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Data Compression

* How do we store strings of text compactl
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Data Compression

* Letters have uneven frequencies!

* Want to use short encodings for frequent letters, long
encodings for infrequent leters
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Data Compression

* Easy to encode a string

Encode(KTS)=—e—-—0 @ @

* The encoding is short on average

< 4 bits per letter (30 symbols max!)

* Easy to decode a string
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* What properties would a good code have?
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Prefix Free Codes

e Cannot decode if there are ambiguities
* E.g. enc(E) is a prefix of enc(S)

e Prefix-Free Code:

* Abinaryenc: £ — {0,1}" s.t. foreveryx # y € %,

enc(x) is not a prefix of enc(y)
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Prefix Free Codes

Code:
a—1
b—011
c—010
d—001
e—000

e Can represent a prefix-free
code as a tree

* Encode by going up the tree (or using a table)
dab—->0011 011 d> 001 a—1L b—>0I\

* Decode by going down the tree
*01100010010101011



Prefix Free Codes

Code:
a—1
b—011
c—010
d—001
e—000

e Can represent a prefix-free
code as a tree

* Encode by going up the tree (or using a table)
edab—>0011 011 d= 001 a—1 b—0l)

* Decode by going down the tree
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Huffman Codes

* (An algorithm to find) an optimal prefix-free code

awq}a |;r['s 4 svm\m)

* optimal = minimizes len(T) = }};cs f; - leny (i)

* Note, optimality depends on what you’re compressing

* His the 8" most frequent letter in English (6.094%) but the 20th
most frquent in Italian (0.636%)

N,
& Lo b
& _—-——
v
0 10 110 111

\eoT(a\=\ lea (=2 lor (<) =3 len(d)=3




Huffman Codes
* First Try: split letters into two sets of roughly equal

frequency and recurse
* Balanced binary trees should have low depth
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Huffman Codes

* First Try: split letters into two sets of roughly equal
frequency and recurse
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Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse
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Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

* Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length

* We’ll prove the theorem using an exchange argument



Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (1) In an optimal prefix-free code (an optimal tree), every
internal node has exactly 2 children
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Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (2) If x, y have the lowest frequency, then there is an optimal
code where x, y are siblings and are at the bottom of the tree
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Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (2) If x, y have the lowest frequency, then there is an optimal
code where x, y are 5|bI|ngs and are at the bottom of the tree
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Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X:
* Base case (|X| = 2): rather obvious



Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X
* Inductive Hypothesis /)
f e,
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Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters ir@” see k
* Inductive Hypothesis:
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* Without loss gf generality, frequencies are fy, ..., fi, the
two lowest are f1, f

* Merge 1,2 into a new letter k + 1 with f,1 = f1 + f>
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Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X:
* Inductive Hypothesis:

Without loss of generality, frequencies are f, ..., fi, the
two lowest are f1, f>

Merge 1,2 into a new letter k + 1 with f,,..1 = f1 + f>

By induction, if T’ is the Huffman code for f5, ..., fi+1,
then T' is optimal

Need to prove that T is optimal for f4, ..., f%



Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

« If T is optimal for f3, .. fk+1 then T is optimal for f1, oo [r
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An Experiment

* Take the Dickens novel A Tale of Two Cities
* File size is 799,940 bytes

* Build a Huffman code and compress

‘ char ’ frequency ‘ code | ‘ char | frequency | code | ‘ char | frequency | code |
— T 41005 1011 ‘R’ 37187 0101
‘g, 4241‘_?2 10}(1)(1)8 ‘T 710 | 1111011010 ‘S’ 37575 1000
“«c 13896 | 00100 ‘K’ 4782 11110111 ‘T 54024 000
D’ 28041 0011 ‘© 22030 10101 ‘U 16726 01001
B 74809 011 ‘M’ 15298 01000 A 5199 1111010
P 13559 | 111111 ‘N’ 42380 1100 ‘W’ 14113 00101
‘G’ 12530 | 111110 ‘o’ 46499 1101 X’ 724 | 1111011011
H 38961 1001 P 9957 101001 Y’ 12177 111100

‘Q 667 | 1111011001 VA 215 | 1111011000

* File size is now 439,688 bytes

| Raw | Huffman |
D 799940 439,688



Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

* Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length

* In what sense is this code really optimal?



Length of Huffman Codes
* What can we say about Huffman code length?
* Suppose f; = 2~ %i foreveryi € X

* Then, len; (i) = #; for the optimal Huffman code

* Proof:



Length of Huffman Codes
* What can we say about Huffman code length?

* Suppose f; = 2~ %i foreveryi € X
* Then, len; (i) = #; for the optimal Huffman code

* len(T) = Yies fi '1082(1/fi)



Entropy

* Given a set of frequencies (aka a probability
distribution) the entropy is

HUD = ) fe-logs ()

* Entropy is a “measure of randomness”

choole a  random bt ytm\?
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Entropy

e Given a set of frequencies (aka a probability
distribution) the entropy is

HUD = ) fe-logs ()

* Entropy is a “measure of randomness”

* Entropy was introduced by Shannon in 1948 and is
the foundational concept in:
* Data compression
* Communicating over a noisy connection
* Cryptography and security



Entropy of Passwords

* Your password is a specific string, so f,,,,q = 1.0

* To talk about security of passwords, we have to
model them as random
* Random 16 letter string: H = 16 - log, 26 = 75.2
* Random IMDb movie: H = log, 1764727 = 20.7
* Your favorite IMDb movie: H «< 20.7

* Entropy measures how difficult passwords are to
guess “on average”



Entropy of Passwords
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Entropy and Compression

e Given a set of frequencies (probability distribution)
the entropy is

HUD = ) fe-logs ()

e Suppose that we generate string S by choosing n
random letters independently with frequencies f

 Any compression scheme requires at least n - H(f)
bits to store S (asn — o)
* Huffman codes are truly optimal!



But Wait!

* Take the Dickens novel A Tale of Two Cities
* File size is 799,940 bytes

* Build a Huffman code and compress

‘ char ’ frequency ‘ code |
‘A 48165 1110
‘B’ 8414 | 101000
‘C 13896 | 00100
‘D’ 28041 0011
‘E’ 74809 011
‘F 13559 | 111111
‘G’ 12530 | 111110
‘H’ 38961 1001

‘ char | frequency | code |
‘T 41005 1011
‘J 710 | 1111011010
‘K’ 4782 11110111
v 22030 10101
‘M’ 15298 01000
‘N’ 42380 1100
‘O’ 46499 1101
‘P’ 9957 101001
‘Q 667 | 1111011001

* File size is now 439,688 bytes

e But we can do better!

\ char | frequency | code |
‘R’ 37187 0101
‘S’ 37575 1000
T 54024 000
U 16726 01001
v’ 5199 1111010
‘W’ 14113 00101
X 724 | 1111011011
Y’ 12177 111100
A 215 | 1111011000

T e utman | g | b2
DA 799,940

439,688

301,295

220,156



What do the frequencies represent?

* Real data (e.g. natural language, music, images)
have patterns between letters

* The frequency of U is only 2.76% in English, but what if
the previous letter is Q?

* Possible approach: model pairs of letters

» Record the frequency of pairs of letters and build a
huffman code for the pairs
* Pros:
* can improve compression ratio
* Cons:

* now the code tree is now much bigger
» cannot identify patterns across more than pairs



Lempel-Ziv-Welch Compression

* Try to learn patterns as you find them!
* Compress: ABBABABBACABBA



Lempel-Ziv-Welch Compression

* Try to learn patterns as you find them!

1. Start with an initial empty “dictionary” D
2. Until input is empty:
1. Find the longest prefix pre that matches D
2. Output D(p) and remove p from the input
3. Add (p + nextletter) to D

e Zip uses (some version of) LZW compression



Entropy and Compression

e Given a set of frequencies (probability distribution)
the entropy is

HUD = ) fe-logs ()

e Suppose that we generate string S by choosing n
random letters independently with frequencies f

* Any compression scheme requires at least n - H(f)
bits to store S (asn — o)

 Huffman codes are truly optimal if (and only if) there is
no relationship between different letters!



