CS4800: Algorithms \& Data Jonathan Ullman

Lecture 22:

- Greedy Algorithms: Huffman Codes
- Data Compression and Entropy

Apr 10, 2018

Data Compression

- How do we store strings of text compactly? symbol, map to binary numbers of $\left[\log _{2}|\Sigma|\right\rceil$ bits
- Morse Code:

Data Compression

- Letters have uneven frequencies!
- Want to use short encodings for frequent letters, long encodings for infrequent liters

	a	b	c	d
Frequency	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 8$
Encoding	0	10	110	111

Fixed length code: 2 bits per symbol
Variable length code: $\frac{1}{2} \times 1+\frac{1}{4} \times 2+\frac{1}{4} \times 3$

$$
=\frac{1}{2}+\frac{1}{2}+\frac{3}{4}=1.75 \text { bat, per symbol) }
$$

Data Compression

To encode a sting il n letters, do a ara y lookiop

- What properties would a good code have?
- Easy to encode a string
Encode(KTS) = - •--• • •
- The encoding is short on average

$$
\leq 4 \text { bits per letter (30 symbols max!) } \begin{aligned}
& E_{n c}(E E E) \\
& =E_{n c}(S)
\end{aligned}
$$

- Easy to decode a string

$$
\begin{gathered}
\text { Decode }(-\bullet--\bullet \bullet \bullet)= \\
\text { TETS } \\
\text { TESTEE } \\
\text { KDE }
\end{gathered}
$$

Prefix Free Codes

- Cannot decode if there are ambiguities
- E.g. enc(E) is a prefix of enc(S)
- Prefix-Free Code:
- A binary enc: $\Sigma \rightarrow\{0,1\}^{*}$ s.t. for every $x \neq y \in \Sigma$, $\operatorname{enc}(x)$ is not a prefix of enc (y)

Morse Code D NOT pefx-free

- Any fixed-length code is prefix-free
- Can make any code prefix-free by adding some string meaning STOP

$$
\begin{aligned}
& \text { This will inverse the number } \\
& \text { of bis to store. }
\end{aligned}
$$

Prefix Free Codes

- Can represent a prefix-free code as a tree

- Encode by going up the tree (or using a table)
- dab $\rightarrow 0011011 \quad d \rightarrow 001 \quad a \rightarrow 1 \quad b \rightarrow 011$
- Decode by going down the tree
-01100010010101011

Prefix Free Codes

- Can represent a prefix-free code as a tree

- Encode by going up the tree (or using a table)
- dab $\rightarrow 0011011 \quad d \rightarrow 001 \quad a \rightarrow 1 \quad b \rightarrow 011$
- Decode by going down the tree
- 01100010010101011
b e |a|d

Huffman Codes

- (An algorithm to find) an optimal prefix-free code

average lats per symbol

- optimal $=$ minimizes len $(T)=\sum_{i \in \Sigma} f_{i} \cdot \operatorname{len}_{T}(i)$
- Note, optimality depends on what you're compressing
- H is the $8^{\text {th }}$ most frequent letter in English (6.094\%) but the $20^{\text {th }}$ most frquent in Italian (0.636\%)

	f_{a}	f_{b}	f_{c}	f_{d}
	a	b	c	d
Frequency	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 8$
Encoding	0	10	110	111

Huffman Codes

- First Try: split letters into two sets of roughly equal frequency and recurs
- Balanced binary trees should have low depth

$f_{a}+f_{d}=.5$	a	b	c	d	e
	.32	.25	.20	.18	.05

a, d

$$
f_{c}+f_{e}=.25
$$

Huffman Codes

- First Try: split letters into two sets of roughly equal frequency and recurse

Huffman Codes

- Huffman's Algorithm: pair up the two letters with the lowest frequency and recuse

$$
\begin{aligned}
& a \rightarrow 00 \\
& b \rightarrow 01 \\
& c \rightarrow 10 \\
& d \rightarrow 110 \\
& e \rightarrow 111
\end{aligned}
$$

Huffman Codes

- Huffman's Algorithm: pair up the two letters with the lowest frequency and recurse
- Theorem: Huffman's Algorithm produces a prefixfree code of optimal length
- We'll prove the theorem using an exchange argument

Huffman Codes

- Theorem: Huffman's Alg produces an optimal prefix-free code
- (1) In an optimal prefix-free code (an optimal tree), every internal node has exactly 2 children

Huffman Codes

- Theorem: Huffman's Alg produces an optimal prefix-free code
- (2) If x, y have the lowest frequency, then there is an optimal code where x, y are siblings and are at the bottom of the tree Suppose T is an optimal code w/ a, b as siblings at the lowest level

T^{\prime} is bette than T
T

Huffman Codes

- Theorem: Huffman's Alg produces an optimal prefix-free code
- (2) If x, y have the lowest frequency, then there is an optimal code where x, y are siblings and are at the bottom of the tree swapping a and x improves the length suapeing band y improves because $f_{a}>f_{x}$ the length berases $f_{L}>f_{y}$ T^{\prime}
T

Huffman Codes

- Theorem: Huffman's Alg produces an optimal prefix-free code
- Proof by Induction on the Number of Letters in Σ :
- Base case $(|\Sigma|=2)$: rather obvious

Huffman Codes

- Theorem: Huffman's Alg produces an optimal prefix-free code
- Proof by Induction on the Number of Letters in Σ :
- Inductive Hypothesis:

For any Σ^{\prime} of size $k-1$ and any $f_{1, \ldots}, f_{k-1}$, Huffman's algorithm produces the optimal prefix-fre code.

Huffman Codes

- Theorem: Huffman's Alg produces an optimal prefix-free code
- Proof by Induction on the Number of Letters in $\Sigma \cdot \rightarrow$ size k
- Inductive Hypothesis:

For any Σ^{\prime} of size $k-1$ and any $f_{1, \ldots,} f_{k-1}$,
Hoffman's algosthm produces the optimal prefix-fre code.

- Without loss of generality, frequencies are f_{1}, \ldots, f_{k}, the two lowest are f_{1}, f_{2}
- Merge 1,2 into a new letter $k+1$ with $f_{k+1}=f_{1}+f_{2}$

Nev alphabet $\varepsilon^{\prime}=\{3,4, \ldots, k, k+1\} \quad f_{3}, f_{4}, \ldots, f_{k}, f_{k+1}$

Huffman Codes

- Theorem: Huffman's Alg produces an optimal prefix-free code
- Proof by Induction on the Number of Letters in Σ :
- Inductive Hypothesis:
- Without loss of generality, frequencies are f_{1}, \ldots, f_{k}, the two lowest are f_{1}, f_{2}
- Merge 1,2 into a new letter $k+1$ with $f_{k+1}=f_{1}+f_{2}$
- By induction, if T^{\prime} is the Huffman code for f_{3}, \ldots, f_{k+1}, then T^{\prime} is optimal
- Need to prove that T is optimal for f_{1}, \ldots, f_{k}

Huffman Codes

- Theorem: Huffman's Alg produces an optimal prefix-free code
- If T^{\prime} is optimal for f_{3}, \ldots, f_{k+1} then T is optimal for f_{1}, \ldots, f_{k}

T

$$
\operatorname{len}(T)=\sum_{i=1}^{k} f_{i} \cdot \operatorname{len} T(i)
$$

An Experiment

- Take the Dickens novel A Tale of Two Cities
- File size is 799,940 bytes
- Build a Huffman code and compress

char	frequency	code
'A'	48165	1110
'B'	8414	101000
'C'	13896	00100
'D'	28041	0011
'E'	74809	011
'F'	13559	111111
'G'	12530	111110
'H'	38961	1001

char	frequency	code
'I'	41005	1011
'J'	710	1111011010
'K'	4782	11110111
'L'	22030	10101
'M'	15298	01000
'N'	42380	1100
'O'	46499	1101
'P'	9957	101001
'Q'	667	1111011001

char	frequency	code
'R'	37187	0101
'S'	37575	1000
'T'	54024	000
'U'	16726	01001
'V'	5199	1111010
'W'	14113	00101
'X'	724	1111011011
'Y'	12177	111100
'Z'	215	1111011000

- File size is now 439,688 bytes

	Raw	Huffman
Size	799,940	439,688

Huffman Codes

- Huffman's Algorithm: pair up the two letters with the lowest frequency and recurse
- Theorem: Huffman's Algorithm produces a prefixfree code of optimal length
- In what sense is this code really optimal?

Length of Huffman Codes

- What can we say about Huffman code length?
- Suppose $f_{i}=2^{-\ell_{i}}$ for every $i \in \Sigma$
- Then, $\operatorname{len}_{T}(i)=\ell_{i}$ for the optimal Huffman code
- Proof:

Length of Huffman Codes

- What can we say about Huffman code length?
- Suppose $f_{i}=2^{-\ell_{i}}$ for every $i \in \Sigma$
- Then, $\operatorname{len}_{T}(i)=\ell_{i}$ for the optimal Huffman code
- $\operatorname{len}(T)=\sum_{i \in \Sigma} f_{i} \cdot \log _{2}\left(1 / f_{i}\right)$

Entropy

- Given a set of frequencies (aka a probability distribution) the entropy is

$$
H(f)=\sum_{i} f_{i} \cdot \log _{2}\left(\frac{1}{f_{i}}\right)
$$

- Entropy is a "measure of randomness"
choose a random k bt sting

$$
\begin{aligned}
& \forall ; f_{i}=2^{-k} \\
& H(f)=2^{k} \cdot 2^{-k} \cdot k=k
\end{aligned}
$$

Entropy

- Given a set of frequencies (aka a probability distribution) the entropy is

$$
H(f)=\sum_{i} f_{i} \cdot \log _{2}\left(\frac{1}{f_{i}}\right)
$$

- Entropy is a "measure of randomness"
- Entropy was introduced by Shannon in 1948 and is the foundational concept in:
- Data compression
- Communicating over a noisy connection
- Cryptography and security

Entropy of Passwords

- Your password is a specific string, so $f_{p w d}=1.0$
- To talk about security of passwords, we have to model them as random
- Random 16 letter string: $H=16 \cdot \log _{2} 26 \approx 75.2$
- Random IMDb movie: $H=\log _{2} 1764727 \approx 20.7$
- Your favorite IMDb movie: $H \ll 20.7$
- Entropy measures how difficult passwords are to guess "on average"

Entropy of Passwords

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THIAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Entropy and Compression

- Given a set of frequencies (probability distribution) the entropy is

$$
H(f)=\sum_{i} f_{i} \cdot \log _{2}\left(\frac{1}{f_{i}}\right)
$$

- Suppose that we generate string S by choosing n random letters independently with frequencies f
- Any compression scheme requires at least $n \cdot H(f)$ bits to store S (as $n \rightarrow \infty$)
- Huffman codes are truly optimal!

But Wait!

- Take the Dickens novel A Tale of Two Cities
- File size is 799,940 bytes
- Build a Huffman code and compress

char	frequency	code
'A'	48165	1110
'B'	8414	101000
'C'	13896	00100
'D'	28041	0011
'E'	74809	011
'F'	13559	111111
'G'	12530	111110
'H'	38961	1001

char	frequency	code
'I'	41005	1011
'J'	710	1111011010
'K'	4782	11110111
'L'	22030	10101
'M'	15298	01000
'N'	42380	1100
'O'	46499	1101
'P'	9957	101001
'Q'	667	1111011001

char	frequency	code
' $\mathrm{R} '$	37187	0101
'S'	37575	1000
'T'	54024	000
'U'	16726	01001
'V'	5199	1111010
'W'	14113	00101
'X'	724	1111011011
'Y'	12177	111100
'Z'	215	1111011000

- File size is now 439,688 bytes
- But we can do better!

	Raw	Huffman	gzip	bzip2
Size	799,940	439,688	301,295	220,156

What do the frequencies represent?

- Real data (e.g. natural language, music, images) have patterns between letters
- The frequency of U is only 2.76% in English, but what if the previous letter is Q?
- Possible approach: model pairs of letters
- Record the frequency of pairs of letters and build a huffman code for the pairs
- Pros:
- can improve compression ratio
- Cons:
- now the code tree is now much bigger
- cannot identify patterns across more than pairs

Lempel-Ziv-Welch Compression

- Try to learn patterns as you find them!
- Compress: ABBABABBACABBA

Lempel-Ziv-Welch Compression

- Try to learn patterns as you find them!

1. Start with an initial empty "dictionary" D
2. Until input is empty:
3. Find the longest prefix pre that matches D
4. Output $D(p)$ and remove p from the input
5. Add ($p+$ nextletter) to D

- zip uses (some version of) LZW compression

Entropy and Compression

- Given a set of frequencies (probability distribution) the entropy is

$$
H(f)=\sum_{i} f_{i} \cdot \log _{2}\left(\frac{1}{f_{i}}\right)
$$

- Suppose that we generate string S by choosing n random letters independently with frequencies f
- Any compression scheme requires at least $n \cdot H(f)$ bits to store S (as $n \rightarrow \infty$)
- Huffman codes are truly optimal if (and only if) there is no relationship between different letters!

