
CS4800:	Algorithms	&	Data
Jonathan	Ullman

Lecture	1:	
• Course	Overview	(Warning:	slightly	dry)
• Induction

Jan	9,	2018

 



• Name:	Jonathan	Ullman
• Feel	free	to	call	me	Jon
• NEU	since	2015
• Office:	623	ISEC
• Office	Hours:	Tuesday	1:30-3pm

• Research:
• Privacy,	Crypto,	Machine	Learning,	Game	Theory
• Algorithms	are	at	the	core	of	all	of	these!

Me



• Vikrant	Singhal
• Office	Hours:	Thu	4-6pm
• Location:	6th Floor	ISEC

• Konstantin	Gizdarski
• Office	Hours:	3-5pm
• Location:	WVH	Atrium

Our	Esteemed	TAs



• What	is	an	algorithm?

• Examples:	Sort	a	list	of	numbers,	find	the	shortest	route	
home,	find	web	pages	about	algorithms

• Essentially	all	computer	programs	(and	more)	are	
algorithms	for	some	computational	problem.

Algorithms

An	explicit,	precise,	unambiguous,	mechanically-
executable	sequence	of	elementary	instructions	
for	solving	a	computational	problem.

-Jeff	Erickson	



• What	is	“Algorithms”?

• Abstract	and	formalize	computational	problems	
• Identify	broadly	useful	algorithm	design	principles	for	
solving	computational	problems

• Rigorously	analyze	the	properties	of	algorithms
• Most	often	correctness,	running	time,	space	usage

Algorithms

The	study	of	how	to	solve	computational	problems.



• That	sounds	hard.		Why	would	I	want	to	do	that?

• Build	Intuition:
• How/why	do	algorithms	really	work?
• How	to	attack	new	problems?
• Which	design	techniques	work	well?
• How	to	compare	different	solutions?
• How	to	know	if	a	solution	is	the	best	possible?

Algorithms



• That	sounds	hard.		Why	would	I	want	to	do	that?

• Improve	Communication:
• How	to	explain	solutions?
• How	to	convince	someone	that	a	solution	is	correct?
• How	to	convince	someone	that	a	solution	is	best?

Algorithms



• That	sounds	hard.		Why	would	I	want	to	do	that?

• Learn	Problem	Solving	/	Ingenuity
• “Algorithms	are	little	packets	of	brilliance.”	-Olin	Shivers

Algorithms



• That	sounds	hard.		Why	would	I	want	to	do	that?

• You	can	only	gain	these	skills	with	practice!

Algorithms



• That	sounds	hard.		Why	would	I	want	to	do	that?

• Get	Rich:
• Many	of	the	world’s	largest	companies	(e.g.	Google,	
Akamai,…)	began	with	algorithms.

• Understand	the	natural	world:
• Brains,	cells,	networks,	etc.	often	viewed	as	algorithms.

• Fun:
• Yes,	seriously,	fun.

Algorithms



Course	Structure
End
4/17

Final	
Late	Apr

Start
1/9

Midterm	I
Mid	Feb

Midterm	II
Late	Mar

• HW	=	50%
• Exams	=	50%

• Midterm	I	=	15%
• Midterm	II	=	15%
• Final	=	20%

A, 30% 

B, 50% 

C,	20%

Typical	Grade	Distribution



Course	Structure
End
4/17

Start
1/9

Divide	and	
Conquer

Dynamic
Programming

Greedy Graphs Network
Flow

Misc

Textbook:	
Algorithm	Design	by	Kleinberg	and	Tardos

Final	
Late	Apr

Midterm	I
Mid	Feb

Midterm	II
Late	Mar



• Weekly	HW	Assignments	(50%	of	grade)
• Due	Fridays	by	4:59pm
• HW1	out	now!		Due	Fri	1/19
• No	extensions,	no	late	work
• Lowest	score	will	be	dropped

• Mostly	mathematical	/	algorithmic	problems
• 2-4	Programming	problems

Homework



• Homework	must	be	typeset	in	LaTeX!
• Many	resources	available
• Many	good	editors	available	(TexShop,	TexStudio)
• I	will	provide	HW	source

Homework	Policies



• Homework	will	be	submitted	on	Gradescope!
• Entry	code	MV8J4R
• Sign	up	today	(or	even	right	this	minute)!

Homework	Policies



• You	are	encouraged	to	work	with	your	classmates	
on	the	homework	problems.
• You	may	not	“collaborate”	with	the	internet	or	with	
students	not	in	the	class.

• If	you	do	collaborate,	you	must	write	all	solutions	
by	yourself,	in	your	own	words,	and	are	strictly	
forbidden	from	sharing	any	written	solutions.		You	
must	list	all	of	your	collaborators.

• I	reserve	the	right	to	ask	you	explain	any	solution.	

Homework	Policies



• No	formal	relationship	between	this	section	and	
the	other	two	sections.
• Will	cover	very	similar	topics
• Will	share	some	homework	questions
• Will	use	different	exams

• You	are	expected	to	come	to	lectures	for	your	
section,	meet	with	TAs	for	your	section,	
collaborate	with	people	in	your	section.

What	About	the	Other	Sections?



• We	will	use	Piazza	for	discussions
• Ask	questions
• Help	your	classmates

• Sign	up	today	(or	even	right	this	minute)!

Discussion	Forum



Course	Website
http://www.ccs.neu.edu/home/jullman/CS4800S18/syllabus.html
http://www.ccs.neu.edu/home/jullman/CS4800S18/schedule.html



One	More	Thing:
I	need	to	count	how	many	
students	are	in	this	lecture!



• Simple	Counting:
1. Find	the	first	student
2. The	first	student	says	one	
3. Until	we’re	out	of	students:

a. Go	to	the	next	student
b. The	next	student	says	what	the	last	student	says	+	one

• Is	this	correct?
• How	long	does	this	take?
• ! " is	the	time	to	count	" students
• ! " = 2"	

Counting	People





• Recursive	Counting:
1. Everyone	stand
2. Everyone	set	your	“number”	to	one
3. Until	only	one	student	is	standing

a. Greet	a	neighbor	(pause	if	you’re	the	odd	person	out)
b. If	you	are	taller,	give	“number”	and	sit.		If	you	are	shorter,	

add	up	“numbers.”
4. Say	“number”

• Is	this	correct?		Do	you	see	why?

A	“Recursive”	Algorithm



• Recursive	Counting:
1. Everyone	stand
2. Everyone	set	your	“number”	to	one
3. Until	only	one	student	is	standing

a. Greet	a	neighbor	(pause	if	you’re	the	odd	person	out)
b. If	you	are	taller,	give	“number”	and	sit.		If	you	are	shorter,	

add	up	“numbers.”
4. Say	“number”

• How	long	does	this	algorithm	take?
• !(") is	the	number	of	steps	to	count	" students.
• ! " = 2 + ! " 2⁄ ,	! 1 = 3

Running	Time



• Recurrence	! 1 = 3,	! " = 2 + ! " 2⁄
• Intuition	(easier	when	" = 2ℓ):

Running	Time



• Conjecture:	For	every	number	of	students	" = 2ℓ,	
! 2ℓ = 2ℓ + 3
• Can	verify	small	cases
• ℓ = 0:	! 26 = 3 = 2 ⋅ 0 + 3
• ℓ = 1:	! 2. = 5 = 2 ⋅ 1 + 3
• ...

• We	cannot	do	this	for	every	"
• Induction:	assume	the	claim	is	true	for	all	" < 3,	
prove	that	it	is	true	for	" = 3
• " = 1		 ⟹ 			" = 2			 ⟹ 			" = 3 ⟹	…

Inductive	Proofs



• Conjecture:	For	every	number	of	students	" = 2ℓ,	
! 2ℓ = 2ℓ + 3

Inductive	Proofs



• Simple	counting:	!ABC " = 2" “steps”
• Recursive	counting:	!DEF " = 2 log/ " + 3 “steps”

• But	for	this	class,	simple	counting	was	faster???

Running	Time



• Simple	counting:	!ABC " = 2" sec
• Recursive	counting:	!DEF " = 30 log/ " + 45 sec

• Asymptotics!
• Log-time	beats	linear-time	as	" → ∞

Running	Time


