \\
&=\theta\left(n^{\log _{4}(8)}\right) \\
&=\theta\left(n^{1.5}\right)
\end{aligned}
$$

Recurrences

- Mergesort:
- $T(n)=2 T(n / 2)+C n$
- $T(n)=\Theta(n \log n)$
- Karatsuba’s Algorithm:
- $T(n)=3 T(n / 2)+C n$
- $T(n)=\Theta\left(n^{\log _{2} 3}\right)$
- Just Now:
- $T(n)=8 T(n / 4)+C n$
- $T(n)=\Theta\left(n^{1.5}\right)$

The "Master Theorem"

- Let's solve all recurrences of the form
- $T(n)=a \cdot T(n / b)+n^{c}$
a, b, c are constants
e.g. $T(n)=\sqrt{n} \cdot T(\sqrt{n})$
$+O(n)$
Split into a press of size $\frac{n}{b}$ and se $O\left(n^{c}\right)$ work to combe.

The "Master Theorem"

- Let's solve all recurrences of the form
- $T(n)=a \cdot T(n / b)+n^{c}$

if $\frac{a}{b^{c}}>1$ the most work s at the bottom
- if $\frac{a}{b^{c}}<1$ the most work is dore of the top
- if $\frac{a}{b^{c}}=1$ then every level does the same work

Recursion Tree
level
0 \square
$\sqrt{n / b}$
n / b
ax $\left(\frac{n}{b}\right)^{c}=\left(\frac{a}{b^{c}}\right) \times{ }^{c}$
a^{i} copies of size $\frac{n}{b^{i}} \quad\left(\frac{a}{b^{c}}\right)^{i} \times n^{c}$
bottom level is $l=\log _{b}(n)$

$$
\left.\begin{array}{rl}
T(n)=\sum_{i=0}^{\log _{b}(n)}\left(\frac{a}{b^{c}}\right)^{i} \times n^{c} & =n^{c} \times \theta\left(\left(\frac{a}{b^{c}}\right)^{\log _{b} n}\right) \\
& =D<\times \theta\left(\frac{a^{\log _{b} n}}{\left(b^{\log _{b} n}\right)}\right)
\end{array}\right)=\theta\left(a^{\log _{b} n}\right) .
$$

Recursion Tree level

- $T(n)=a T(n / b)+n^{c}$
- $\left(\frac{a}{b^{c}}\right)=1$

0

$$
\begin{aligned}
& \frac{40 r k}{n^{c}} \\
& a^{\times} \times\left(\frac{n}{b}\right)^{c} \\
& =\frac{a}{b^{c}} \times n^{c}
\end{aligned}
$$

$$
a^{i} \text { copies of size } \frac{n}{b^{i}} \quad a^{i} \times\left(\frac{n}{b^{i}}\right)^{c}=\left(\frac{a}{b^{c}}\right)^{i} \times n^{c}
$$

$$
=n^{c}
$$

bottom level is $l=\log _{b} n$

$$
\begin{aligned}
T(n)=n^{c} \times \sum_{i=0}^{\log _{b} n} 1^{i} & =n^{c} \times O\left(\log _{b} n\right) \\
& =\theta\left(n^{c} \log n\right)
\end{aligned}
$$

Recursion Tree

0

$$
\text { - } T(n)=a T(n / b)+n^{c}
$$

- $\left(\frac{a}{b^{c}}\right)<1$

$$
n / 6 \ldots n
$$

$$
a^{n^{c}}\left(\frac{n}{b}\right)^{c}=\left(\frac{a}{b^{c}}\right) n^{c}
$$

a^{i} copies of size $\frac{n}{b^{i}} \quad a^{i} \times\left(\frac{n}{b^{i}}\right)^{c}=\left(\frac{a}{b^{c}}\right)^{i} \times n^{c}$

$$
\begin{aligned}
l=\log _{b} n \quad T(n) & =n^{c} \times \sum_{i=0}^{\log _{b} n}\left(\frac{a}{b^{c}}\right)^{i} \\
& \leq n^{c} \times \sum_{i=0}^{\infty}\left(\frac{a}{b^{c}}\right)^{i}
\end{aligned}=n^{c} \times \frac{1}{1-\frac{a}{b^{c}}}
$$

The "Master Theorem"

- Let's solve all recurrences of the form
- $T(n)=a \cdot T(n / b)+n^{c}$
- Three cases: \rightarrow e.g, Karałsuba
- $\left(\frac{a}{b^{c}}\right)>1: T(n)=\Theta\left(n^{\log _{b} a}\right)$
- $\left(\frac{a}{b^{c}}\right)=1: T(n)=\Theta\left(n^{c} \log n\right)$
- $\left(\frac{a}{b^{c}}\right)<1: T(n)=\Theta\left(n^{c}\right)$

The "Master Theorem"

$$
T(n)=3 \times T\left(\frac{n}{2}\right)+n \log n
$$

- Even More General: All recurrences of the form $T(n)=a \cdot T(n / b)+f(n)$

$$
f(n)=n \log n
$$

- Three cases:

$$
\begin{aligned}
& \text { - } f(n)=O\left(n^{\left(\log _{b} a\right)-\varepsilon}\right) \text { forsome } \quad \text { e. } 3 \times T\left(\frac{n}{2}\right)+n^{1.5} \quad \log _{2}(3) \approx 1.59 \\
& \quad \text { • } T(n)=\Theta\left(n^{\log _{b} a}\right) \\
& \text { - } f(n)=\Theta\left(n^{\log _{b} a}\right) \\
& \quad \text { • } T(n)=\Theta\left(n^{\log _{b} a} \log n\right) \\
& \text { - } f(n)=\Omega\left(n^{\left(\log _{b} a\right)+\varepsilon}\right) \& \text { af }\left(\frac{n}{b}\right)<C f(n) \text { for } C<1 \\
& \text { - } T(n)=\Theta(f(n))
\end{aligned}
$$

Ask the Audience!

$$
T(n)=a T\left(\frac{n}{b}\right)+n^{c}
$$

- Use the Master Theorem to Solve:
- $T(n)=16 \cdot T\left(\frac{n}{4}\right)+n^{2}$

$$
\begin{aligned}
& a=16 \\
& b=4
\end{aligned} \quad\left(\frac{a}{b^{c}}\right)=1
$$

$$
c=2
$$

$$
T(n)=\theta\left(n^{2} \log n\right)
$$

- $T(n)=21 \cdot T\left(\frac{n}{5}\right)+n^{2}$
$a=21$
$b=5$
$\left(\begin{array}{l}\left.\frac{a}{b^{c}}\right)=\frac{21}{25}<1 \quad T(n)=\theta\left(n^{2}\right), ~(n)\end{array}\right.$
- $T(n)=2 \cdot T\left(\frac{n}{2}\right)+1$

$$
\begin{aligned}
& a=2 \\
& b=2 \\
& c=0
\end{aligned} \quad\left(\frac{a}{b^{c}}\right)=\left(\frac{2}{2^{0}}\right)=2>1 T(n)=\theta(n)
$$

- $T(n)=5 \cdot T\left(\frac{n}{3}\right)+n \log _{2} n$
work done at the bot. $f(n)$

$$
f(n)=O\left(n^{\left(\log _{3} 5\right)-.01}\right)
$$

$$
\theta\left(n^{\log _{3} 5}\right) \log _{3} 5>1 \quad T(n)=\theta\left(n^{\log _{3} 5}\right)
$$

Switching Gears: Selection (Median)

Selection

- Given an array of numbers $A[1, \ldots, n]$, how quickly can I find the:
- Smallest number? $=\Theta(n)$
- Second smallest? $=\Theta(n)$
- Eighth smallest? $=\theta(n)$
- k-th smallest? $=O(k n) \longrightarrow O(n \log n)$

11	3	42	28	17	8	2	15

Selection

- Selecting the k-th smallest number is no harder than sorting. Takes $\Theta(n \log n)$ time.

Finding the Median

- The median is the $\left\lceil\frac{n}{2}\right\rceil$-th smallest number

- Today: finding the median in $O(n)$ time.

Warmup

- You have 25 horses and want to find the 3 fastest.
- You do not know how fast they are, but you have a racetrack where you can race 5 horses at a time.
- In: $\{1,5,6,18,22\}$ Out: $(6>5>18>22>1)$
- Problem: find the 3 fastest using the fewest races.

Median Algorithm: Take I

17	3	42	11	28	8	2	15	13

11	3		13	15	2	8	17	28
4	42							

$\operatorname{Select}(A[1, \ldots, n], k)$:
If $n=1$: return $A[1]$
\rightarrow Choose a pivot element $p=A[1]$
\rightarrow Partition around the pivot p, let $A[r]$ be the pivot If $k<r$: return Select $(A[1, \ldots, r-1], k)$
Elif $k>r$: return Select $(A[r+1, \ldots, n], k-r)$ Else: return $A[r]$

Median Algorithm: Take I

$$
k=4
$$

| 17 | 3 | 42 | 11 | 28 | 8 | 2 | 15 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |A

11	3	17	13	2	8

Median Algorithm: Take I

$$
k=5
$$

1	2	3	4	5	6	7	8	9

$A[1]$

recuse $k-1$ times
Total Time $\Omega\left(n^{2}\right)$

Median Algorithm: Take II

- Need to find a pivot element p that is in the middle of the sorted list in $O(n)$ time.
- Idea 1: Use the median of this list!
- Idea 2: Use the "median-of-medians" (m-o-m)!
Finish on tuesday

