CS4800: Algorithms & Data Jonathan Ullman

Lecture 1:

- Course Overview (Warning: slightly dry)
- Induction

Jan 9, 2018

Me

- Name: Jonathan Ullman
 - Feel free to call me Jon
 - NEU since 2015
 - Office: 623 ISEC
 - Office Hours: Tuesday 1:30-3pm
- Research:
 - Privacy, Crypto, Machine Learning, Game Theory
 - Algorithms are at the core of all of these!

Our Esteemed TAs

- Vikrant Singhal
 - Office Hours: Thu 4-6pm
 - Location: 6th Floor ISEC
 ISEC 605

- Konstantin Gizdarski
 - Office Hours: 3-5pm Wed
 - Location: WVH Atrium

• What is an algorithm?

An explicit, precise, unambiguous, mechanicallyexecutable sequence of elementary instructions for solving a computational problem.

-Jeff Erickson

- Examples: Sort a list of numbers, find the shortest route home, find web pages about algorithms
- Essentially all computer programs (and more) are algorithms for some computational problem.

• What is "Algorithms"?

The study of how to solve computational problems.

- Abstract and formalize computational problems
- Identify broadly useful algorithm design principles for solving computational problems
- Rigorously analyze the properties of algorithms
 - Most often correctness, running time, space usage

- That sounds hard. Why would I want to do that?
- Build Intuition:
 - How/why do algorithms really work?
 - How to attack new problems?
 - Which design techniques work well?
 - How to compare different solutions?
 - How to know if a solution is the best possible?

- That sounds hard. Why would I want to do that?
- Improve Communication:
 - How to explain solutions?
 - How to convince someone that a solution is correct?
 - How to convince someone that a solution is best?

- That sounds hard. Why would I want to do that?
- Learn Problem Solving / Ingenuity / Creativity
 - "Algorithms are little packets of brilliance." -Olin Shivers

- That sounds hard. Why would I want to do that?
- You can only gain these skills with practice!

- That sounds hard. Why would I want to do that?
- Get Rich:
 - Many of the world's largest companies (e.g. Google, Akamai,...) began with algorithms.
- Understand the natural world:
 - Brains, cells, networks, etc. often viewed as algorithms.
- Fun:
 Yes, seriously, fun.

Course Structure

Typical Grade Distribution

- HW = 50%
- Exams = 50%
 - Midterm I = 15%
 - Midterm II = 15%
 - Final = 20%

Course Structure

Textbook: Algorithm Design by Kleinberg and Tardos

- · Erickson. Algorithms, Etc. (online)
- · CLRS
- · Math For Computer Science. Meyer, Leighton (online)

Homework

- Weekly HW Assignments (50% of grade)
 - Due Fridays by 4:59pm
 - HW1 out now! Due Fri 1/19
 - No extensions, no late work
 - Lowest score will be dropped
- Mostly mathematical / algorithmic problems
- 2-4 Programming problems throughout the semester

Homework Policies

Homework must be typeset in LaTeX!

- Many resources available
- Many good editors available (TexShop, TexStudio)
- I will provide HW source

MAC

The Not So Short Introduction to $I\!\!AT_{\rm E}\!X \, 2_{\mathcal{E}}$

by Tobias Oetiker Hubert Partl, Irene Hyna and Elisabeth Schlegl

Version 5.06, June 20, 2016

Homework Policies

- Homework will be submitted on Gradescope!
 - Entry code MV8J4R
 - Sign up today (or even right this minute)!

Ill gradescope

Homework Policies

- You are encouraged to work with your classmates on the homework problems.
 - You may not "collaborate" with the internet or with students not in the class.
- If you do collaborate, you must write all solutions by yourself, in your own words, and are strictly forbidden from sharing any written solutions. You must list all of your collaborators.
- I reserve the right to ask you^hexplain any solution.

What About the Other Sections?

- No formal relationship between this section and the other two sections.
 - Will cover very similar topics -> especially Prof. Nguyen's sec
 - Will share some homework questions
 - Will use different exams
- You are expected to come to lectures for your section, meet with TAs for your section, collaborate with people in your section.

Discussion Forum

- We will use Piazza for discussions
 - Ask questions
 - Help your classmates
- Sign up today (or even right this minute)!

Course Website

http://www.ccs.neu.edu/home/jullman/CS4800S18/syllabus.html http://www.ccs.neu.edu/home/jullman/CS4800S18/schedule.html

CS4800: Algorithms & Data				
		Syllabus	Schedule	
Note: this page will be updated frequently!				
#	Date	Торіс	Reading	HW
1	T 1/9	Course Overview Analyzing Algorithms via Induction		HW1 Out (pdf, tex)
2	F 1/12	Asymptotic Analysis Divide and Conquer: Karatsuba	KT 2.1-2.2 demo	
3	T 1/16	Divide and Conquer: Mergesort, Recurrences	KT 5.1-5.2 demo	
4	F 1/19	Divide and Conquer: Master Theorem	Erickson II.3	HW1 Due HW2 Out (pdf, tex)

One More Thing: I need to count how many students are in this lecture!

Counting People

- Simple Counting:
 - Find the first student 1
 - The first student says one 2.
 - Until we're out of students: 3.
 - Go to the next student а.
 - The next student says what the last student says + one b.
 - 28.04 seconds 46 students

- Is this correct?
- How long does this take?
 - T(n) is the time to count *n* students Elementary slep «point @ neu student - say number

A "Recursive" Algorithm

- Recursive Counting:
 - 1. Everyone stand
 - 2. Everyone set your "number" to one
 - Until only one student is standing
 - a. Greet a neighbor (pause if you're the odd person out)
 b. If you are taller, give "number" and sit. If you are shorter, add up "numbers."
 - 4. Say "number"

- 2:42:02
- Is this correct? Do you see why?

Running Time

> Divide-and-Conquer Algorithm

T(n) is the time to

- Recursive Counting:
 - 1. Everyone stand
 - 2. Everyone set your "number" to one
 - 3. Until only one student is standing
 - a. Greet a neighbor (pause if you're the odd person out)
 - If you are taller, give "number" and sit. If you are shorter, add up "numbers."
 - 4. Say "number"

Ister

- How long does this algorithm take? students.
 - T(n) is the number of steps to count n students.
 - $T(n) = 2 + T(\lfloor n/2 \rfloor), T(1) = 3$ recorrence relation base case

Running Time

- Recurrence $n = 2^{\ell}$: Intuition (easier when $n = 2^{\ell}$): so $\left[\frac{h}{2}\right] = \frac{h}{2}$ • Recurrence T(1) = 3, T(n) = 2 + T([n/2])

$$T(2^{e}) = 2 + T(2^{e-1})$$

$$= 2 + 2 + T(2^{e-2})$$

$$\vdots$$

$$= 2 + 2 + ... + 2 + T(1)$$

$$= 2 + 2 + ... + 2 + 3$$

 $= 2 \cdot l + 3$

Inductive Proofs

- Conjecture: For every number of students $n = 2^{\ell}$, $T(2^{\ell}) = 2\ell + 3$
- Can verify small cases
 - $\ell = 0: T(2^0) = 3 = 2 \cdot 0 + 3 \checkmark$
 - $\ell = 1: T(2^1) = 5 = 2 \cdot 1 + 3 \checkmark$
 - ...
- We cannot do this for every *n*
- Induction: assume the claim is true for all n < k, prove that it is true for n = k

•
$$n = 1 \implies n = 2 \implies n = 3 \implies \dots$$

Inductive Proofs

Recurrence
$$T(1) = 3$$
, $T(n) = 2 + T([n/2])$

• Conjecture: For every number of students $n = 2^{\ell}$, $T(2^\ell) = 2\ell + 3$ Proof by Induction on l: Base (ase (1=0): T(2°)=T(1)=3=2.0+3 Inductive Step: [If the statement is the for all lak, then it is the for l=k. 7 $T(2^{k}) = T(2^{k-1}) + 2 = (2 \cdot (k-1) + 3) + 2$ л. Тн —— ____> IH = 2.k + 3Therefore conjecture holds for all n by moluction.

Running Time

96

- Simple counting: $T_{sim}(n) = 2n$ "steps"
- Recursive counting: $T_{rec}(n) = 2 \log_2 n + 3$ "steps" ≤ 15
- But for this class, simple counting was faster???

Running Time

- Simple counting: $T_{sim}(n) = 2n \sec(n)$
- Recursive counting: $T_{rec}(n) = 30 \log_2 n + 45$ sec

30.6 +45 = 225

- Asymptotics!
 - Log-time beats linear-time as $n \to \infty$

