
CS4800: Algorithms — S’18 — Jonathan Ullman

Homework 7
Due Friday Mar 16 at 11:59pm via Gradescope

Name:
Collaborators:

• Make sure to put your name on the first page. If you are using the LATEX template we
provided, then you can make sure it appears by filling in the yourname command.

• This assignment is due Friday Mar 16 at 11:59pm via Gradescope. No late assignments
will be accepted. Make sure to submit something before the deadline.

• Solutions must be typeset in LATEX. If you need to draw any diagrams, you may draw them
by hand as long as they are embedded in the PDF. I recommend using the source file for
this assignment to get started.

• I encourage you to work with your classmates on the homework problems. If you do
collaborate, you must write all solutions by yourself, in your own words. Do not submit anything
you cannot explain. Please list all your collaborators in your solution for each problem by
filling in the yourcollaborators command.

• Finding solutions to homework problems on the web, or by asking students not enrolled
in the class is strictly prohibited.

1

http://www.ccs.neu.edu/home/jullman/CS4800S18/syllabus.html
https://gradescope.com/courses/13812
https://gradescope.com/courses/13812


Problem 1. Minimum Spanning Trees

In this problem we will see a new algorithm for finding an MST—theanti-Kruskal algorithm.
Recall that Kruskal’s algorithm starts wth T = ∅, considers edges e in ascending order of weight,
and adds e to T as long as doing so would not create a cycle. The anti-Kruskal algorithm starts
with T = E, considers edges e in descending order of weight, and removes e from T as long as
doing so would not make T disconnected.

Explain why the anti-Kruskal algorithm outputs an MST T . You may assume that all
edge-weights are distinct and you may use the cut and cycle properties of MSTs without proof.

Solution:

2



Problem 2. All-Pairs Shortest Paths

In the all-pairs shortest paths problem, you are given a directed, weighted graph with edge
lengths G = (V ,E, {`e}), and have to find the length of the shortest path from s to t for every pair
s, t ∈ V . For this HW we only want the length of the shortest path and not the path itself.

If all edge lengths are non-negative (`e ≥ 0), then we can solve this problem by running
Dijkstra’s algorithm from every source node s ∈ V , incurring running time O(nm logn). However,
if lengths can be negative, then running Bellman-Ford from each source node s ∈ V incurs
running time O(n2m). In this question we will study the following algorithm for solving
all-pairs shortest paths in graphs with negative-length edges, but no negative-length cycles.

• Modify the input graph by adding an additional node z connected to every other node v
by a zero-length edge (z,v).

• Run the Bellman-Ford algorithm on the modified graph with source z to find the length
f (v) of the shortest z→ v path in the modified graph.

• Define new edge lengths `′u,v = `u,v + f (u)− f (v) and let G′ = (V ,E, {`′e}) be the input graph
with these modified edge weights.

• For each source s ∈ V , run Dijkstra’s algorithm on the graph G′ with source s to find the
length d′(s,v) of the shortest s→ v path in G′ for every node v.

• For every u,v ∈ V , let d(u,v) = d′(u,v)− f (u) + f (v). Output the values {d(u,v)}.

In this problem, we will show correctness and analyze the running time of this algorithm.
The final three steps of the problem form the proof of correctness.

(a) What is the running time of this algorithm? Briefly explain your answer.

Solution:

(b) Prove that every edge in G′ has non-negative length. That is, ∀u,v ∈ V ,`′u,v ≥ 0. (Thus,
Dijkstra’s algorithm will correctly find the length d′(u,v) of the shortest u→ v path in G′ .)

Solution:

(c) Prove that for every u→ v path P = u→ w1→ ·· · → wk−1→ v, we have `′P = `P +f (u)−f (v)
where `′P , `P are the length of the path in G′ and G, respectively.

Solution:

(d) Prove that for every u,v ∈ V , d′(u,v)− f (u) + f (v) is the length of the shortest u→ v path
in the original graph G. Thus, the final lengths output by this algorithm are correct.

Solution:

3


