CS4800: Algorithms & Data
Jonathan Ullman

Lecture 22:
 Greedy Algorithms: Huffman Codes

» Data Compression and Entropy

Apr 10, 2018

Data Compression

* How do we store strings of text compactl

701 P Ctbe_\'
* A (binary) code is a mapping from/‘(—>| {0,1} l
gt’g’ skhmgs
g k *| Simplest code: assign numbers 1,2, ..., |Z| to eachm:j 6
AW\‘\ symbol, map to binary numbers of [logZIZ | bits
gﬂ;()&, Ae=- Jo=== Seee 7
B=eooe K== T=
C=e=0¢ | 0e=00 Uoe~- \;ar,abe lQﬁﬁHﬂ
* Morse Code: 27°° Nioe e
Foee=0 Ouee X=00-

G==o Pe==0¢ Y=@==
Heeoee (o= 7 --oeo
oo

Data Compression

* Letters have uneven frequencies!

* Want to use short encodings for frequent letters, long
encodings for infrequent leters

_———-
v
0 10 110 111

Fixed (o/\ h odet A bt s per scjm\m\

\]N:QL)\Q \QJ\J‘,'H codke %7‘1 + %\—XQ\ + }q—x%

Data Compression

* Easy to encode a string

Encode(KTS)=—e—-—0 @ @

* The encoding is short on average

< 4 bits per letter (30 symbols max!)

* Easy to decode a string
Decode(—e——e @ @) =

TETTS
TETT EEE

LDt

—> TO @CO&Q a }kmj V/ n lgf{_Q/j/ ds n awaj IOO\lwfl
* What properties would a good code have?

—_ 0 — — o0 o ©

Enc (EEEY
= Enc (g\

Ae= Jomm=m lSoooi
B=eooe K=0o=- -
C=0=0¢ | 0o=00 Uoeo=-
D=oe M == Veeoo=-

N=e We==
Fee=0 (OQuue X=0o0-
G==¢ pPeume Y=o==
Heeooo

Q==0= /==00
Re=e

Prefix Free Codes

e Cannot decode if there are ambiguities
* E.g. enc(E) is a prefix of enc(S)

e Prefix-Free Code:

* Abinaryenc: £ — {0,1}" s.t. foreveryx # y € %,

enc(x) is not a prefix of enc(y)

ﬂpnﬂaﬂul>NU(Vd#4k°

* Any fixed-length code is prefix-free ae-

B=ooe

* Can make any code prefix-free by O =o=s
adding some string meaning STOP ~ D-ee

E e
The uil] muate Hre numes CE.-.--.
0¥ Lﬁ) &;:#ON, L::..

Q--e-

Re=e

Seee
T =
Uee=
Veoo=
We==
X=00=
Y=0==
/==00

Prefix Free Codes

Code:
a—1
b—011
c—010
d—001
e—000

e Can represent a prefix-free
code as a tree

* Encode by going up the tree (or using a table)
dab—->0011 011 d> 001 a—1L b—>0I\

* Decode by going down the tree
*01100010010101011

Prefix Free Codes

Code:
a—1
b—011
c—010
d—001
e—000

e Can represent a prefix-free
code as a tree

* Encode by going up the tree (or using a table)
edab—>0011 011 d= 001 a—1 b—0l)

* Decode by going down the tree

-011T0010010101011
(N

b

e = O
<= 000

Huffman Codes

* (An algorithm to find) an optimal prefix-free code

awq}a |;r['s 4 svm\m)

* optimal = minimizes len(T) = }};cs f; - leny (i)

* Note, optimality depends on what you’re compressing

* His the 8" most frequent letter in English (6.094%) but the 20th
most frquent in Italian (0.636%)

N,
& Lo b
& _—-——
v
0 10 110 111

\eoT(a\=\ lea (=2 lor (<) =3 len(d)=3

Huffman Codes
* First Try: split letters into two sets of roughly equal

frequency and recurse
* Balanced binary trees should have low depth

L=t a2 b | c | d | e
32 .25 .20 .18 .05
O £ +f, =.2s
CD/ \(D e < 'Te
SRS
d e

a,d

Huffman Codes

* First Try: split letters into two sets of roughly equal
frequency and recurse

_-_n-
\eq oH} 4)QD (Qn#-ly\&f\

Code: o ptl ma I
a—11
b—01

Code:

a—11

b—10
c—01

c—001

410 d—001

2000 e—000

first try

Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

| a | b | ¢ | d | e |
.32 .25 .20 .18 .05
a— 00O
L —= 0)
Cc— | O
d = o

Q%!\\

Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

* Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length

* We’ll prove the theorem using an exchange argument

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (1) In an optimal prefix-free code (an optimal tree), every
internal node has exactly 2 children

O\ C)ﬁ \QB(
ol .
o no
£ e hae a ook [fhe /‘Ln,
ve codd redue i lepfl

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (2) If x, y have the lowest frequency, then there is an optimal
code where x, y are siblings and are at the bottom of the tree

%u(qoxﬂ- T S oan oﬁnmo.) cocle u/ a/b aj J-Hw;f o+ -)L{-e_
ot e et e T

. B @f?\@
&' e

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* (2) If x, y have the lowest frequency, then there is an optimal
code where x, y are 5|bI|ngs and are at the bottom of the tree

QoMY O md x |‘m(7(0\ftf eﬂfl L 4o Wms
\9€c0u/\—e 3 Kr\aﬁ 1(; l?/\j;:) 7
/

~ e
8o &

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X:
* Base case (|X| = 2): rather obvious

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X
* Inductive Hypothesis /)
f e,

For o ‘CS‘LQ Llovwl N
HKmms jajof”nm (mobce; e op%maT]//fy/x Jre 500(9,

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters ir@” see k
* Inductive Hypothesis:

O on)o-c SR - o\nav)ﬂ['
F JT, S ki 47] /)

Lyr=-ntesl,
H)%mo\n's al osthm f/\b&dcey ‘Me O[’*{'ma, //f%(?;?e 500(9.
* Without loss gf generality, frequencies are fy, ..., fi, the
two lowest are f1, f

* Merge 1,2 into a new letter k + 1 with f,1 = f1 + f>
Nev G\F%q\x‘r 2 - % %Jul) gl):)]C‘”i 105/ é)“" P) A:-J é""

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

* Proof by Induction on the Number of Letters in X:
* Inductive Hypothesis:

Without loss of generality, frequencies are f, ..., fi, the
two lowest are f1, f>

Merge 1,2 into a new letter k + 1 with f,,..1 = f1 + f>

By induction, if T’ is the Huffman code for f5, ..., fi+1,
then T' is optimal

Need to prove that T is optimal for f4, ..., f%

Huffman Codes

* Theorem: Huffman’s Alg produces an optimal prefix-free code

« If T is optimal for f3, .. fk+1 then T is optimal for f1, oo [r
Qﬂ CT\ i_ “: \ (ﬂ

/ /\ a + f (5 ¢ o (2)
ZQ enr() F (ean HD’\

i +4 ()en C*D-\\\

= [en(T’) + 1[:+ 7(9,

An Experiment

* Take the Dickens novel A Tale of Two Cities
* File size is 799,940 bytes

* Build a Huffman code and compress

‘ char ’ frequency ‘ code | ‘ char | frequency | code | ‘ char | frequency | code |
— T 41005 1011 ‘R’ 37187 0101
‘g, 4241‘_?2 10}(1)(1)8 ‘T 710 | 1111011010 ‘S’ 37575 1000
“«c 13896 | 00100 ‘K’ 4782 11110111 ‘T 54024 000
D’ 28041 0011 ‘© 22030 10101 ‘U 16726 01001
B 74809 011 ‘M’ 15298 01000 A 5199 1111010
P 13559 | 111111 ‘N’ 42380 1100 ‘W’ 14113 00101
‘G’ 12530 | 111110 ‘o’ 46499 1101 X’ 724 | 1111011011
H 38961 1001 P 9957 101001 Y’ 12177 111100

‘Q 667 | 1111011001 VA 215 | 1111011000

* File size is now 439,688 bytes

| Raw | Huffman |
D 799940 439,688

Huffman Codes

* Huffman’s Algorithm: pair up the two letters with
the lowest frequency and recurse

* Theorem: Huffman’s Algorithm produces a prefix-
free code of optimal length

* In what sense is this code really optimal?

Length of Huffman Codes
* What can we say about Huffman code length?
* Suppose f; = 2~ %i foreveryi € X

* Then, len; (i) = #; for the optimal Huffman code

* Proof:

Length of Huffman Codes
* What can we say about Huffman code length?

* Suppose f; = 2~ %i foreveryi € X
* Then, len; (i) = #; for the optimal Huffman code

* len(T) = Yies fi '1082(1/fi)

Entropy

* Given a set of frequencies (aka a probability
distribution) the entropy is

HUD =) fe-logs ()

* Entropy is a “measure of randomness”

choole a random bt ytm\?
VIS A"

Entropy

e Given a set of frequencies (aka a probability
distribution) the entropy is

HUD =) fe-logs ()

* Entropy is a “measure of randomness”

* Entropy was introduced by Shannon in 1948 and is
the foundational concept in:
* Data compression
* Communicating over a noisy connection
* Cryptography and security

Entropy of Passwords

* Your password is a specific string, so f,,,,q = 1.0

* To talk about security of passwords, we have to
model them as random
* Random 16 letter string: H = 16 - log, 26 = 75.2
* Random IMDb movie: H = log, 1764727 = 20.7
* Your favorite IMDb movie: H «< 20.7

* Entropy measures how difficult passwords are to
guess “on average”

Entropy of Passwords

0000000oooo0ooon. ~28 BITS OF ENTROPY WAS IT TROMBONE? NO,
(N%Ncasmg&g_‘) ORDER alalelalelate TROUBADOR, AND ONE OF
. ooo || HE Os WAS A ZERQ?
BASE WORD UNKNCMN 0oo ;i 0 S \ .
B AND THERE WAS
2= 3DASAT || SOME SYHMBOL...
TF@U b4d0r &3 1000 GUESSES /seC
(e St v, o e
CAPS? GONMON N(MERA HASH 13 ENSTER, BUT 5 NOT WHAT THE
: SUBSTITUTONS P || s RS
e PONCTUATION | | DIFFICOLTY 0 GUESS: | | DIFFICULTY To REMEMBER:
T L oooo EAS(HARD
15 ONLY ONE OF A Féw CoMMoN FORMATS)

correct horse battery staple

- Lﬁ_JL_‘_—._/—Tﬁ_A

0oOoal Oac gaoo

FOOR RANDOM
COMMON WORDS

~ HH BITS OF ENTROPY
o0oaooponoao
_____ 1000000
aO0ooaopanaoc

pDoOngoooooao

2™ =550 YEARS AT
1000 GUESSES/SEC

HARD

DIFAICOLTY TO GUESS:

DIFFICULTY TO REMEMBER:
YOUVE ALREADY

MEMORIZED IT

THROUGH 20 YEARS ¢ EFFORT, WEVE SUCCESSFULLY TRAINED

EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Entropy and Compression

e Given a set of frequencies (probability distribution)
the entropy is

HUD =) fe-logs ()

e Suppose that we generate string S by choosing n
random letters independently with frequencies f

 Any compression scheme requires at least n - H(f)
bits to store S (asn — o)
* Huffman codes are truly optimal!

But Wait!

* Take the Dickens novel A Tale of Two Cities
* File size is 799,940 bytes

* Build a Huffman code and compress

‘ char ’ frequency ‘ code |
‘A 48165 1110
‘B’ 8414 | 101000
‘C 13896 | 00100
‘D’ 28041 0011
‘E’ 74809 011
‘F 13559 | 111111
‘G’ 12530 | 111110
‘H’ 38961 1001

‘ char | frequency | code |
‘T 41005 1011
‘J 710 | 1111011010
‘K’ 4782 11110111
v 22030 10101
‘M’ 15298 01000
‘N’ 42380 1100
‘O’ 46499 1101
‘P’ 9957 101001
‘Q 667 | 1111011001

* File size is now 439,688 bytes

e But we can do better!

\ char | frequency | code |
‘R’ 37187 0101
‘S’ 37575 1000
T 54024 000
U 16726 01001
v’ 5199 1111010
‘W’ 14113 00101
X 724 | 1111011011
Y’ 12177 111100
A 215 | 1111011000

T e utman | g | b2
DA 799,940

439,688

301,295

220,156

What do the frequencies represent?

* Real data (e.g. natural language, music, images)
have patterns between letters

* The frequency of U is only 2.76% in English, but what if
the previous letter is Q?

* Possible approach: model pairs of letters

» Record the frequency of pairs of letters and build a
huffman code for the pairs
* Pros:
* can improve compression ratio
* Cons:

* now the code tree is now much bigger
» cannot identify patterns across more than pairs

Lempel-Ziv-Welch Compression

* Try to learn patterns as you find them!
* Compress: ABBABABBACABBA

Lempel-Ziv-Welch Compression

* Try to learn patterns as you find them!

1. Start with an initial empty “dictionary” D
2. Until input is empty:
1. Find the longest prefix pre that matches D
2. Output D(p) and remove p from the input
3. Add (p + nextletter) to D

e Zip uses (some version of) LZW compression

Entropy and Compression

e Given a set of frequencies (probability distribution)
the entropy is

HUD =) fe-logs ()

e Suppose that we generate string S by choosing n
random letters independently with frequencies f

* Any compression scheme requires at least n - H(f)
bits to store S (asn — o)

 Huffman codes are truly optimal if (and only if) there is
no relationship between different letters!

