
CS4800: Algorithms — S’18 — Jonathan Ullman

Homework 4
Due Friday February 9 at 11:59pm via Gradescope

Name:
Collaborators:

• Make sure to put your name on the first page. If you are using the LATEX template we
provided, then you can make sure it appears by filling in the yourname command.

• This assignment is due Friday February 9 at 11:59pm via Gradescope. No late assignments
will be accepted. Make sure to submit something before the deadline.

• Solutions must be typeset in LATEX. If you need to draw any diagrams, you may draw them
by hand as long as they are embedded in the PDF. I recommend using the source file for
this assignment to get started.

• I encourage you to work with your classmates on the homework problems. If you do
collaborate, you must write all solutions by yourself, in your own words. Do not submit anything
you cannot explain. Please list all your collaborators in your solution for each problem by
filling in the yourcollaborators command.

• Finding solutions to homework problems on the web, or by asking students not enrolled
in the class is strictly prohibited.

1

http://www.ccs.neu.edu/home/jullman/CS4800S18/syllabus.html
https://gradescope.com/courses/13812
https://gradescope.com/courses/13812


Problem 1. Armageddon

The NASA Near Earth Object Program lists potential future Earth impact events that the
JPL Sentry System has detected based on currently available observations. Sentry is a highly
automated collision monitoring system that continually scans the most current asteroid catalog
for possibilities of future impact with Earth over the next 100 years.

This system allows us to predict that i years from now, there will be xi tons of asteroid
material that has near-Earth trajectories. In the mean time, we can build a space laser that can
blast asteroids. However, each laser blast will require exajoules of energy, and so there will
need to be a recharge period on the order of years between each use of the laser. The longer
the recharge period, the stronger the laser blast—after j years of charging, the laser will have
enough power to obliterate dj tons of asteroid material. This problem explores the best way to
use such a laser.

The input to the algorithm consists of the vectors (x1, . . . ,xn) and (d1, . . . ,dn) representing the
incoming asteroid material in years 1 to n, and the power of the laser di if it charges for i years.
The output consists of the optimal schedule for firing the laser to obliterate the most material.

Example: Suppose (x1,x2,x3,x4) = (1,10,10,1) and (d1,d2,d3,d4) = (1,2,4,8). The best solu-
tion is to fire the laser at times 3,4. This solution blasts 5 tons of asteroids, 4 tons at time 3 and 1
ton at time 4.

(a) Construct an input on which the following “greedy” algorithm returns the wrong answer:
1: procedure BADLASER((x1, . . . ,xn), (d1, . . . ,dn))
2: Compute the smallest j such that dj ≥ xn. Set j = n if no such j exists.
3: Shoot the laser at time n.
4: if n > j then return BADLASER((x1, . . . ,xn−j ), (d1, . . . ,dn−j ))
5: end if
6: end procedure

Intuitively, the algorithm figures out how many years j are needed to blast all the material
in the last time slot. It shoots during that last time slot, and then accounts for the j years
required to recharge for that last slot, and recursively considers the best solution for the
smaller problem of size n− j.

Solution:

(b) Let OPT(j) be the maximum amount of asteroid we can blast from year 1 to year j. Give a
recurrence to compute OPT(j) from OPT(j), . . . ,OPT(j − 1). Justify your recurrence.

Solution:

(c) Describe a dynamic programming algorithm based on your recurrence above, including
the base cases and order of evaluation. Analyze the running time of your solution. You
may use either a top-down (“memoized”) or bottom-up (“iterative”) approach.

Solution:

2



Problem 2. Box Stacking

You are given a set of n three-dimensional rectangular boxes, with each box represented by
the triple (hi ,wi ,di) giving the height, width, and depth of box i. Your goal is to create a stack
of boxes that is as high as possible. However, you can only stack box i on top of box j if box j
is larger than i in both width and depth—that is, if wj ≥ wi and dj ≥ di . Since the boxes have
fragile contents, you are not allowed to rotate the boxes. You may assume for simplicity that no
two boxes have the same width and depth.

In this problem, you will design dynamic programming algorithm that outputs the height of
the tallest stack you can make. The input is a list b1, . . . , bn containing height, width, and depth
for the n boxes and the output is an ordered list of the boxes you will stack that maximized the
total height of the stack.

Example: Suppose the four boxes are b1 = (4,1,20),b2 = (5,2,11),b3 = (2,10,3),b4 = (8,12,5)
then the optimal solution is to stack boxes 3 on top of box 4, achieving a height of 10.

The different parts of the problem correspond to the different steps of designing and specify-
ing a dynamic programming algorithm. The question is split into steps to help you structure
your solution, but, like any design process, you may want to go back and forth between these
steps when you are formulating your solution.

(a) If you want to sort the input as the first step of your algorithm, specify what you sort by.

Solution:

(b) Define in English, define the set of subproblems your dynamic programming algorithm
will consider. That is, describe what you want the function OPT to denote.

Solution:

(c) Give a recursive formula for OPT. Give a justification of your recursive formula in English.

Solution:

(d) Explain in English in which order you intend to fill your dynamic programming table.

Solution:

(e) Give a pseudocode description of your algorithm.

Solution:

(f) State running time of your algorithm, and briefly justify your answer.

Solution:

3


